You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd6.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__0 = 0;
  485. static doublereal c_b7 = 1.;
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. /* > \brief \b DLASD6 computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller o
  489. nes by appending a row. Used by sbdsdc. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DLASD6 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd6.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd6.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd6.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA, */
  508. /* IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, */
  509. /* LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK, */
  510. /* IWORK, INFO ) */
  511. /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
  512. /* $ NR, SQRE */
  513. /* DOUBLE PRECISION ALPHA, BETA, C, S */
  514. /* INTEGER GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ), */
  515. /* $ PERM( * ) */
  516. /* DOUBLE PRECISION D( * ), DIFL( * ), DIFR( * ), */
  517. /* $ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), */
  518. /* $ VF( * ), VL( * ), WORK( * ), Z( * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > DLASD6 computes the SVD of an updated upper bidiagonal matrix B */
  525. /* > obtained by merging two smaller ones by appending a row. This */
  526. /* > routine is used only for the problem which requires all singular */
  527. /* > values and optionally singular vector matrices in factored form. */
  528. /* > B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE. */
  529. /* > A related subroutine, DLASD1, handles the case in which all singular */
  530. /* > values and singular vectors of the bidiagonal matrix are desired. */
  531. /* > */
  532. /* > DLASD6 computes the SVD as follows: */
  533. /* > */
  534. /* > ( D1(in) 0 0 0 ) */
  535. /* > B = U(in) * ( Z1**T a Z2**T b ) * VT(in) */
  536. /* > ( 0 0 D2(in) 0 ) */
  537. /* > */
  538. /* > = U(out) * ( D(out) 0) * VT(out) */
  539. /* > */
  540. /* > where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M */
  541. /* > with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
  542. /* > elsewhere; and the entry b is empty if SQRE = 0. */
  543. /* > */
  544. /* > The singular values of B can be computed using D1, D2, the first */
  545. /* > components of all the right singular vectors of the lower block, and */
  546. /* > the last components of all the right singular vectors of the upper */
  547. /* > block. These components are stored and updated in VF and VL, */
  548. /* > respectively, in DLASD6. Hence U and VT are not explicitly */
  549. /* > referenced. */
  550. /* > */
  551. /* > The singular values are stored in D. The algorithm consists of two */
  552. /* > stages: */
  553. /* > */
  554. /* > The first stage consists of deflating the size of the problem */
  555. /* > when there are multiple singular values or if there is a zero */
  556. /* > in the Z vector. For each such occurrence the dimension of the */
  557. /* > secular equation problem is reduced by one. This stage is */
  558. /* > performed by the routine DLASD7. */
  559. /* > */
  560. /* > The second stage consists of calculating the updated */
  561. /* > singular values. This is done by finding the roots of the */
  562. /* > secular equation via the routine DLASD4 (as called by DLASD8). */
  563. /* > This routine also updates VF and VL and computes the distances */
  564. /* > between the updated singular values and the old singular */
  565. /* > values. */
  566. /* > */
  567. /* > DLASD6 is called from DLASDA. */
  568. /* > \endverbatim */
  569. /* Arguments: */
  570. /* ========== */
  571. /* > \param[in] ICOMPQ */
  572. /* > \verbatim */
  573. /* > ICOMPQ is INTEGER */
  574. /* > Specifies whether singular vectors are to be computed in */
  575. /* > factored form: */
  576. /* > = 0: Compute singular values only. */
  577. /* > = 1: Compute singular vectors in factored form as well. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] NL */
  581. /* > \verbatim */
  582. /* > NL is INTEGER */
  583. /* > The row dimension of the upper block. NL >= 1. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] NR */
  587. /* > \verbatim */
  588. /* > NR is INTEGER */
  589. /* > The row dimension of the lower block. NR >= 1. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] SQRE */
  593. /* > \verbatim */
  594. /* > SQRE is INTEGER */
  595. /* > = 0: the lower block is an NR-by-NR square matrix. */
  596. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  597. /* > */
  598. /* > The bidiagonal matrix has row dimension N = NL + NR + 1, */
  599. /* > and column dimension M = N + SQRE. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] D */
  603. /* > \verbatim */
  604. /* > D is DOUBLE PRECISION array, dimension ( NL+NR+1 ). */
  605. /* > On entry D(1:NL,1:NL) contains the singular values of the */
  606. /* > upper block, and D(NL+2:N) contains the singular values */
  607. /* > of the lower block. On exit D(1:N) contains the singular */
  608. /* > values of the modified matrix. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in,out] VF */
  612. /* > \verbatim */
  613. /* > VF is DOUBLE PRECISION array, dimension ( M ) */
  614. /* > On entry, VF(1:NL+1) contains the first components of all */
  615. /* > right singular vectors of the upper block; and VF(NL+2:M) */
  616. /* > contains the first components of all right singular vectors */
  617. /* > of the lower block. On exit, VF contains the first components */
  618. /* > of all right singular vectors of the bidiagonal matrix. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in,out] VL */
  622. /* > \verbatim */
  623. /* > VL is DOUBLE PRECISION array, dimension ( M ) */
  624. /* > On entry, VL(1:NL+1) contains the last components of all */
  625. /* > right singular vectors of the upper block; and VL(NL+2:M) */
  626. /* > contains the last components of all right singular vectors of */
  627. /* > the lower block. On exit, VL contains the last components of */
  628. /* > all right singular vectors of the bidiagonal matrix. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in,out] ALPHA */
  632. /* > \verbatim */
  633. /* > ALPHA is DOUBLE PRECISION */
  634. /* > Contains the diagonal element associated with the added row. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in,out] BETA */
  638. /* > \verbatim */
  639. /* > BETA is DOUBLE PRECISION */
  640. /* > Contains the off-diagonal element associated with the added */
  641. /* > row. */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[in,out] IDXQ */
  645. /* > \verbatim */
  646. /* > IDXQ is INTEGER array, dimension ( N ) */
  647. /* > This contains the permutation which will reintegrate the */
  648. /* > subproblem just solved back into sorted order, i.e. */
  649. /* > D( IDXQ( I = 1, N ) ) will be in ascending order. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[out] PERM */
  653. /* > \verbatim */
  654. /* > PERM is INTEGER array, dimension ( N ) */
  655. /* > The permutations (from deflation and sorting) to be applied */
  656. /* > to each block. Not referenced if ICOMPQ = 0. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[out] GIVPTR */
  660. /* > \verbatim */
  661. /* > GIVPTR is INTEGER */
  662. /* > The number of Givens rotations which took place in this */
  663. /* > subproblem. Not referenced if ICOMPQ = 0. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] GIVCOL */
  667. /* > \verbatim */
  668. /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
  669. /* > Each pair of numbers indicates a pair of columns to take place */
  670. /* > in a Givens rotation. Not referenced if ICOMPQ = 0. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] LDGCOL */
  674. /* > \verbatim */
  675. /* > LDGCOL is INTEGER */
  676. /* > leading dimension of GIVCOL, must be at least N. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[out] GIVNUM */
  680. /* > \verbatim */
  681. /* > GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  682. /* > Each number indicates the C or S value to be used in the */
  683. /* > corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[in] LDGNUM */
  687. /* > \verbatim */
  688. /* > LDGNUM is INTEGER */
  689. /* > The leading dimension of GIVNUM and POLES, must be at least N. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[out] POLES */
  693. /* > \verbatim */
  694. /* > POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  695. /* > On exit, POLES(1,*) is an array containing the new singular */
  696. /* > values obtained from solving the secular equation, and */
  697. /* > POLES(2,*) is an array containing the poles in the secular */
  698. /* > equation. Not referenced if ICOMPQ = 0. */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[out] DIFL */
  702. /* > \verbatim */
  703. /* > DIFL is DOUBLE PRECISION array, dimension ( N ) */
  704. /* > On exit, DIFL(I) is the distance between I-th updated */
  705. /* > (undeflated) singular value and the I-th (undeflated) old */
  706. /* > singular value. */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[out] DIFR */
  710. /* > \verbatim */
  711. /* > DIFR is DOUBLE PRECISION array, */
  712. /* > dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
  713. /* > dimension ( K ) if ICOMPQ = 0. */
  714. /* > On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
  715. /* > defined and will not be referenced. */
  716. /* > */
  717. /* > If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
  718. /* > normalizing factors for the right singular vector matrix. */
  719. /* > */
  720. /* > See DLASD8 for details on DIFL and DIFR. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[out] Z */
  724. /* > \verbatim */
  725. /* > Z is DOUBLE PRECISION array, dimension ( M ) */
  726. /* > The first elements of this array contain the components */
  727. /* > of the deflation-adjusted updating row vector. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[out] K */
  731. /* > \verbatim */
  732. /* > K is INTEGER */
  733. /* > Contains the dimension of the non-deflated matrix, */
  734. /* > This is the order of the related secular equation. 1 <= K <=N. */
  735. /* > \endverbatim */
  736. /* > */
  737. /* > \param[out] C */
  738. /* > \verbatim */
  739. /* > C is DOUBLE PRECISION */
  740. /* > C contains garbage if SQRE =0 and the C-value of a Givens */
  741. /* > rotation related to the right null space if SQRE = 1. */
  742. /* > \endverbatim */
  743. /* > */
  744. /* > \param[out] S */
  745. /* > \verbatim */
  746. /* > S is DOUBLE PRECISION */
  747. /* > S contains garbage if SQRE =0 and the S-value of a Givens */
  748. /* > rotation related to the right null space if SQRE = 1. */
  749. /* > \endverbatim */
  750. /* > */
  751. /* > \param[out] WORK */
  752. /* > \verbatim */
  753. /* > WORK is DOUBLE PRECISION array, dimension ( 4 * M ) */
  754. /* > \endverbatim */
  755. /* > */
  756. /* > \param[out] IWORK */
  757. /* > \verbatim */
  758. /* > IWORK is INTEGER array, dimension ( 3 * N ) */
  759. /* > \endverbatim */
  760. /* > */
  761. /* > \param[out] INFO */
  762. /* > \verbatim */
  763. /* > INFO is INTEGER */
  764. /* > = 0: successful exit. */
  765. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  766. /* > > 0: if INFO = 1, a singular value did not converge */
  767. /* > \endverbatim */
  768. /* Authors: */
  769. /* ======== */
  770. /* > \author Univ. of Tennessee */
  771. /* > \author Univ. of California Berkeley */
  772. /* > \author Univ. of Colorado Denver */
  773. /* > \author NAG Ltd. */
  774. /* > \date June 2016 */
  775. /* > \ingroup OTHERauxiliary */
  776. /* > \par Contributors: */
  777. /* ================== */
  778. /* > */
  779. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  780. /* > California at Berkeley, USA */
  781. /* > */
  782. /* ===================================================================== */
  783. /* Subroutine */ void dlasd6_(integer *icompq, integer *nl, integer *nr,
  784. integer *sqre, doublereal *d__, doublereal *vf, doublereal *vl,
  785. doublereal *alpha, doublereal *beta, integer *idxq, integer *perm,
  786. integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
  787. integer *ldgnum, doublereal *poles, doublereal *difl, doublereal *
  788. difr, doublereal *z__, integer *k, doublereal *c__, doublereal *s,
  789. doublereal *work, integer *iwork, integer *info)
  790. {
  791. /* System generated locals */
  792. integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset,
  793. poles_dim1, poles_offset, i__1;
  794. doublereal d__1, d__2;
  795. /* Local variables */
  796. integer idxc, idxp, ivfw, ivlw, i__, m, n;
  797. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  798. doublereal *, integer *);
  799. integer n1, n2;
  800. extern /* Subroutine */ void dlasd7_(integer *, integer *, integer *,
  801. integer *, integer *, doublereal *, doublereal *, doublereal *,
  802. doublereal *, doublereal *, doublereal *, doublereal *,
  803. doublereal *, doublereal *, doublereal *, integer *, integer *,
  804. integer *, integer *, integer *, integer *, integer *, doublereal
  805. *, integer *, doublereal *, doublereal *, integer *), dlasd8_(
  806. integer *, integer *, doublereal *, doublereal *, doublereal *,
  807. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  808. doublereal *, integer *);
  809. integer iw;
  810. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  811. doublereal *, doublereal *, integer *, integer *, doublereal *,
  812. integer *, integer *), dlamrg_(integer *, integer *,
  813. doublereal *, integer *, integer *, integer *);
  814. integer isigma;
  815. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  816. doublereal orgnrm;
  817. integer idx;
  818. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  819. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  820. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  821. /* June 2016 */
  822. /* ===================================================================== */
  823. /* Test the input parameters. */
  824. /* Parameter adjustments */
  825. --d__;
  826. --vf;
  827. --vl;
  828. --idxq;
  829. --perm;
  830. givcol_dim1 = *ldgcol;
  831. givcol_offset = 1 + givcol_dim1 * 1;
  832. givcol -= givcol_offset;
  833. poles_dim1 = *ldgnum;
  834. poles_offset = 1 + poles_dim1 * 1;
  835. poles -= poles_offset;
  836. givnum_dim1 = *ldgnum;
  837. givnum_offset = 1 + givnum_dim1 * 1;
  838. givnum -= givnum_offset;
  839. --difl;
  840. --difr;
  841. --z__;
  842. --work;
  843. --iwork;
  844. /* Function Body */
  845. *info = 0;
  846. n = *nl + *nr + 1;
  847. m = n + *sqre;
  848. if (*icompq < 0 || *icompq > 1) {
  849. *info = -1;
  850. } else if (*nl < 1) {
  851. *info = -2;
  852. } else if (*nr < 1) {
  853. *info = -3;
  854. } else if (*sqre < 0 || *sqre > 1) {
  855. *info = -4;
  856. } else if (*ldgcol < n) {
  857. *info = -14;
  858. } else if (*ldgnum < n) {
  859. *info = -16;
  860. }
  861. if (*info != 0) {
  862. i__1 = -(*info);
  863. xerbla_("DLASD6", &i__1, (ftnlen)6);
  864. return;
  865. }
  866. /* The following values are for bookkeeping purposes only. They are */
  867. /* integer pointers which indicate the portion of the workspace */
  868. /* used by a particular array in DLASD7 and DLASD8. */
  869. isigma = 1;
  870. iw = isigma + n;
  871. ivfw = iw + m;
  872. ivlw = ivfw + m;
  873. idx = 1;
  874. idxc = idx + n;
  875. idxp = idxc + n;
  876. /* Scale. */
  877. /* Computing MAX */
  878. d__1 = abs(*alpha), d__2 = abs(*beta);
  879. orgnrm = f2cmax(d__1,d__2);
  880. d__[*nl + 1] = 0.;
  881. i__1 = n;
  882. for (i__ = 1; i__ <= i__1; ++i__) {
  883. if ((d__1 = d__[i__], abs(d__1)) > orgnrm) {
  884. orgnrm = (d__1 = d__[i__], abs(d__1));
  885. }
  886. /* L10: */
  887. }
  888. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
  889. *alpha /= orgnrm;
  890. *beta /= orgnrm;
  891. /* Sort and Deflate singular values. */
  892. dlasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &
  893. work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &
  894. iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[
  895. givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s,
  896. info);
  897. /* Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */
  898. dlasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1],
  899. ldgnum, &work[isigma], &work[iw], info);
  900. /* Report the possible convergence failure. */
  901. if (*info != 0) {
  902. return;
  903. }
  904. /* Save the poles if ICOMPQ = 1. */
  905. if (*icompq == 1) {
  906. dcopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);
  907. dcopy_(k, &work[isigma], &c__1, &poles[(poles_dim1 << 1) + 1], &c__1);
  908. }
  909. /* Unscale. */
  910. dlascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
  911. /* Prepare the IDXQ sorting permutation. */
  912. n1 = *k;
  913. n2 = n - *k;
  914. dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
  915. return;
  916. /* End of DLASD6 */
  917. } /* dlasd6_ */