|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static logical c_false = FALSE_;
- static integer c__2 = 2;
- static doublereal c_b26 = 1.;
- static doublereal c_b30 = 0.;
- static logical c_true = TRUE_;
-
- /* > \brief \b DTRSYL */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DTRSYL + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsyl.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsyl.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsyl.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
- /* LDC, SCALE, INFO ) */
-
- /* CHARACTER TRANA, TRANB */
- /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
- /* DOUBLE PRECISION SCALE */
- /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DTRSYL solves the real Sylvester matrix equation: */
- /* > */
- /* > op(A)*X + X*op(B) = scale*C or */
- /* > op(A)*X - X*op(B) = scale*C, */
- /* > */
- /* > where op(A) = A or A**T, and A and B are both upper quasi- */
- /* > triangular. A is M-by-M and B is N-by-N; the right hand side C and */
- /* > the solution X are M-by-N; and scale is an output scale factor, set */
- /* > <= 1 to avoid overflow in X. */
- /* > */
- /* > A and B must be in Schur canonical form (as returned by DHSEQR), that */
- /* > is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; */
- /* > each 2-by-2 diagonal block has its diagonal elements equal and its */
- /* > off-diagonal elements of opposite sign. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] TRANA */
- /* > \verbatim */
- /* > TRANA is CHARACTER*1 */
- /* > Specifies the option op(A): */
- /* > = 'N': op(A) = A (No transpose) */
- /* > = 'T': op(A) = A**T (Transpose) */
- /* > = 'C': op(A) = A**H (Conjugate transpose = Transpose) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] TRANB */
- /* > \verbatim */
- /* > TRANB is CHARACTER*1 */
- /* > Specifies the option op(B): */
- /* > = 'N': op(B) = B (No transpose) */
- /* > = 'T': op(B) = B**T (Transpose) */
- /* > = 'C': op(B) = B**H (Conjugate transpose = Transpose) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ISGN */
- /* > \verbatim */
- /* > ISGN is INTEGER */
- /* > Specifies the sign in the equation: */
- /* > = +1: solve op(A)*X + X*op(B) = scale*C */
- /* > = -1: solve op(A)*X - X*op(B) = scale*C */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The order of the matrix A, and the number of rows in the */
- /* > matrices X and C. M >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The order of the matrix B, and the number of columns in the */
- /* > matrices X and C. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] A */
- /* > \verbatim */
- /* > A is DOUBLE PRECISION array, dimension (LDA,M) */
- /* > The upper quasi-triangular matrix A, in Schur canonical form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] B */
- /* > \verbatim */
- /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
- /* > The upper quasi-triangular matrix B, in Schur canonical form. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] C */
- /* > \verbatim */
- /* > C is DOUBLE PRECISION array, dimension (LDC,N) */
- /* > On entry, the M-by-N right hand side matrix C. */
- /* > On exit, C is overwritten by the solution matrix X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDC */
- /* > \verbatim */
- /* > LDC is INTEGER */
- /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] SCALE */
- /* > \verbatim */
- /* > SCALE is DOUBLE PRECISION */
- /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > = 1: A and B have common or very close eigenvalues; perturbed */
- /* > values were used to solve the equation (but the matrices */
- /* > A and B are unchanged). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date December 2016 */
-
- /* > \ingroup doubleSYcomputational */
-
- /* ===================================================================== */
- /* Subroutine */ void dtrsyl_(char *trana, char *tranb, integer *isgn, integer
- *m, integer *n, doublereal *a, integer *lda, doublereal *b, integer *
- ldb, doublereal *c__, integer *ldc, doublereal *scale, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
- i__3, i__4;
- doublereal d__1, d__2;
-
- /* Local variables */
- extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- integer ierr;
- doublereal smin, suml, sumr;
- integer j, k, l;
- extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal x[4] /* was [2][2] */;
- extern logical lsame_(char *, char *);
- integer knext, lnext, k1, k2, l1, l2;
- doublereal xnorm;
- extern /* Subroutine */ void dlaln2_(logical *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *
- , doublereal *, integer *, doublereal *, doublereal *, integer *),
- dlasy2_(logical *, logical *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *);
- doublereal a11, db;
- extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
- extern doublereal dlamch_(char *), dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- doublereal scaloc;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- doublereal bignum;
- logical notrna, notrnb;
- doublereal smlnum, da11, vec[4] /* was [2][2] */, dum[1], eps, sgn;
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* December 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Decode and Test input parameters */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
-
- /* Function Body */
- notrna = lsame_(trana, "N");
- notrnb = lsame_(tranb, "N");
-
- *info = 0;
- if (! notrna && ! lsame_(trana, "T") && ! lsame_(
- trana, "C")) {
- *info = -1;
- } else if (! notrnb && ! lsame_(tranb, "T") && !
- lsame_(tranb, "C")) {
- *info = -2;
- } else if (*isgn != 1 && *isgn != -1) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*lda < f2cmax(1,*m)) {
- *info = -7;
- } else if (*ldb < f2cmax(1,*n)) {
- *info = -9;
- } else if (*ldc < f2cmax(1,*m)) {
- *info = -11;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DTRSYL", &i__1, (ftnlen)6);
- return;
- }
-
- /* Quick return if possible */
-
- *scale = 1.;
- if (*m == 0 || *n == 0) {
- return;
- }
-
- /* Set constants to control overflow */
-
- eps = dlamch_("P");
- smlnum = dlamch_("S");
- bignum = 1. / smlnum;
- dlabad_(&smlnum, &bignum);
- smlnum = smlnum * (doublereal) (*m * *n) / eps;
- bignum = 1. / smlnum;
-
- /* Computing MAX */
- d__1 = smlnum, d__2 = eps * dlange_("M", m, m, &a[a_offset], lda, dum), d__1 = f2cmax(d__1,d__2), d__2 = eps * dlange_("M", n, n,
- &b[b_offset], ldb, dum);
- smin = f2cmax(d__1,d__2);
-
- sgn = (doublereal) (*isgn);
-
- if (notrna && notrnb) {
-
- /* Solve A*X + ISGN*X*B = scale*C. */
-
- /* The (K,L)th block of X is determined starting from */
- /* bottom-left corner column by column by */
-
- /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
-
- /* Where */
- /* M L-1 */
- /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]. */
- /* I=K+1 J=1 */
-
- /* Start column loop (index = L) */
- /* L1 (L2) : column index of the first (first) row of X(K,L). */
-
- lnext = 1;
- i__1 = *n;
- for (l = 1; l <= i__1; ++l) {
- if (l < lnext) {
- goto L60;
- }
- if (l == *n) {
- l1 = l;
- l2 = l;
- } else {
- if (b[l + 1 + l * b_dim1] != 0.) {
- l1 = l;
- l2 = l + 1;
- lnext = l + 2;
- } else {
- l1 = l;
- l2 = l;
- lnext = l + 1;
- }
- }
-
- /* Start row loop (index = K) */
- /* K1 (K2): row index of the first (last) row of X(K,L). */
-
- knext = *m;
- for (k = *m; k >= 1; --k) {
- if (k > knext) {
- goto L50;
- }
- if (k == 1) {
- k1 = k;
- k2 = k;
- } else {
- if (a[k + (k - 1) * a_dim1] != 0.) {
- k1 = k - 1;
- k2 = k;
- knext = k - 2;
- } else {
- k1 = k;
- k2 = k;
- knext = k - 1;
- }
- }
-
- if (l1 == l2 && k1 == k2) {
- i__2 = *m - k1;
- /* Computing MIN */
- i__3 = k1 + 1;
- /* Computing MIN */
- i__4 = k1 + 1;
- suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
- scaloc = 1.;
-
- a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
- da11 = abs(a11);
- if (da11 <= smin) {
- a11 = smin;
- da11 = smin;
- *info = 1;
- }
- db = abs(vec[0]);
- if (da11 < 1. && db > 1.) {
- if (db > bignum * da11) {
- scaloc = 1. / db;
- }
- }
- x[0] = vec[0] * scaloc / a11;
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L10: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
-
- } else if (l1 == l2 && k1 != k2) {
-
- i__2 = *m - k2;
- /* Computing MIN */
- i__3 = k2 + 1;
- /* Computing MIN */
- i__4 = k2 + 1;
- suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__2 = *m - k2;
- /* Computing MIN */
- i__3 = k2 + 1;
- /* Computing MIN */
- i__4 = k2 + 1;
- suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
-
- d__1 = -sgn * b[l1 + l1 * b_dim1];
- dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1
- * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
- &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L20: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k2 + l1 * c_dim1] = x[1];
-
- } else if (l1 != l2 && k1 == k2) {
-
- i__2 = *m - k1;
- /* Computing MIN */
- i__3 = k1 + 1;
- /* Computing MIN */
- i__4 = k1 + 1;
- suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
- sumr));
-
- i__2 = *m - k1;
- /* Computing MIN */
- i__3 = k1 + 1;
- /* Computing MIN */
- i__4 = k1 + 1;
- suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 *
- b_dim1 + 1], &c__1);
- vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
- sumr));
-
- d__1 = -sgn * a[k1 + k1 * a_dim1];
- dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
- b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
- &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L30: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k1 + l2 * c_dim1] = x[1];
-
- } else if (l1 != l2 && k1 != k2) {
-
- i__2 = *m - k2;
- /* Computing MIN */
- i__3 = k2 + 1;
- /* Computing MIN */
- i__4 = k2 + 1;
- suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__2 = *m - k2;
- /* Computing MIN */
- i__3 = k2 + 1;
- /* Computing MIN */
- i__4 = k2 + 1;
- suml = ddot_(&i__2, &a[k1 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k1 + c_dim1], ldc, &b[l2 *
- b_dim1 + 1], &c__1);
- vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
-
- i__2 = *m - k2;
- /* Computing MIN */
- i__3 = k2 + 1;
- /* Computing MIN */
- i__4 = k2 + 1;
- suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l1 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__2 = *m - k2;
- /* Computing MIN */
- i__3 = k2 + 1;
- /* Computing MIN */
- i__4 = k2 + 1;
- suml = ddot_(&i__2, &a[k2 + f2cmin(i__3,*m) * a_dim1], lda, &
- c__[f2cmin(i__4,*m) + l2 * c_dim1], &c__1);
- i__2 = l1 - 1;
- sumr = ddot_(&i__2, &c__[k2 + c_dim1], ldc, &b[l2 *
- b_dim1 + 1], &c__1);
- vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
-
- dlasy2_(&c_false, &c_false, isgn, &c__2, &c__2, &a[k1 +
- k1 * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec,
- &c__2, &scaloc, x, &c__2, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L40: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k1 + l2 * c_dim1] = x[2];
- c__[k2 + l1 * c_dim1] = x[1];
- c__[k2 + l2 * c_dim1] = x[3];
- }
-
- L50:
- ;
- }
-
- L60:
- ;
- }
-
- } else if (! notrna && notrnb) {
-
- /* Solve A**T *X + ISGN*X*B = scale*C. */
-
- /* The (K,L)th block of X is determined starting from */
- /* upper-left corner column by column by */
-
- /* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
-
- /* Where */
- /* K-1 T L-1 */
- /* R(K,L) = SUM [A(I,K)**T*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)] */
- /* I=1 J=1 */
-
- /* Start column loop (index = L) */
- /* L1 (L2): column index of the first (last) row of X(K,L) */
-
- lnext = 1;
- i__1 = *n;
- for (l = 1; l <= i__1; ++l) {
- if (l < lnext) {
- goto L120;
- }
- if (l == *n) {
- l1 = l;
- l2 = l;
- } else {
- if (b[l + 1 + l * b_dim1] != 0.) {
- l1 = l;
- l2 = l + 1;
- lnext = l + 2;
- } else {
- l1 = l;
- l2 = l;
- lnext = l + 1;
- }
- }
-
- /* Start row loop (index = K) */
- /* K1 (K2): row index of the first (last) row of X(K,L) */
-
- knext = 1;
- i__2 = *m;
- for (k = 1; k <= i__2; ++k) {
- if (k < knext) {
- goto L110;
- }
- if (k == *m) {
- k1 = k;
- k2 = k;
- } else {
- if (a[k + 1 + k * a_dim1] != 0.) {
- k1 = k;
- k2 = k + 1;
- knext = k + 2;
- } else {
- k1 = k;
- k2 = k;
- knext = k + 1;
- }
- }
-
- if (l1 == l2 && k1 == k2) {
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
- scaloc = 1.;
-
- a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
- da11 = abs(a11);
- if (da11 <= smin) {
- a11 = smin;
- da11 = smin;
- *info = 1;
- }
- db = abs(vec[0]);
- if (da11 < 1. && db > 1.) {
- if (db > bignum * da11) {
- scaloc = 1. / db;
- }
- }
- x[0] = vec[0] * scaloc / a11;
-
- if (scaloc != 1.) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L70: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
-
- } else if (l1 == l2 && k1 != k2) {
-
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
-
- d__1 = -sgn * b[l1 + l1 * b_dim1];
- dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
- a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
- &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L80: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k2 + l1 * c_dim1] = x[1];
-
- } else if (l1 != l2 && k1 == k2) {
-
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
- sumr));
-
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 *
- b_dim1 + 1], &c__1);
- vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
- sumr));
-
- d__1 = -sgn * a[k1 + k1 * a_dim1];
- dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1 *
- b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
- &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L90: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k1 + l2 * c_dim1] = x[1];
-
- } else if (l1 != l2 && k1 != k2) {
-
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k1 + c_dim1], ldc, &b[l2 *
- b_dim1 + 1], &c__1);
- vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
-
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l1 *
- b_dim1 + 1], &c__1);
- vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__3 = k1 - 1;
- suml = ddot_(&i__3, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 *
- c_dim1 + 1], &c__1);
- i__3 = l1 - 1;
- sumr = ddot_(&i__3, &c__[k2 + c_dim1], ldc, &b[l2 *
- b_dim1 + 1], &c__1);
- vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
-
- dlasy2_(&c_true, &c_false, isgn, &c__2, &c__2, &a[k1 + k1
- * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
- c__2, &scaloc, x, &c__2, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__3 = *n;
- for (j = 1; j <= i__3; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L100: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k1 + l2 * c_dim1] = x[2];
- c__[k2 + l1 * c_dim1] = x[1];
- c__[k2 + l2 * c_dim1] = x[3];
- }
-
- L110:
- ;
- }
- L120:
- ;
- }
-
- } else if (! notrna && ! notrnb) {
-
- /* Solve A**T*X + ISGN*X*B**T = scale*C. */
-
- /* The (K,L)th block of X is determined starting from */
- /* top-right corner column by column by */
-
- /* A(K,K)**T*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
-
- /* Where */
- /* K-1 N */
- /* R(K,L) = SUM [A(I,K)**T*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
- /* I=1 J=L+1 */
-
- /* Start column loop (index = L) */
- /* L1 (L2): column index of the first (last) row of X(K,L) */
-
- lnext = *n;
- for (l = *n; l >= 1; --l) {
- if (l > lnext) {
- goto L180;
- }
- if (l == 1) {
- l1 = l;
- l2 = l;
- } else {
- if (b[l + (l - 1) * b_dim1] != 0.) {
- l1 = l - 1;
- l2 = l;
- lnext = l - 2;
- } else {
- l1 = l;
- l2 = l;
- lnext = l - 1;
- }
- }
-
- /* Start row loop (index = K) */
- /* K1 (K2): row index of the first (last) row of X(K,L) */
-
- knext = 1;
- i__1 = *m;
- for (k = 1; k <= i__1; ++k) {
- if (k < knext) {
- goto L170;
- }
- if (k == *m) {
- k1 = k;
- k2 = k;
- } else {
- if (a[k + 1 + k * a_dim1] != 0.) {
- k1 = k;
- k2 = k + 1;
- knext = k + 2;
- } else {
- k1 = k;
- k2 = k;
- knext = k + 1;
- }
- }
-
- if (l1 == l2 && k1 == k2) {
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l1;
- /* Computing MIN */
- i__3 = l1 + 1;
- /* Computing MIN */
- i__4 = l1 + 1;
- sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
- scaloc = 1.;
-
- a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
- da11 = abs(a11);
- if (da11 <= smin) {
- a11 = smin;
- da11 = smin;
- *info = 1;
- }
- db = abs(vec[0]);
- if (da11 < 1. && db > 1.) {
- if (db > bignum * da11) {
- scaloc = 1. / db;
- }
- }
- x[0] = vec[0] * scaloc / a11;
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L130: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
-
- } else if (l1 == l2 && k1 != k2) {
-
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l2;
- /* Computing MIN */
- i__3 = l2 + 1;
- /* Computing MIN */
- i__4 = l2 + 1;
- sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l2;
- /* Computing MIN */
- i__3 = l2 + 1;
- /* Computing MIN */
- i__4 = l2 + 1;
- sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
-
- d__1 = -sgn * b[l1 + l1 * b_dim1];
- dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1 *
- a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
- &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L140: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k2 + l1 * c_dim1] = x[1];
-
- } else if (l1 != l2 && k1 == k2) {
-
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l2;
- /* Computing MIN */
- i__3 = l2 + 1;
- /* Computing MIN */
- i__4 = l2 + 1;
- sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
- sumr));
-
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l2;
- /* Computing MIN */
- i__3 = l2 + 1;
- /* Computing MIN */
- i__4 = l2 + 1;
- sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
- sumr));
-
- d__1 = -sgn * a[k1 + k1 * a_dim1];
- dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1
- * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
- &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L150: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k1 + l2 * c_dim1] = x[1];
-
- } else if (l1 != l2 && k1 != k2) {
-
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l2;
- /* Computing MIN */
- i__3 = l2 + 1;
- /* Computing MIN */
- i__4 = l2 + 1;
- sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k1 * a_dim1 + 1], &c__1, &c__[l2 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l2;
- /* Computing MIN */
- i__3 = l2 + 1;
- /* Computing MIN */
- i__4 = l2 + 1;
- sumr = ddot_(&i__2, &c__[k1 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
-
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l1 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l2;
- /* Computing MIN */
- i__3 = l2 + 1;
- /* Computing MIN */
- i__4 = l2 + 1;
- sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__2 = k1 - 1;
- suml = ddot_(&i__2, &a[k2 * a_dim1 + 1], &c__1, &c__[l2 *
- c_dim1 + 1], &c__1);
- i__2 = *n - l2;
- /* Computing MIN */
- i__3 = l2 + 1;
- /* Computing MIN */
- i__4 = l2 + 1;
- sumr = ddot_(&i__2, &c__[k2 + f2cmin(i__3,*n) * c_dim1], ldc,
- &b[l2 + f2cmin(i__4,*n) * b_dim1], ldb);
- vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
-
- dlasy2_(&c_true, &c_true, isgn, &c__2, &c__2, &a[k1 + k1 *
- a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
- c__2, &scaloc, x, &c__2, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L160: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k1 + l2 * c_dim1] = x[2];
- c__[k2 + l1 * c_dim1] = x[1];
- c__[k2 + l2 * c_dim1] = x[3];
- }
-
- L170:
- ;
- }
- L180:
- ;
- }
-
- } else if (notrna && ! notrnb) {
-
- /* Solve A*X + ISGN*X*B**T = scale*C. */
-
- /* The (K,L)th block of X is determined starting from */
- /* bottom-right corner column by column by */
-
- /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**T = C(K,L) - R(K,L) */
-
- /* Where */
- /* M N */
- /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**T]. */
- /* I=K+1 J=L+1 */
-
- /* Start column loop (index = L) */
- /* L1 (L2): column index of the first (last) row of X(K,L) */
-
- lnext = *n;
- for (l = *n; l >= 1; --l) {
- if (l > lnext) {
- goto L240;
- }
- if (l == 1) {
- l1 = l;
- l2 = l;
- } else {
- if (b[l + (l - 1) * b_dim1] != 0.) {
- l1 = l - 1;
- l2 = l;
- lnext = l - 2;
- } else {
- l1 = l;
- l2 = l;
- lnext = l - 1;
- }
- }
-
- /* Start row loop (index = K) */
- /* K1 (K2): row index of the first (last) row of X(K,L) */
-
- knext = *m;
- for (k = *m; k >= 1; --k) {
- if (k > knext) {
- goto L230;
- }
- if (k == 1) {
- k1 = k;
- k2 = k;
- } else {
- if (a[k + (k - 1) * a_dim1] != 0.) {
- k1 = k - 1;
- k2 = k;
- knext = k - 2;
- } else {
- k1 = k;
- k2 = k;
- knext = k - 1;
- }
- }
-
- if (l1 == l2 && k1 == k2) {
- i__1 = *m - k1;
- /* Computing MIN */
- i__2 = k1 + 1;
- /* Computing MIN */
- i__3 = k1 + 1;
- suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
- i__1 = *n - l1;
- /* Computing MIN */
- i__2 = l1 + 1;
- /* Computing MIN */
- i__3 = l1 + 1;
- sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
- scaloc = 1.;
-
- a11 = a[k1 + k1 * a_dim1] + sgn * b[l1 + l1 * b_dim1];
- da11 = abs(a11);
- if (da11 <= smin) {
- a11 = smin;
- da11 = smin;
- *info = 1;
- }
- db = abs(vec[0]);
- if (da11 < 1. && db > 1.) {
- if (db > bignum * da11) {
- scaloc = 1. / db;
- }
- }
- x[0] = vec[0] * scaloc / a11;
-
- if (scaloc != 1.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L190: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
-
- } else if (l1 == l2 && k1 != k2) {
-
- i__1 = *m - k2;
- /* Computing MIN */
- i__2 = k2 + 1;
- /* Computing MIN */
- i__3 = k2 + 1;
- suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
- i__1 = *n - l2;
- /* Computing MIN */
- i__2 = l2 + 1;
- /* Computing MIN */
- i__3 = l2 + 1;
- sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__1 = *m - k2;
- /* Computing MIN */
- i__2 = k2 + 1;
- /* Computing MIN */
- i__3 = k2 + 1;
- suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
- i__1 = *n - l2;
- /* Computing MIN */
- i__2 = l2 + 1;
- /* Computing MIN */
- i__3 = l2 + 1;
- sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
-
- d__1 = -sgn * b[l1 + l1 * b_dim1];
- dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &a[k1 + k1
- * a_dim1], lda, &c_b26, &c_b26, vec, &c__2, &d__1,
- &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L200: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k2 + l1 * c_dim1] = x[1];
-
- } else if (l1 != l2 && k1 == k2) {
-
- i__1 = *m - k1;
- /* Computing MIN */
- i__2 = k1 + 1;
- /* Computing MIN */
- i__3 = k1 + 1;
- suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
- i__1 = *n - l2;
- /* Computing MIN */
- i__2 = l2 + 1;
- /* Computing MIN */
- i__3 = l2 + 1;
- sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[0] = sgn * (c__[k1 + l1 * c_dim1] - (suml + sgn *
- sumr));
-
- i__1 = *m - k1;
- /* Computing MIN */
- i__2 = k1 + 1;
- /* Computing MIN */
- i__3 = k1 + 1;
- suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
- i__1 = *n - l2;
- /* Computing MIN */
- i__2 = l2 + 1;
- /* Computing MIN */
- i__3 = l2 + 1;
- sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[1] = sgn * (c__[k1 + l2 * c_dim1] - (suml + sgn *
- sumr));
-
- d__1 = -sgn * a[k1 + k1 * a_dim1];
- dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b26, &b[l1 + l1
- * b_dim1], ldb, &c_b26, &c_b26, vec, &c__2, &d__1,
- &c_b30, x, &c__2, &scaloc, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L210: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k1 + l2 * c_dim1] = x[1];
-
- } else if (l1 != l2 && k1 != k2) {
-
- i__1 = *m - k2;
- /* Computing MIN */
- i__2 = k2 + 1;
- /* Computing MIN */
- i__3 = k2 + 1;
- suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
- i__1 = *n - l2;
- /* Computing MIN */
- i__2 = l2 + 1;
- /* Computing MIN */
- i__3 = l2 + 1;
- sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[0] = c__[k1 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__1 = *m - k2;
- /* Computing MIN */
- i__2 = k2 + 1;
- /* Computing MIN */
- i__3 = k2 + 1;
- suml = ddot_(&i__1, &a[k1 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
- i__1 = *n - l2;
- /* Computing MIN */
- i__2 = l2 + 1;
- /* Computing MIN */
- i__3 = l2 + 1;
- sumr = ddot_(&i__1, &c__[k1 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[2] = c__[k1 + l2 * c_dim1] - (suml + sgn * sumr);
-
- i__1 = *m - k2;
- /* Computing MIN */
- i__2 = k2 + 1;
- /* Computing MIN */
- i__3 = k2 + 1;
- suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l1 * c_dim1], &c__1);
- i__1 = *n - l2;
- /* Computing MIN */
- i__2 = l2 + 1;
- /* Computing MIN */
- i__3 = l2 + 1;
- sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l1 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[1] = c__[k2 + l1 * c_dim1] - (suml + sgn * sumr);
-
- i__1 = *m - k2;
- /* Computing MIN */
- i__2 = k2 + 1;
- /* Computing MIN */
- i__3 = k2 + 1;
- suml = ddot_(&i__1, &a[k2 + f2cmin(i__2,*m) * a_dim1], lda, &
- c__[f2cmin(i__3,*m) + l2 * c_dim1], &c__1);
- i__1 = *n - l2;
- /* Computing MIN */
- i__2 = l2 + 1;
- /* Computing MIN */
- i__3 = l2 + 1;
- sumr = ddot_(&i__1, &c__[k2 + f2cmin(i__2,*n) * c_dim1], ldc,
- &b[l2 + f2cmin(i__3,*n) * b_dim1], ldb);
- vec[3] = c__[k2 + l2 * c_dim1] - (suml + sgn * sumr);
-
- dlasy2_(&c_false, &c_true, isgn, &c__2, &c__2, &a[k1 + k1
- * a_dim1], lda, &b[l1 + l1 * b_dim1], ldb, vec, &
- c__2, &scaloc, x, &c__2, &xnorm, &ierr);
- if (ierr != 0) {
- *info = 1;
- }
-
- if (scaloc != 1.) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- dscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
- /* L220: */
- }
- *scale *= scaloc;
- }
- c__[k1 + l1 * c_dim1] = x[0];
- c__[k1 + l2 * c_dim1] = x[2];
- c__[k2 + l1 * c_dim1] = x[1];
- c__[k2 + l2 * c_dim1] = x[3];
- }
-
- L230:
- ;
- }
- L240:
- ;
- }
-
- }
-
- return;
-
- /* End of DTRSYL */
-
- } /* dtrsyl_ */
-
|