You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaed0.c 29 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__9 = 9;
  485. static integer c__0 = 0;
  486. static integer c__2 = 2;
  487. static real c_b23 = 1.f;
  488. static real c_b24 = 0.f;
  489. static integer c__1 = 1;
  490. /* > \brief \b SLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced
  491. symmetric tridiagonal matrix using the divide and conquer method. */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download SLAED0 + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed0.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed0.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed0.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE SLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, */
  510. /* WORK, IWORK, INFO ) */
  511. /* INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ */
  512. /* INTEGER IWORK( * ) */
  513. /* REAL D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ), */
  514. /* $ WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > SLAED0 computes all eigenvalues and corresponding eigenvectors of a */
  521. /* > symmetric tridiagonal matrix using the divide and conquer method. */
  522. /* > \endverbatim */
  523. /* Arguments: */
  524. /* ========== */
  525. /* > \param[in] ICOMPQ */
  526. /* > \verbatim */
  527. /* > ICOMPQ is INTEGER */
  528. /* > = 0: Compute eigenvalues only. */
  529. /* > = 1: Compute eigenvectors of original dense symmetric matrix */
  530. /* > also. On entry, Q contains the orthogonal matrix used */
  531. /* > to reduce the original matrix to tridiagonal form. */
  532. /* > = 2: Compute eigenvalues and eigenvectors of tridiagonal */
  533. /* > matrix. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] QSIZ */
  537. /* > \verbatim */
  538. /* > QSIZ is INTEGER */
  539. /* > The dimension of the orthogonal matrix used to reduce */
  540. /* > the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] N */
  544. /* > \verbatim */
  545. /* > N is INTEGER */
  546. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in,out] D */
  550. /* > \verbatim */
  551. /* > D is REAL array, dimension (N) */
  552. /* > On entry, the main diagonal of the tridiagonal matrix. */
  553. /* > On exit, its eigenvalues. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] E */
  557. /* > \verbatim */
  558. /* > E is REAL array, dimension (N-1) */
  559. /* > The off-diagonal elements of the tridiagonal matrix. */
  560. /* > On exit, E has been destroyed. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] Q */
  564. /* > \verbatim */
  565. /* > Q is REAL array, dimension (LDQ, N) */
  566. /* > On entry, Q must contain an N-by-N orthogonal matrix. */
  567. /* > If ICOMPQ = 0 Q is not referenced. */
  568. /* > If ICOMPQ = 1 On entry, Q is a subset of the columns of the */
  569. /* > orthogonal matrix used to reduce the full */
  570. /* > matrix to tridiagonal form corresponding to */
  571. /* > the subset of the full matrix which is being */
  572. /* > decomposed at this time. */
  573. /* > If ICOMPQ = 2 On entry, Q will be the identity matrix. */
  574. /* > On exit, Q contains the eigenvectors of the */
  575. /* > tridiagonal matrix. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDQ */
  579. /* > \verbatim */
  580. /* > LDQ is INTEGER */
  581. /* > The leading dimension of the array Q. If eigenvectors are */
  582. /* > desired, then LDQ >= f2cmax(1,N). In any case, LDQ >= 1. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[out] QSTORE */
  586. /* > \verbatim */
  587. /* > QSTORE is REAL array, dimension (LDQS, N) */
  588. /* > Referenced only when ICOMPQ = 1. Used to store parts of */
  589. /* > the eigenvector matrix when the updating matrix multiplies */
  590. /* > take place. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] LDQS */
  594. /* > \verbatim */
  595. /* > LDQS is INTEGER */
  596. /* > The leading dimension of the array QSTORE. If ICOMPQ = 1, */
  597. /* > then LDQS >= f2cmax(1,N). In any case, LDQS >= 1. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] WORK */
  601. /* > \verbatim */
  602. /* > WORK is REAL array, */
  603. /* > If ICOMPQ = 0 or 1, the dimension of WORK must be at least */
  604. /* > 1 + 3*N + 2*N*lg N + 3*N**2 */
  605. /* > ( lg( N ) = smallest integer k */
  606. /* > such that 2^k >= N ) */
  607. /* > If ICOMPQ = 2, the dimension of WORK must be at least */
  608. /* > 4*N + N**2. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] IWORK */
  612. /* > \verbatim */
  613. /* > IWORK is INTEGER array, */
  614. /* > If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */
  615. /* > 6 + 6*N + 5*N*lg N. */
  616. /* > ( lg( N ) = smallest integer k */
  617. /* > such that 2^k >= N ) */
  618. /* > If ICOMPQ = 2, the dimension of IWORK must be at least */
  619. /* > 3 + 5*N. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] INFO */
  623. /* > \verbatim */
  624. /* > INFO is INTEGER */
  625. /* > = 0: successful exit. */
  626. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  627. /* > > 0: The algorithm failed to compute an eigenvalue while */
  628. /* > working on the submatrix lying in rows and columns */
  629. /* > INFO/(N+1) through mod(INFO,N+1). */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date December 2016 */
  638. /* > \ingroup auxOTHERcomputational */
  639. /* > \par Contributors: */
  640. /* ================== */
  641. /* > */
  642. /* > Jeff Rutter, Computer Science Division, University of California */
  643. /* > at Berkeley, USA */
  644. /* ===================================================================== */
  645. /* Subroutine */ void slaed0_(integer *icompq, integer *qsiz, integer *n, real
  646. *d__, real *e, real *q, integer *ldq, real *qstore, integer *ldqs,
  647. real *work, integer *iwork, integer *info)
  648. {
  649. /* System generated locals */
  650. integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
  651. real r__1;
  652. /* Local variables */
  653. real temp;
  654. integer curr, i__, j, k;
  655. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  656. integer *, real *, real *, integer *, real *, integer *, real *,
  657. real *, integer *);
  658. integer iperm, indxq, iwrem;
  659. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  660. integer *);
  661. integer iqptr, tlvls;
  662. extern /* Subroutine */ void slaed1_(integer *, real *, real *, integer *,
  663. integer *, real *, integer *, real *, integer *, integer *),
  664. slaed7_(integer *, integer *, integer *, integer *, integer *,
  665. integer *, real *, real *, integer *, integer *, real *, integer *
  666. , real *, integer *, integer *, integer *, integer *, integer *,
  667. real *, real *, integer *, integer *);
  668. integer iq, igivcl;
  669. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  670. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  671. integer *, integer *, ftnlen, ftnlen);
  672. integer igivnm, submat;
  673. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  674. integer *, real *, integer *);
  675. integer curprb, subpbs, igivpt, curlvl, matsiz, iprmpt, smlsiz;
  676. extern /* Subroutine */ void ssteqr_(char *, integer *, real *, real *,
  677. real *, integer *, real *, integer *);
  678. integer lgn, msd2, smm1, spm1, spm2;
  679. /* -- LAPACK computational routine (version 3.7.0) -- */
  680. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  681. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  682. /* December 2016 */
  683. /* ===================================================================== */
  684. /* Test the input parameters. */
  685. /* Parameter adjustments */
  686. --d__;
  687. --e;
  688. q_dim1 = *ldq;
  689. q_offset = 1 + q_dim1 * 1;
  690. q -= q_offset;
  691. qstore_dim1 = *ldqs;
  692. qstore_offset = 1 + qstore_dim1 * 1;
  693. qstore -= qstore_offset;
  694. --work;
  695. --iwork;
  696. /* Function Body */
  697. *info = 0;
  698. if (*icompq < 0 || *icompq > 2) {
  699. *info = -1;
  700. } else if (*icompq == 1 && *qsiz < f2cmax(0,*n)) {
  701. *info = -2;
  702. } else if (*n < 0) {
  703. *info = -3;
  704. } else if (*ldq < f2cmax(1,*n)) {
  705. *info = -7;
  706. } else if (*ldqs < f2cmax(1,*n)) {
  707. *info = -9;
  708. }
  709. if (*info != 0) {
  710. i__1 = -(*info);
  711. xerbla_("SLAED0", &i__1, (ftnlen)6);
  712. return;
  713. }
  714. /* Quick return if possible */
  715. if (*n == 0) {
  716. return;
  717. }
  718. smlsiz = ilaenv_(&c__9, "SLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
  719. ftnlen)6, (ftnlen)1);
  720. /* Determine the size and placement of the submatrices, and save in */
  721. /* the leading elements of IWORK. */
  722. iwork[1] = *n;
  723. subpbs = 1;
  724. tlvls = 0;
  725. L10:
  726. if (iwork[subpbs] > smlsiz) {
  727. for (j = subpbs; j >= 1; --j) {
  728. iwork[j * 2] = (iwork[j] + 1) / 2;
  729. iwork[(j << 1) - 1] = iwork[j] / 2;
  730. /* L20: */
  731. }
  732. ++tlvls;
  733. subpbs <<= 1;
  734. goto L10;
  735. }
  736. i__1 = subpbs;
  737. for (j = 2; j <= i__1; ++j) {
  738. iwork[j] += iwork[j - 1];
  739. /* L30: */
  740. }
  741. /* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
  742. /* using rank-1 modifications (cuts). */
  743. spm1 = subpbs - 1;
  744. i__1 = spm1;
  745. for (i__ = 1; i__ <= i__1; ++i__) {
  746. submat = iwork[i__] + 1;
  747. smm1 = submat - 1;
  748. d__[smm1] -= (r__1 = e[smm1], abs(r__1));
  749. d__[submat] -= (r__1 = e[smm1], abs(r__1));
  750. /* L40: */
  751. }
  752. indxq = (*n << 2) + 3;
  753. if (*icompq != 2) {
  754. /* Set up workspaces for eigenvalues only/accumulate new vectors */
  755. /* routine */
  756. temp = log((real) (*n)) / log(2.f);
  757. lgn = (integer) temp;
  758. if (pow_ii(c__2, lgn) < *n) {
  759. ++lgn;
  760. }
  761. if (pow_ii(c__2, lgn) < *n) {
  762. ++lgn;
  763. }
  764. iprmpt = indxq + *n + 1;
  765. iperm = iprmpt + *n * lgn;
  766. iqptr = iperm + *n * lgn;
  767. igivpt = iqptr + *n + 2;
  768. igivcl = igivpt + *n * lgn;
  769. igivnm = 1;
  770. iq = igivnm + (*n << 1) * lgn;
  771. /* Computing 2nd power */
  772. i__1 = *n;
  773. iwrem = iq + i__1 * i__1 + 1;
  774. /* Initialize pointers */
  775. i__1 = subpbs;
  776. for (i__ = 0; i__ <= i__1; ++i__) {
  777. iwork[iprmpt + i__] = 1;
  778. iwork[igivpt + i__] = 1;
  779. /* L50: */
  780. }
  781. iwork[iqptr] = 1;
  782. }
  783. /* Solve each submatrix eigenproblem at the bottom of the divide and */
  784. /* conquer tree. */
  785. curr = 0;
  786. i__1 = spm1;
  787. for (i__ = 0; i__ <= i__1; ++i__) {
  788. if (i__ == 0) {
  789. submat = 1;
  790. matsiz = iwork[1];
  791. } else {
  792. submat = iwork[i__] + 1;
  793. matsiz = iwork[i__ + 1] - iwork[i__];
  794. }
  795. if (*icompq == 2) {
  796. ssteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat +
  797. submat * q_dim1], ldq, &work[1], info);
  798. if (*info != 0) {
  799. goto L130;
  800. }
  801. } else {
  802. ssteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 +
  803. iwork[iqptr + curr]], &matsiz, &work[1], info);
  804. if (*info != 0) {
  805. goto L130;
  806. }
  807. if (*icompq == 1) {
  808. sgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat *
  809. q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]],
  810. &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1],
  811. ldqs);
  812. }
  813. /* Computing 2nd power */
  814. i__2 = matsiz;
  815. iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
  816. ++curr;
  817. }
  818. k = 1;
  819. i__2 = iwork[i__ + 1];
  820. for (j = submat; j <= i__2; ++j) {
  821. iwork[indxq + j] = k;
  822. ++k;
  823. /* L60: */
  824. }
  825. /* L70: */
  826. }
  827. /* Successively merge eigensystems of adjacent submatrices */
  828. /* into eigensystem for the corresponding larger matrix. */
  829. /* while ( SUBPBS > 1 ) */
  830. curlvl = 1;
  831. L80:
  832. if (subpbs > 1) {
  833. spm2 = subpbs - 2;
  834. i__1 = spm2;
  835. for (i__ = 0; i__ <= i__1; i__ += 2) {
  836. if (i__ == 0) {
  837. submat = 1;
  838. matsiz = iwork[2];
  839. msd2 = iwork[1];
  840. curprb = 0;
  841. } else {
  842. submat = iwork[i__] + 1;
  843. matsiz = iwork[i__ + 2] - iwork[i__];
  844. msd2 = matsiz / 2;
  845. ++curprb;
  846. }
  847. /* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
  848. /* into an eigensystem of size MATSIZ. */
  849. /* SLAED1 is used only for the full eigensystem of a tridiagonal */
  850. /* matrix. */
  851. /* SLAED7 handles the cases in which eigenvalues only or eigenvalues */
  852. /* and eigenvectors of a full symmetric matrix (which was reduced to */
  853. /* tridiagonal form) are desired. */
  854. if (*icompq == 2) {
  855. slaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1],
  856. ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
  857. msd2, &work[1], &iwork[subpbs + 1], info);
  858. } else {
  859. slaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
  860. submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
  861. iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
  862. work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
  863. , &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
  864. work[iwrem], &iwork[subpbs + 1], info);
  865. }
  866. if (*info != 0) {
  867. goto L130;
  868. }
  869. iwork[i__ / 2 + 1] = iwork[i__ + 2];
  870. /* L90: */
  871. }
  872. subpbs /= 2;
  873. ++curlvl;
  874. goto L80;
  875. }
  876. /* end while */
  877. /* Re-merge the eigenvalues/vectors which were deflated at the final */
  878. /* merge step. */
  879. if (*icompq == 1) {
  880. i__1 = *n;
  881. for (i__ = 1; i__ <= i__1; ++i__) {
  882. j = iwork[indxq + i__];
  883. work[i__] = d__[j];
  884. scopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1
  885. + 1], &c__1);
  886. /* L100: */
  887. }
  888. scopy_(n, &work[1], &c__1, &d__[1], &c__1);
  889. } else if (*icompq == 2) {
  890. i__1 = *n;
  891. for (i__ = 1; i__ <= i__1; ++i__) {
  892. j = iwork[indxq + i__];
  893. work[i__] = d__[j];
  894. scopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
  895. /* L110: */
  896. }
  897. scopy_(n, &work[1], &c__1, &d__[1], &c__1);
  898. slacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
  899. } else {
  900. i__1 = *n;
  901. for (i__ = 1; i__ <= i__1; ++i__) {
  902. j = iwork[indxq + i__];
  903. work[i__] = d__[j];
  904. /* L120: */
  905. }
  906. scopy_(n, &work[1], &c__1, &d__[1], &c__1);
  907. }
  908. goto L140;
  909. L130:
  910. *info = submat * (*n + 1) + submat + matsiz - 1;
  911. L140:
  912. return;
  913. /* End of SLAED0 */
  914. } /* slaed0_ */