You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgelss.c 36 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* Table of constant values */
  235. static integer c__6 = 6;
  236. static integer c_n1 = -1;
  237. static integer c__1 = 1;
  238. static integer c__0 = 0;
  239. static real c_b50 = 0.f;
  240. static real c_b83 = 1.f;
  241. /* > \brief <b> SGELSS solves overdetermined or underdetermined systems for GE matrices</b> */
  242. /* =========== DOCUMENTATION =========== */
  243. /* Online html documentation available at */
  244. /* http://www.netlib.org/lapack/explore-html/ */
  245. /* > \htmlonly */
  246. /* > Download SGELSS + dependencies */
  247. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelss.
  248. f"> */
  249. /* > [TGZ]</a> */
  250. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelss.
  251. f"> */
  252. /* > [ZIP]</a> */
  253. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelss.
  254. f"> */
  255. /* > [TXT]</a> */
  256. /* > \endhtmlonly */
  257. /* Definition: */
  258. /* =========== */
  259. /* SUBROUTINE SGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  260. /* WORK, LWORK, INFO ) */
  261. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  262. /* REAL RCOND */
  263. /* REAL A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) */
  264. /* > \par Purpose: */
  265. /* ============= */
  266. /* > */
  267. /* > \verbatim */
  268. /* > */
  269. /* > SGELSS computes the minimum norm solution to a real linear least */
  270. /* > squares problem: */
  271. /* > */
  272. /* > Minimize 2-norm(| b - A*x |). */
  273. /* > */
  274. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  275. /* > matrix which may be rank-deficient. */
  276. /* > */
  277. /* > Several right hand side vectors b and solution vectors x can be */
  278. /* > handled in a single call; they are stored as the columns of the */
  279. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
  280. /* > X. */
  281. /* > */
  282. /* > The effective rank of A is determined by treating as zero those */
  283. /* > singular values which are less than RCOND times the largest singular */
  284. /* > value. */
  285. /* > \endverbatim */
  286. /* Arguments: */
  287. /* ========== */
  288. /* > \param[in] M */
  289. /* > \verbatim */
  290. /* > M is INTEGER */
  291. /* > The number of rows of the matrix A. M >= 0. */
  292. /* > \endverbatim */
  293. /* > */
  294. /* > \param[in] N */
  295. /* > \verbatim */
  296. /* > N is INTEGER */
  297. /* > The number of columns of the matrix A. N >= 0. */
  298. /* > \endverbatim */
  299. /* > */
  300. /* > \param[in] NRHS */
  301. /* > \verbatim */
  302. /* > NRHS is INTEGER */
  303. /* > The number of right hand sides, i.e., the number of columns */
  304. /* > of the matrices B and X. NRHS >= 0. */
  305. /* > \endverbatim */
  306. /* > */
  307. /* > \param[in,out] A */
  308. /* > \verbatim */
  309. /* > A is REAL array, dimension (LDA,N) */
  310. /* > On entry, the M-by-N matrix A. */
  311. /* > On exit, the first f2cmin(m,n) rows of A are overwritten with */
  312. /* > its right singular vectors, stored rowwise. */
  313. /* > \endverbatim */
  314. /* > */
  315. /* > \param[in] LDA */
  316. /* > \verbatim */
  317. /* > LDA is INTEGER */
  318. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  319. /* > \endverbatim */
  320. /* > */
  321. /* > \param[in,out] B */
  322. /* > \verbatim */
  323. /* > B is REAL array, dimension (LDB,NRHS) */
  324. /* > On entry, the M-by-NRHS right hand side matrix B. */
  325. /* > On exit, B is overwritten by the N-by-NRHS solution */
  326. /* > matrix X. If m >= n and RANK = n, the residual */
  327. /* > sum-of-squares for the solution in the i-th column is given */
  328. /* > by the sum of squares of elements n+1:m in that column. */
  329. /* > \endverbatim */
  330. /* > */
  331. /* > \param[in] LDB */
  332. /* > \verbatim */
  333. /* > LDB is INTEGER */
  334. /* > The leading dimension of the array B. LDB >= f2cmax(1,f2cmax(M,N)). */
  335. /* > \endverbatim */
  336. /* > */
  337. /* > \param[out] S */
  338. /* > \verbatim */
  339. /* > S is REAL array, dimension (f2cmin(M,N)) */
  340. /* > The singular values of A in decreasing order. */
  341. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  342. /* > \endverbatim */
  343. /* > */
  344. /* > \param[in] RCOND */
  345. /* > \verbatim */
  346. /* > RCOND is REAL */
  347. /* > RCOND is used to determine the effective rank of A. */
  348. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  349. /* > If RCOND < 0, machine precision is used instead. */
  350. /* > \endverbatim */
  351. /* > */
  352. /* > \param[out] RANK */
  353. /* > \verbatim */
  354. /* > RANK is INTEGER */
  355. /* > The effective rank of A, i.e., the number of singular values */
  356. /* > which are greater than RCOND*S(1). */
  357. /* > \endverbatim */
  358. /* > */
  359. /* > \param[out] WORK */
  360. /* > \verbatim */
  361. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  362. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  363. /* > \endverbatim */
  364. /* > */
  365. /* > \param[in] LWORK */
  366. /* > \verbatim */
  367. /* > LWORK is INTEGER */
  368. /* > The dimension of the array WORK. LWORK >= 1, and also: */
  369. /* > LWORK >= 3*f2cmin(M,N) + f2cmax( 2*f2cmin(M,N), f2cmax(M,N), NRHS ) */
  370. /* > For good performance, LWORK should generally be larger. */
  371. /* > */
  372. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  373. /* > only calculates the optimal size of the WORK array, returns */
  374. /* > this value as the first entry of the WORK array, and no error */
  375. /* > message related to LWORK is issued by XERBLA. */
  376. /* > \endverbatim */
  377. /* > */
  378. /* > \param[out] INFO */
  379. /* > \verbatim */
  380. /* > INFO is INTEGER */
  381. /* > = 0: successful exit */
  382. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  383. /* > > 0: the algorithm for computing the SVD failed to converge; */
  384. /* > if INFO = i, i off-diagonal elements of an intermediate */
  385. /* > bidiagonal form did not converge to zero. */
  386. /* > \endverbatim */
  387. /* Authors: */
  388. /* ======== */
  389. /* > \author Univ. of Tennessee */
  390. /* > \author Univ. of California Berkeley */
  391. /* > \author Univ. of Colorado Denver */
  392. /* > \author NAG Ltd. */
  393. /* > \date December 2016 */
  394. /* > \ingroup realGEsolve */
  395. /* ===================================================================== */
  396. /* Subroutine */ void sgelss_(integer *m, integer *n, integer *nrhs, real *a,
  397. integer *lda, real *b, integer *ldb, real *s, real *rcond, integer *
  398. rank, real *work, integer *lwork, integer *info)
  399. {
  400. /* System generated locals */
  401. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  402. real r__1;
  403. /* Local variables */
  404. real anrm, bnrm;
  405. integer itau, lwork_sgebrd__, lwork_sgeqrf__, i__, lwork_sorgbr__,
  406. lwork_sormbr__, lwork_sormlq__, iascl, ibscl, lwork_sormqr__,
  407. chunk;
  408. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  409. integer *, real *, real *, integer *, real *, integer *, real *,
  410. real *, integer *);
  411. real sfmin;
  412. integer minmn, maxmn;
  413. extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *,
  414. real *, integer *, real *, integer *, real *, real *, integer *);
  415. integer itaup, itauq;
  416. extern /* Subroutine */ void srscl_(integer *, real *, real *, integer *);
  417. integer mnthr, iwork;
  418. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  419. integer *);
  420. integer bl, ie, il;
  421. extern /* Subroutine */ void slabad_(real *, real *);
  422. integer mm, bdspac;
  423. extern /* Subroutine */ void sgebrd_(integer *, integer *, real *, integer
  424. *, real *, real *, real *, real *, real *, integer *, integer *);
  425. extern real slamch_(char *), slange_(char *, integer *, integer *,
  426. real *, integer *, real *);
  427. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  428. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  429. integer *, integer *, ftnlen, ftnlen);
  430. real bignum;
  431. extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer
  432. *, real *, real *, integer *, integer *), slascl_(char *, integer
  433. *, integer *, real *, real *, integer *, integer *, real *,
  434. integer *, integer *), sgeqrf_(integer *, integer *, real
  435. *, integer *, real *, real *, integer *, integer *), slacpy_(char
  436. *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *,
  437. real *, integer *), sbdsqr_(char *, integer *, integer *,
  438. integer *, integer *, real *, real *, real *, integer *, real *,
  439. integer *, real *, integer *, real *, integer *), sorgbr_(
  440. char *, integer *, integer *, integer *, real *, integer *, real *
  441. , real *, integer *, integer *);
  442. integer ldwork;
  443. extern /* Subroutine */ void sormbr_(char *, char *, char *, integer *,
  444. integer *, integer *, real *, integer *, real *, real *, integer *
  445. , real *, integer *, integer *);
  446. integer minwrk, maxwrk;
  447. real smlnum;
  448. extern /* Subroutine */ void sormlq_(char *, char *, integer *, integer *,
  449. integer *, real *, integer *, real *, real *, integer *, real *,
  450. integer *, integer *);
  451. logical lquery;
  452. extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *,
  453. integer *, real *, integer *, real *, real *, integer *, real *,
  454. integer *, integer *);
  455. real dum[1], eps, thr;
  456. /* -- LAPACK driver routine (version 3.7.0) -- */
  457. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  458. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  459. /* December 2016 */
  460. /* ===================================================================== */
  461. /* Test the input arguments */
  462. /* Parameter adjustments */
  463. a_dim1 = *lda;
  464. a_offset = 1 + a_dim1 * 1;
  465. a -= a_offset;
  466. b_dim1 = *ldb;
  467. b_offset = 1 + b_dim1 * 1;
  468. b -= b_offset;
  469. --s;
  470. --work;
  471. /* Function Body */
  472. *info = 0;
  473. minmn = f2cmin(*m,*n);
  474. maxmn = f2cmax(*m,*n);
  475. lquery = *lwork == -1;
  476. if (*m < 0) {
  477. *info = -1;
  478. } else if (*n < 0) {
  479. *info = -2;
  480. } else if (*nrhs < 0) {
  481. *info = -3;
  482. } else if (*lda < f2cmax(1,*m)) {
  483. *info = -5;
  484. } else if (*ldb < f2cmax(1,maxmn)) {
  485. *info = -7;
  486. }
  487. /* Compute workspace */
  488. /* (Note: Comments in the code beginning "Workspace:" describe the */
  489. /* minimal amount of workspace needed at that point in the code, */
  490. /* as well as the preferred amount for good performance. */
  491. /* NB refers to the optimal block size for the immediately */
  492. /* following subroutine, as returned by ILAENV.) */
  493. if (*info == 0) {
  494. minwrk = 1;
  495. maxwrk = 1;
  496. if (minmn > 0) {
  497. mm = *m;
  498. mnthr = ilaenv_(&c__6, "SGELSS", " ", m, n, nrhs, &c_n1, (ftnlen)
  499. 6, (ftnlen)1);
  500. if (*m >= *n && *m >= mnthr) {
  501. /* Path 1a - overdetermined, with many more rows than */
  502. /* columns */
  503. /* Compute space needed for SGEQRF */
  504. sgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  505. lwork_sgeqrf__ = dum[0];
  506. /* Compute space needed for SORMQR */
  507. sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, dum, &b[
  508. b_offset], ldb, dum, &c_n1, info);
  509. lwork_sormqr__ = dum[0];
  510. mm = *n;
  511. /* Computing MAX */
  512. i__1 = maxwrk, i__2 = *n + lwork_sgeqrf__;
  513. maxwrk = f2cmax(i__1,i__2);
  514. /* Computing MAX */
  515. i__1 = maxwrk, i__2 = *n + lwork_sormqr__;
  516. maxwrk = f2cmax(i__1,i__2);
  517. }
  518. if (*m >= *n) {
  519. /* Path 1 - overdetermined or exactly determined */
  520. /* Compute workspace needed for SBDSQR */
  521. /* Computing MAX */
  522. i__1 = 1, i__2 = *n * 5;
  523. bdspac = f2cmax(i__1,i__2);
  524. /* Compute space needed for SGEBRD */
  525. sgebrd_(&mm, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum,
  526. &c_n1, info);
  527. lwork_sgebrd__ = dum[0];
  528. /* Compute space needed for SORMBR */
  529. sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, dum, &
  530. b[b_offset], ldb, dum, &c_n1, info);
  531. lwork_sormbr__ = dum[0];
  532. /* Compute space needed for SORGBR */
  533. sorgbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1,
  534. info);
  535. lwork_sorgbr__ = dum[0];
  536. /* Compute total workspace needed */
  537. /* Computing MAX */
  538. i__1 = maxwrk, i__2 = *n * 3 + lwork_sgebrd__;
  539. maxwrk = f2cmax(i__1,i__2);
  540. /* Computing MAX */
  541. i__1 = maxwrk, i__2 = *n * 3 + lwork_sormbr__;
  542. maxwrk = f2cmax(i__1,i__2);
  543. /* Computing MAX */
  544. i__1 = maxwrk, i__2 = *n * 3 + lwork_sorgbr__;
  545. maxwrk = f2cmax(i__1,i__2);
  546. maxwrk = f2cmax(maxwrk,bdspac);
  547. /* Computing MAX */
  548. i__1 = maxwrk, i__2 = *n * *nrhs;
  549. maxwrk = f2cmax(i__1,i__2);
  550. /* Computing MAX */
  551. i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = f2cmax(i__1,
  552. i__2);
  553. minwrk = f2cmax(i__1,bdspac);
  554. maxwrk = f2cmax(minwrk,maxwrk);
  555. }
  556. if (*n > *m) {
  557. /* Compute workspace needed for SBDSQR */
  558. /* Computing MAX */
  559. i__1 = 1, i__2 = *m * 5;
  560. bdspac = f2cmax(i__1,i__2);
  561. /* Computing MAX */
  562. i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *n, i__1 = f2cmax(i__1,
  563. i__2);
  564. minwrk = f2cmax(i__1,bdspac);
  565. if (*n >= mnthr) {
  566. /* Path 2a - underdetermined, with many more columns */
  567. /* than rows */
  568. /* Compute space needed for SGEBRD */
  569. sgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum,
  570. dum, &c_n1, info);
  571. lwork_sgebrd__ = dum[0];
  572. /* Compute space needed for SORMBR */
  573. sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, dum,
  574. &b[b_offset], ldb, dum, &c_n1, info);
  575. lwork_sormbr__ = dum[0];
  576. /* Compute space needed for SORGBR */
  577. sorgbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1,
  578. info);
  579. lwork_sorgbr__ = dum[0];
  580. /* Compute space needed for SORMLQ */
  581. sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, dum, &b[
  582. b_offset], ldb, dum, &c_n1, info);
  583. lwork_sormlq__ = dum[0];
  584. /* Compute total workspace needed */
  585. maxwrk = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, &
  586. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  587. /* Computing MAX */
  588. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
  589. lwork_sgebrd__;
  590. maxwrk = f2cmax(i__1,i__2);
  591. /* Computing MAX */
  592. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
  593. lwork_sormbr__;
  594. maxwrk = f2cmax(i__1,i__2);
  595. /* Computing MAX */
  596. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) +
  597. lwork_sorgbr__;
  598. maxwrk = f2cmax(i__1,i__2);
  599. /* Computing MAX */
  600. i__1 = maxwrk, i__2 = *m * *m + *m + bdspac;
  601. maxwrk = f2cmax(i__1,i__2);
  602. if (*nrhs > 1) {
  603. /* Computing MAX */
  604. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  605. maxwrk = f2cmax(i__1,i__2);
  606. } else {
  607. /* Computing MAX */
  608. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  609. maxwrk = f2cmax(i__1,i__2);
  610. }
  611. /* Computing MAX */
  612. i__1 = maxwrk, i__2 = *m + lwork_sormlq__;
  613. maxwrk = f2cmax(i__1,i__2);
  614. } else {
  615. /* Path 2 - underdetermined */
  616. /* Compute space needed for SGEBRD */
  617. sgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum,
  618. dum, &c_n1, info);
  619. lwork_sgebrd__ = dum[0];
  620. /* Compute space needed for SORMBR */
  621. sormbr_("Q", "L", "T", m, nrhs, m, &a[a_offset], lda, dum,
  622. &b[b_offset], ldb, dum, &c_n1, info);
  623. lwork_sormbr__ = dum[0];
  624. /* Compute space needed for SORGBR */
  625. sorgbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1,
  626. info);
  627. lwork_sorgbr__ = dum[0];
  628. maxwrk = *m * 3 + lwork_sgebrd__;
  629. /* Computing MAX */
  630. i__1 = maxwrk, i__2 = *m * 3 + lwork_sormbr__;
  631. maxwrk = f2cmax(i__1,i__2);
  632. /* Computing MAX */
  633. i__1 = maxwrk, i__2 = *m * 3 + lwork_sorgbr__;
  634. maxwrk = f2cmax(i__1,i__2);
  635. maxwrk = f2cmax(maxwrk,bdspac);
  636. /* Computing MAX */
  637. i__1 = maxwrk, i__2 = *n * *nrhs;
  638. maxwrk = f2cmax(i__1,i__2);
  639. }
  640. }
  641. maxwrk = f2cmax(minwrk,maxwrk);
  642. }
  643. work[1] = (real) maxwrk;
  644. if (*lwork < minwrk && ! lquery) {
  645. *info = -12;
  646. }
  647. }
  648. if (*info != 0) {
  649. i__1 = -(*info);
  650. xerbla_("SGELSS", &i__1, (ftnlen)6);
  651. return;
  652. } else if (lquery) {
  653. return;
  654. }
  655. /* Quick return if possible */
  656. if (*m == 0 || *n == 0) {
  657. *rank = 0;
  658. return;
  659. }
  660. /* Get machine parameters */
  661. eps = slamch_("P");
  662. sfmin = slamch_("S");
  663. smlnum = sfmin / eps;
  664. bignum = 1.f / smlnum;
  665. slabad_(&smlnum, &bignum);
  666. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  667. anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
  668. iascl = 0;
  669. if (anrm > 0.f && anrm < smlnum) {
  670. /* Scale matrix norm up to SMLNUM */
  671. slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  672. info);
  673. iascl = 1;
  674. } else if (anrm > bignum) {
  675. /* Scale matrix norm down to BIGNUM */
  676. slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  677. info);
  678. iascl = 2;
  679. } else if (anrm == 0.f) {
  680. /* Matrix all zero. Return zero solution. */
  681. i__1 = f2cmax(*m,*n);
  682. slaset_("F", &i__1, nrhs, &c_b50, &c_b50, &b[b_offset], ldb);
  683. slaset_("F", &minmn, &c__1, &c_b50, &c_b50, &s[1], &minmn);
  684. *rank = 0;
  685. goto L70;
  686. }
  687. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  688. bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
  689. ibscl = 0;
  690. if (bnrm > 0.f && bnrm < smlnum) {
  691. /* Scale matrix norm up to SMLNUM */
  692. slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  693. info);
  694. ibscl = 1;
  695. } else if (bnrm > bignum) {
  696. /* Scale matrix norm down to BIGNUM */
  697. slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  698. info);
  699. ibscl = 2;
  700. }
  701. /* Overdetermined case */
  702. if (*m >= *n) {
  703. /* Path 1 - overdetermined or exactly determined */
  704. mm = *m;
  705. if (*m >= mnthr) {
  706. /* Path 1a - overdetermined, with many more rows than columns */
  707. mm = *n;
  708. itau = 1;
  709. iwork = itau + *n;
  710. /* Compute A=Q*R */
  711. /* (Workspace: need 2*N, prefer N+N*NB) */
  712. i__1 = *lwork - iwork + 1;
  713. sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
  714. info);
  715. /* Multiply B by transpose(Q) */
  716. /* (Workspace: need N+NRHS, prefer N+NRHS*NB) */
  717. i__1 = *lwork - iwork + 1;
  718. sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  719. b_offset], ldb, &work[iwork], &i__1, info);
  720. /* Zero out below R */
  721. if (*n > 1) {
  722. i__1 = *n - 1;
  723. i__2 = *n - 1;
  724. slaset_("L", &i__1, &i__2, &c_b50, &c_b50, &a[a_dim1 + 2],
  725. lda);
  726. }
  727. }
  728. ie = 1;
  729. itauq = ie + *n;
  730. itaup = itauq + *n;
  731. iwork = itaup + *n;
  732. /* Bidiagonalize R in A */
  733. /* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
  734. i__1 = *lwork - iwork + 1;
  735. sgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  736. work[itaup], &work[iwork], &i__1, info);
  737. /* Multiply B by transpose of left bidiagonalizing vectors of R */
  738. /* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
  739. i__1 = *lwork - iwork + 1;
  740. sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  741. &b[b_offset], ldb, &work[iwork], &i__1, info);
  742. /* Generate right bidiagonalizing vectors of R in A */
  743. /* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */
  744. i__1 = *lwork - iwork + 1;
  745. sorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
  746. i__1, info);
  747. iwork = ie + *n;
  748. /* Perform bidiagonal QR iteration */
  749. /* multiply B by transpose of left singular vectors */
  750. /* compute right singular vectors in A */
  751. /* (Workspace: need BDSPAC) */
  752. sbdsqr_("U", n, n, &c__0, nrhs, &s[1], &work[ie], &a[a_offset], lda,
  753. dum, &c__1, &b[b_offset], ldb, &work[iwork], info);
  754. if (*info != 0) {
  755. goto L70;
  756. }
  757. /* Multiply B by reciprocals of singular values */
  758. /* Computing MAX */
  759. r__1 = *rcond * s[1];
  760. thr = f2cmax(r__1,sfmin);
  761. if (*rcond < 0.f) {
  762. /* Computing MAX */
  763. r__1 = eps * s[1];
  764. thr = f2cmax(r__1,sfmin);
  765. }
  766. *rank = 0;
  767. i__1 = *n;
  768. for (i__ = 1; i__ <= i__1; ++i__) {
  769. if (s[i__] > thr) {
  770. srscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  771. ++(*rank);
  772. } else {
  773. slaset_("F", &c__1, nrhs, &c_b50, &c_b50, &b[i__ + b_dim1],
  774. ldb);
  775. }
  776. /* L10: */
  777. }
  778. /* Multiply B by right singular vectors */
  779. /* (Workspace: need N, prefer N*NRHS) */
  780. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  781. sgemm_("T", "N", n, nrhs, n, &c_b83, &a[a_offset], lda, &b[
  782. b_offset], ldb, &c_b50, &work[1], ldb);
  783. slacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb)
  784. ;
  785. } else if (*nrhs > 1) {
  786. chunk = *lwork / *n;
  787. i__1 = *nrhs;
  788. i__2 = chunk;
  789. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  790. /* Computing MIN */
  791. i__3 = *nrhs - i__ + 1;
  792. bl = f2cmin(i__3,chunk);
  793. sgemm_("T", "N", n, &bl, n, &c_b83, &a[a_offset], lda, &b[i__
  794. * b_dim1 + 1], ldb, &c_b50, &work[1], n);
  795. slacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
  796. /* L20: */
  797. }
  798. } else {
  799. sgemv_("T", n, n, &c_b83, &a[a_offset], lda, &b[b_offset], &c__1,
  800. &c_b50, &work[1], &c__1);
  801. scopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  802. }
  803. } else /* if(complicated condition) */ {
  804. /* Computing MAX */
  805. i__2 = *m, i__1 = (*m << 1) - 4, i__2 = f2cmax(i__2,i__1), i__2 = f2cmax(
  806. i__2,*nrhs), i__1 = *n - *m * 3;
  807. if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__2,i__1)) {
  808. /* Path 2a - underdetermined, with many more columns than rows */
  809. /* and sufficient workspace for an efficient algorithm */
  810. ldwork = *m;
  811. /* Computing MAX */
  812. /* Computing MAX */
  813. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
  814. f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  815. i__2 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__1 = *m * *lda +
  816. *m + *m * *nrhs;
  817. if (*lwork >= f2cmax(i__2,i__1)) {
  818. ldwork = *lda;
  819. }
  820. itau = 1;
  821. iwork = *m + 1;
  822. /* Compute A=L*Q */
  823. /* (Workspace: need 2*M, prefer M+M*NB) */
  824. i__2 = *lwork - iwork + 1;
  825. sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
  826. info);
  827. il = iwork;
  828. /* Copy L to WORK(IL), zeroing out above it */
  829. slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  830. i__2 = *m - 1;
  831. i__1 = *m - 1;
  832. slaset_("U", &i__2, &i__1, &c_b50, &c_b50, &work[il + ldwork], &
  833. ldwork);
  834. ie = il + ldwork * *m;
  835. itauq = ie + *m;
  836. itaup = itauq + *m;
  837. iwork = itaup + *m;
  838. /* Bidiagonalize L in WORK(IL) */
  839. /* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
  840. i__2 = *lwork - iwork + 1;
  841. sgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq],
  842. &work[itaup], &work[iwork], &i__2, info);
  843. /* Multiply B by transpose of left bidiagonalizing vectors of L */
  844. /* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
  845. i__2 = *lwork - iwork + 1;
  846. sormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
  847. itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
  848. /* Generate right bidiagonalizing vectors of R in WORK(IL) */
  849. /* (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB) */
  850. i__2 = *lwork - iwork + 1;
  851. sorgbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
  852. iwork], &i__2, info);
  853. iwork = ie + *m;
  854. /* Perform bidiagonal QR iteration, */
  855. /* computing right singular vectors of L in WORK(IL) and */
  856. /* multiplying B by transpose of left singular vectors */
  857. /* (Workspace: need M*M+M+BDSPAC) */
  858. sbdsqr_("U", m, m, &c__0, nrhs, &s[1], &work[ie], &work[il], &
  859. ldwork, &a[a_offset], lda, &b[b_offset], ldb, &work[iwork]
  860. , info);
  861. if (*info != 0) {
  862. goto L70;
  863. }
  864. /* Multiply B by reciprocals of singular values */
  865. /* Computing MAX */
  866. r__1 = *rcond * s[1];
  867. thr = f2cmax(r__1,sfmin);
  868. if (*rcond < 0.f) {
  869. /* Computing MAX */
  870. r__1 = eps * s[1];
  871. thr = f2cmax(r__1,sfmin);
  872. }
  873. *rank = 0;
  874. i__2 = *m;
  875. for (i__ = 1; i__ <= i__2; ++i__) {
  876. if (s[i__] > thr) {
  877. srscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  878. ++(*rank);
  879. } else {
  880. slaset_("F", &c__1, nrhs, &c_b50, &c_b50, &b[i__ + b_dim1]
  881. , ldb);
  882. }
  883. /* L30: */
  884. }
  885. iwork = ie;
  886. /* Multiply B by right singular vectors of L in WORK(IL) */
  887. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
  888. if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
  889. sgemm_("T", "N", m, nrhs, m, &c_b83, &work[il], &ldwork, &b[
  890. b_offset], ldb, &c_b50, &work[iwork], ldb);
  891. slacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
  892. } else if (*nrhs > 1) {
  893. chunk = (*lwork - iwork + 1) / *m;
  894. i__2 = *nrhs;
  895. i__1 = chunk;
  896. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  897. i__1) {
  898. /* Computing MIN */
  899. i__3 = *nrhs - i__ + 1;
  900. bl = f2cmin(i__3,chunk);
  901. sgemm_("T", "N", m, &bl, m, &c_b83, &work[il], &ldwork, &
  902. b[i__ * b_dim1 + 1], ldb, &c_b50, &work[iwork], m);
  903. slacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
  904. , ldb);
  905. /* L40: */
  906. }
  907. } else {
  908. sgemv_("T", m, m, &c_b83, &work[il], &ldwork, &b[b_dim1 + 1],
  909. &c__1, &c_b50, &work[iwork], &c__1);
  910. scopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
  911. }
  912. /* Zero out below first M rows of B */
  913. i__1 = *n - *m;
  914. slaset_("F", &i__1, nrhs, &c_b50, &c_b50, &b[*m + 1 + b_dim1],
  915. ldb);
  916. iwork = itau + *m;
  917. /* Multiply transpose(Q) by B */
  918. /* (Workspace: need M+NRHS, prefer M+NRHS*NB) */
  919. i__1 = *lwork - iwork + 1;
  920. sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  921. b_offset], ldb, &work[iwork], &i__1, info);
  922. } else {
  923. /* Path 2 - remaining underdetermined cases */
  924. ie = 1;
  925. itauq = ie + *m;
  926. itaup = itauq + *m;
  927. iwork = itaup + *m;
  928. /* Bidiagonalize A */
  929. /* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
  930. i__1 = *lwork - iwork + 1;
  931. sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  932. work[itaup], &work[iwork], &i__1, info);
  933. /* Multiply B by transpose of left bidiagonalizing vectors */
  934. /* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
  935. i__1 = *lwork - iwork + 1;
  936. sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  937. , &b[b_offset], ldb, &work[iwork], &i__1, info);
  938. /* Generate right bidiagonalizing vectors in A */
  939. /* (Workspace: need 4*M, prefer 3*M+M*NB) */
  940. i__1 = *lwork - iwork + 1;
  941. sorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
  942. iwork], &i__1, info);
  943. iwork = ie + *m;
  944. /* Perform bidiagonal QR iteration, */
  945. /* computing right singular vectors of A in A and */
  946. /* multiplying B by transpose of left singular vectors */
  947. /* (Workspace: need BDSPAC) */
  948. sbdsqr_("L", m, n, &c__0, nrhs, &s[1], &work[ie], &a[a_offset],
  949. lda, dum, &c__1, &b[b_offset], ldb, &work[iwork], info);
  950. if (*info != 0) {
  951. goto L70;
  952. }
  953. /* Multiply B by reciprocals of singular values */
  954. /* Computing MAX */
  955. r__1 = *rcond * s[1];
  956. thr = f2cmax(r__1,sfmin);
  957. if (*rcond < 0.f) {
  958. /* Computing MAX */
  959. r__1 = eps * s[1];
  960. thr = f2cmax(r__1,sfmin);
  961. }
  962. *rank = 0;
  963. i__1 = *m;
  964. for (i__ = 1; i__ <= i__1; ++i__) {
  965. if (s[i__] > thr) {
  966. srscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  967. ++(*rank);
  968. } else {
  969. slaset_("F", &c__1, nrhs, &c_b50, &c_b50, &b[i__ + b_dim1]
  970. , ldb);
  971. }
  972. /* L50: */
  973. }
  974. /* Multiply B by right singular vectors of A */
  975. /* (Workspace: need N, prefer N*NRHS) */
  976. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  977. sgemm_("T", "N", n, nrhs, m, &c_b83, &a[a_offset], lda, &b[
  978. b_offset], ldb, &c_b50, &work[1], ldb);
  979. slacpy_("F", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
  980. } else if (*nrhs > 1) {
  981. chunk = *lwork / *n;
  982. i__1 = *nrhs;
  983. i__2 = chunk;
  984. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  985. i__2) {
  986. /* Computing MIN */
  987. i__3 = *nrhs - i__ + 1;
  988. bl = f2cmin(i__3,chunk);
  989. sgemm_("T", "N", n, &bl, m, &c_b83, &a[a_offset], lda, &b[
  990. i__ * b_dim1 + 1], ldb, &c_b50, &work[1], n);
  991. slacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1],
  992. ldb);
  993. /* L60: */
  994. }
  995. } else {
  996. sgemv_("T", m, n, &c_b83, &a[a_offset], lda, &b[b_offset], &
  997. c__1, &c_b50, &work[1], &c__1);
  998. scopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  999. }
  1000. }
  1001. }
  1002. /* Undo scaling */
  1003. if (iascl == 1) {
  1004. slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1005. info);
  1006. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1007. minmn, info);
  1008. } else if (iascl == 2) {
  1009. slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1010. info);
  1011. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1012. minmn, info);
  1013. }
  1014. if (ibscl == 1) {
  1015. slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1016. info);
  1017. } else if (ibscl == 2) {
  1018. slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1019. info);
  1020. }
  1021. L70:
  1022. work[1] = (real) maxwrk;
  1023. return;
  1024. /* End of SGELSS */
  1025. } /* sgelss_ */