You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsbevx.c 34 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b14 = 1.;
  485. static integer c__1 = 1;
  486. static doublereal c_b34 = 0.;
  487. /* > \brief <b> DSBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER
  488. matrices</b> */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DSBEVX + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevx.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevx.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevx.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DSBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, */
  507. /* VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, IWORK, */
  508. /* IFAIL, INFO ) */
  509. /* CHARACTER JOBZ, RANGE, UPLO */
  510. /* INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N */
  511. /* DOUBLE PRECISION ABSTOL, VL, VU */
  512. /* INTEGER IFAIL( * ), IWORK( * ) */
  513. /* DOUBLE PRECISION AB( LDAB, * ), Q( LDQ, * ), W( * ), WORK( * ), */
  514. /* $ Z( LDZ, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DSBEVX computes selected eigenvalues and, optionally, eigenvectors */
  521. /* > of a real symmetric band matrix A. Eigenvalues and eigenvectors can */
  522. /* > be selected by specifying either a range of values or a range of */
  523. /* > indices for the desired eigenvalues. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] JOBZ */
  528. /* > \verbatim */
  529. /* > JOBZ is CHARACTER*1 */
  530. /* > = 'N': Compute eigenvalues only; */
  531. /* > = 'V': Compute eigenvalues and eigenvectors. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] RANGE */
  535. /* > \verbatim */
  536. /* > RANGE is CHARACTER*1 */
  537. /* > = 'A': all eigenvalues will be found; */
  538. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  539. /* > will be found; */
  540. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] UPLO */
  544. /* > \verbatim */
  545. /* > UPLO is CHARACTER*1 */
  546. /* > = 'U': Upper triangle of A is stored; */
  547. /* > = 'L': Lower triangle of A is stored. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] N */
  551. /* > \verbatim */
  552. /* > N is INTEGER */
  553. /* > The order of the matrix A. N >= 0. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] KD */
  557. /* > \verbatim */
  558. /* > KD is INTEGER */
  559. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  560. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] AB */
  564. /* > \verbatim */
  565. /* > AB is DOUBLE PRECISION array, dimension (LDAB, N) */
  566. /* > On entry, the upper or lower triangle of the symmetric band */
  567. /* > matrix A, stored in the first KD+1 rows of the array. The */
  568. /* > j-th column of A is stored in the j-th column of the array AB */
  569. /* > as follows: */
  570. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  571. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  572. /* > */
  573. /* > On exit, AB is overwritten by values generated during the */
  574. /* > reduction to tridiagonal form. If UPLO = 'U', the first */
  575. /* > superdiagonal and the diagonal of the tridiagonal matrix T */
  576. /* > are returned in rows KD and KD+1 of AB, and if UPLO = 'L', */
  577. /* > the diagonal and first subdiagonal of T are returned in the */
  578. /* > first two rows of AB. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LDAB */
  582. /* > \verbatim */
  583. /* > LDAB is INTEGER */
  584. /* > The leading dimension of the array AB. LDAB >= KD + 1. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] Q */
  588. /* > \verbatim */
  589. /* > Q is DOUBLE PRECISION array, dimension (LDQ, N) */
  590. /* > If JOBZ = 'V', the N-by-N orthogonal matrix used in the */
  591. /* > reduction to tridiagonal form. */
  592. /* > If JOBZ = 'N', the array Q is not referenced. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDQ */
  596. /* > \verbatim */
  597. /* > LDQ is INTEGER */
  598. /* > The leading dimension of the array Q. If JOBZ = 'V', then */
  599. /* > LDQ >= f2cmax(1,N). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] VL */
  603. /* > \verbatim */
  604. /* > VL is DOUBLE PRECISION */
  605. /* > If RANGE='V', the lower bound of the interval to */
  606. /* > be searched for eigenvalues. VL < VU. */
  607. /* > Not referenced if RANGE = 'A' or 'I'. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] VU */
  611. /* > \verbatim */
  612. /* > VU is DOUBLE PRECISION */
  613. /* > If RANGE='V', the upper bound of the interval to */
  614. /* > be searched for eigenvalues. VL < VU. */
  615. /* > Not referenced if RANGE = 'A' or 'I'. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] IL */
  619. /* > \verbatim */
  620. /* > IL is INTEGER */
  621. /* > If RANGE='I', the index of the */
  622. /* > smallest eigenvalue to be returned. */
  623. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  624. /* > Not referenced if RANGE = 'A' or 'V'. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] IU */
  628. /* > \verbatim */
  629. /* > IU is INTEGER */
  630. /* > If RANGE='I', the index of the */
  631. /* > largest eigenvalue to be returned. */
  632. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  633. /* > Not referenced if RANGE = 'A' or 'V'. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[in] ABSTOL */
  637. /* > \verbatim */
  638. /* > ABSTOL is DOUBLE PRECISION */
  639. /* > The absolute error tolerance for the eigenvalues. */
  640. /* > An approximate eigenvalue is accepted as converged */
  641. /* > when it is determined to lie in an interval [a,b] */
  642. /* > of width less than or equal to */
  643. /* > */
  644. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  645. /* > */
  646. /* > where EPS is the machine precision. If ABSTOL is less than */
  647. /* > or equal to zero, then EPS*|T| will be used in its place, */
  648. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  649. /* > by reducing AB to tridiagonal form. */
  650. /* > */
  651. /* > Eigenvalues will be computed most accurately when ABSTOL is */
  652. /* > set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
  653. /* > If this routine returns with INFO>0, indicating that some */
  654. /* > eigenvectors did not converge, try setting ABSTOL to */
  655. /* > 2*DLAMCH('S'). */
  656. /* > */
  657. /* > See "Computing Small Singular Values of Bidiagonal Matrices */
  658. /* > with Guaranteed High Relative Accuracy," by Demmel and */
  659. /* > Kahan, LAPACK Working Note #3. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] M */
  663. /* > \verbatim */
  664. /* > M is INTEGER */
  665. /* > The total number of eigenvalues found. 0 <= M <= N. */
  666. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[out] W */
  670. /* > \verbatim */
  671. /* > W is DOUBLE PRECISION array, dimension (N) */
  672. /* > The first M elements contain the selected eigenvalues in */
  673. /* > ascending order. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] Z */
  677. /* > \verbatim */
  678. /* > Z is DOUBLE PRECISION array, dimension (LDZ, f2cmax(1,M)) */
  679. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  680. /* > contain the orthonormal eigenvectors of the matrix A */
  681. /* > corresponding to the selected eigenvalues, with the i-th */
  682. /* > column of Z holding the eigenvector associated with W(i). */
  683. /* > If an eigenvector fails to converge, then that column of Z */
  684. /* > contains the latest approximation to the eigenvector, and the */
  685. /* > index of the eigenvector is returned in IFAIL. */
  686. /* > If JOBZ = 'N', then Z is not referenced. */
  687. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  688. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  689. /* > is not known in advance and an upper bound must be used. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] LDZ */
  693. /* > \verbatim */
  694. /* > LDZ is INTEGER */
  695. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  696. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] WORK */
  700. /* > \verbatim */
  701. /* > WORK is DOUBLE PRECISION array, dimension (7*N) */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] IWORK */
  705. /* > \verbatim */
  706. /* > IWORK is INTEGER array, dimension (5*N) */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[out] IFAIL */
  710. /* > \verbatim */
  711. /* > IFAIL is INTEGER array, dimension (N) */
  712. /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
  713. /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
  714. /* > indices of the eigenvectors that failed to converge. */
  715. /* > If JOBZ = 'N', then IFAIL is not referenced. */
  716. /* > \endverbatim */
  717. /* > */
  718. /* > \param[out] INFO */
  719. /* > \verbatim */
  720. /* > INFO is INTEGER */
  721. /* > = 0: successful exit. */
  722. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  723. /* > > 0: if INFO = i, then i eigenvectors failed to converge. */
  724. /* > Their indices are stored in array IFAIL. */
  725. /* > \endverbatim */
  726. /* Authors: */
  727. /* ======== */
  728. /* > \author Univ. of Tennessee */
  729. /* > \author Univ. of California Berkeley */
  730. /* > \author Univ. of Colorado Denver */
  731. /* > \author NAG Ltd. */
  732. /* > \date June 2016 */
  733. /* > \ingroup doubleOTHEReigen */
  734. /* ===================================================================== */
  735. /* Subroutine */ void dsbevx_(char *jobz, char *range, char *uplo, integer *n,
  736. integer *kd, doublereal *ab, integer *ldab, doublereal *q, integer *
  737. ldq, doublereal *vl, doublereal *vu, integer *il, integer *iu,
  738. doublereal *abstol, integer *m, doublereal *w, doublereal *z__,
  739. integer *ldz, doublereal *work, integer *iwork, integer *ifail,
  740. integer *info)
  741. {
  742. /* System generated locals */
  743. integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1,
  744. i__2;
  745. doublereal d__1, d__2;
  746. /* Local variables */
  747. integer indd, inde;
  748. doublereal anrm;
  749. integer imax;
  750. doublereal rmin, rmax;
  751. logical test;
  752. integer itmp1, i__, j, indee;
  753. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  754. integer *);
  755. doublereal sigma;
  756. extern logical lsame_(char *, char *);
  757. extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
  758. doublereal *, doublereal *, integer *, doublereal *, integer *,
  759. doublereal *, doublereal *, integer *);
  760. integer iinfo;
  761. char order[1];
  762. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  763. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  764. *, doublereal *, integer *);
  765. logical lower, wantz;
  766. integer jj;
  767. extern doublereal dlamch_(char *);
  768. logical alleig, indeig;
  769. integer iscale, indibl;
  770. extern doublereal dlansb_(char *, char *, integer *, integer *,
  771. doublereal *, integer *, doublereal *);
  772. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  773. doublereal *, doublereal *, integer *, integer *, doublereal *,
  774. integer *, integer *);
  775. logical valeig;
  776. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  777. doublereal *, integer *, doublereal *, integer *);
  778. doublereal safmin;
  779. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  780. doublereal abstll, bignum;
  781. extern /* Subroutine */ void dsbtrd_(char *, char *, integer *, integer *,
  782. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  783. integer *, doublereal *, integer *);
  784. integer indisp;
  785. extern /* Subroutine */ void dstein_(integer *, doublereal *, doublereal *,
  786. integer *, doublereal *, integer *, integer *, doublereal *,
  787. integer *, doublereal *, integer *, integer *, integer *),
  788. dsterf_(integer *, doublereal *, doublereal *, integer *);
  789. integer indiwo;
  790. extern /* Subroutine */ void dstebz_(char *, char *, integer *, doublereal
  791. *, doublereal *, integer *, integer *, doublereal *, doublereal *,
  792. doublereal *, integer *, integer *, doublereal *, integer *,
  793. integer *, doublereal *, integer *, integer *);
  794. integer indwrk;
  795. extern /* Subroutine */ void dsteqr_(char *, integer *, doublereal *,
  796. doublereal *, doublereal *, integer *, doublereal *, integer *);
  797. integer nsplit;
  798. doublereal smlnum, eps, vll, vuu, tmp1;
  799. /* -- LAPACK driver routine (version 3.7.0) -- */
  800. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  801. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  802. /* June 2016 */
  803. /* ===================================================================== */
  804. /* Test the input parameters. */
  805. /* Parameter adjustments */
  806. ab_dim1 = *ldab;
  807. ab_offset = 1 + ab_dim1 * 1;
  808. ab -= ab_offset;
  809. q_dim1 = *ldq;
  810. q_offset = 1 + q_dim1 * 1;
  811. q -= q_offset;
  812. --w;
  813. z_dim1 = *ldz;
  814. z_offset = 1 + z_dim1 * 1;
  815. z__ -= z_offset;
  816. --work;
  817. --iwork;
  818. --ifail;
  819. /* Function Body */
  820. wantz = lsame_(jobz, "V");
  821. alleig = lsame_(range, "A");
  822. valeig = lsame_(range, "V");
  823. indeig = lsame_(range, "I");
  824. lower = lsame_(uplo, "L");
  825. *info = 0;
  826. if (! (wantz || lsame_(jobz, "N"))) {
  827. *info = -1;
  828. } else if (! (alleig || valeig || indeig)) {
  829. *info = -2;
  830. } else if (! (lower || lsame_(uplo, "U"))) {
  831. *info = -3;
  832. } else if (*n < 0) {
  833. *info = -4;
  834. } else if (*kd < 0) {
  835. *info = -5;
  836. } else if (*ldab < *kd + 1) {
  837. *info = -7;
  838. } else if (wantz && *ldq < f2cmax(1,*n)) {
  839. *info = -9;
  840. } else {
  841. if (valeig) {
  842. if (*n > 0 && *vu <= *vl) {
  843. *info = -11;
  844. }
  845. } else if (indeig) {
  846. if (*il < 1 || *il > f2cmax(1,*n)) {
  847. *info = -12;
  848. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  849. *info = -13;
  850. }
  851. }
  852. }
  853. if (*info == 0) {
  854. if (*ldz < 1 || wantz && *ldz < *n) {
  855. *info = -18;
  856. }
  857. }
  858. if (*info != 0) {
  859. i__1 = -(*info);
  860. xerbla_("DSBEVX", &i__1, (ftnlen)6);
  861. return;
  862. }
  863. /* Quick return if possible */
  864. *m = 0;
  865. if (*n == 0) {
  866. return;
  867. }
  868. if (*n == 1) {
  869. *m = 1;
  870. if (lower) {
  871. tmp1 = ab[ab_dim1 + 1];
  872. } else {
  873. tmp1 = ab[*kd + 1 + ab_dim1];
  874. }
  875. if (valeig) {
  876. if (! (*vl < tmp1 && *vu >= tmp1)) {
  877. *m = 0;
  878. }
  879. }
  880. if (*m == 1) {
  881. w[1] = tmp1;
  882. if (wantz) {
  883. z__[z_dim1 + 1] = 1.;
  884. }
  885. }
  886. return;
  887. }
  888. /* Get machine constants. */
  889. safmin = dlamch_("Safe minimum");
  890. eps = dlamch_("Precision");
  891. smlnum = safmin / eps;
  892. bignum = 1. / smlnum;
  893. rmin = sqrt(smlnum);
  894. /* Computing MIN */
  895. d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
  896. rmax = f2cmin(d__1,d__2);
  897. /* Scale matrix to allowable range, if necessary. */
  898. iscale = 0;
  899. abstll = *abstol;
  900. if (valeig) {
  901. vll = *vl;
  902. vuu = *vu;
  903. } else {
  904. vll = 0.;
  905. vuu = 0.;
  906. }
  907. anrm = dlansb_("M", uplo, n, kd, &ab[ab_offset], ldab, &work[1]);
  908. if (anrm > 0. && anrm < rmin) {
  909. iscale = 1;
  910. sigma = rmin / anrm;
  911. } else if (anrm > rmax) {
  912. iscale = 1;
  913. sigma = rmax / anrm;
  914. }
  915. if (iscale == 1) {
  916. if (lower) {
  917. dlascl_("B", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab,
  918. info);
  919. } else {
  920. dlascl_("Q", kd, kd, &c_b14, &sigma, n, n, &ab[ab_offset], ldab,
  921. info);
  922. }
  923. if (*abstol > 0.) {
  924. abstll = *abstol * sigma;
  925. }
  926. if (valeig) {
  927. vll = *vl * sigma;
  928. vuu = *vu * sigma;
  929. }
  930. }
  931. /* Call DSBTRD to reduce symmetric band matrix to tridiagonal form. */
  932. indd = 1;
  933. inde = indd + *n;
  934. indwrk = inde + *n;
  935. dsbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &work[indd], &work[inde],
  936. &q[q_offset], ldq, &work[indwrk], &iinfo);
  937. /* If all eigenvalues are desired and ABSTOL is less than or equal */
  938. /* to zero, then call DSTERF or SSTEQR. If this fails for some */
  939. /* eigenvalue, then try DSTEBZ. */
  940. test = FALSE_;
  941. if (indeig) {
  942. if (*il == 1 && *iu == *n) {
  943. test = TRUE_;
  944. }
  945. }
  946. if ((alleig || test) && *abstol <= 0.) {
  947. dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
  948. indee = indwrk + (*n << 1);
  949. if (! wantz) {
  950. i__1 = *n - 1;
  951. dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
  952. dsterf_(n, &w[1], &work[indee], info);
  953. } else {
  954. dlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
  955. i__1 = *n - 1;
  956. dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
  957. dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
  958. indwrk], info);
  959. if (*info == 0) {
  960. i__1 = *n;
  961. for (i__ = 1; i__ <= i__1; ++i__) {
  962. ifail[i__] = 0;
  963. /* L10: */
  964. }
  965. }
  966. }
  967. if (*info == 0) {
  968. *m = *n;
  969. goto L30;
  970. }
  971. *info = 0;
  972. }
  973. /* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */
  974. if (wantz) {
  975. *(unsigned char *)order = 'B';
  976. } else {
  977. *(unsigned char *)order = 'E';
  978. }
  979. indibl = 1;
  980. indisp = indibl + *n;
  981. indiwo = indisp + *n;
  982. dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
  983. inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
  984. indwrk], &iwork[indiwo], info);
  985. if (wantz) {
  986. dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
  987. indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
  988. ifail[1], info);
  989. /* Apply orthogonal matrix used in reduction to tridiagonal */
  990. /* form to eigenvectors returned by DSTEIN. */
  991. i__1 = *m;
  992. for (j = 1; j <= i__1; ++j) {
  993. dcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
  994. dgemv_("N", n, n, &c_b14, &q[q_offset], ldq, &work[1], &c__1, &
  995. c_b34, &z__[j * z_dim1 + 1], &c__1);
  996. /* L20: */
  997. }
  998. }
  999. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1000. L30:
  1001. if (iscale == 1) {
  1002. if (*info == 0) {
  1003. imax = *m;
  1004. } else {
  1005. imax = *info - 1;
  1006. }
  1007. d__1 = 1. / sigma;
  1008. dscal_(&imax, &d__1, &w[1], &c__1);
  1009. }
  1010. /* If eigenvalues are not in order, then sort them, along with */
  1011. /* eigenvectors. */
  1012. if (wantz) {
  1013. i__1 = *m - 1;
  1014. for (j = 1; j <= i__1; ++j) {
  1015. i__ = 0;
  1016. tmp1 = w[j];
  1017. i__2 = *m;
  1018. for (jj = j + 1; jj <= i__2; ++jj) {
  1019. if (w[jj] < tmp1) {
  1020. i__ = jj;
  1021. tmp1 = w[jj];
  1022. }
  1023. /* L40: */
  1024. }
  1025. if (i__ != 0) {
  1026. itmp1 = iwork[indibl + i__ - 1];
  1027. w[i__] = w[j];
  1028. iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
  1029. w[j] = tmp1;
  1030. iwork[indibl + j - 1] = itmp1;
  1031. dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  1032. &c__1);
  1033. if (*info != 0) {
  1034. itmp1 = ifail[i__];
  1035. ifail[i__] = ifail[j];
  1036. ifail[j] = itmp1;
  1037. }
  1038. }
  1039. /* L50: */
  1040. }
  1041. }
  1042. return;
  1043. /* End of DSBEVX */
  1044. } /* dsbevx_ */