You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaed8.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b3 = -1.;
  485. static integer c__1 = 1;
  486. /* > \brief \b DLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original
  487. matrix is dense. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download DLAED8 + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed8.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed8.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed8.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE DLAED8( ICOMPQ, K, N, QSIZ, D, Q, LDQ, INDXQ, RHO, */
  506. /* CUTPNT, Z, DLAMDA, Q2, LDQ2, W, PERM, GIVPTR, */
  507. /* GIVCOL, GIVNUM, INDXP, INDX, INFO ) */
  508. /* INTEGER CUTPNT, GIVPTR, ICOMPQ, INFO, K, LDQ, LDQ2, N, */
  509. /* $ QSIZ */
  510. /* DOUBLE PRECISION RHO */
  511. /* INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ), */
  512. /* $ INDXQ( * ), PERM( * ) */
  513. /* DOUBLE PRECISION D( * ), DLAMDA( * ), GIVNUM( 2, * ), */
  514. /* $ Q( LDQ, * ), Q2( LDQ2, * ), W( * ), Z( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DLAED8 merges the two sets of eigenvalues together into a single */
  521. /* > sorted set. Then it tries to deflate the size of the problem. */
  522. /* > There are two ways in which deflation can occur: when two or more */
  523. /* > eigenvalues are close together or if there is a tiny element in the */
  524. /* > Z vector. For each such occurrence the order of the related secular */
  525. /* > equation problem is reduced by one. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] ICOMPQ */
  530. /* > \verbatim */
  531. /* > ICOMPQ is INTEGER */
  532. /* > = 0: Compute eigenvalues only. */
  533. /* > = 1: Compute eigenvectors of original dense symmetric matrix */
  534. /* > also. On entry, Q contains the orthogonal matrix used */
  535. /* > to reduce the original matrix to tridiagonal form. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[out] K */
  539. /* > \verbatim */
  540. /* > K is INTEGER */
  541. /* > The number of non-deflated eigenvalues, and the order of the */
  542. /* > related secular equation. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] N */
  546. /* > \verbatim */
  547. /* > N is INTEGER */
  548. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] QSIZ */
  552. /* > \verbatim */
  553. /* > QSIZ is INTEGER */
  554. /* > The dimension of the orthogonal matrix used to reduce */
  555. /* > the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in,out] D */
  559. /* > \verbatim */
  560. /* > D is DOUBLE PRECISION array, dimension (N) */
  561. /* > On entry, the eigenvalues of the two submatrices to be */
  562. /* > combined. On exit, the trailing (N-K) updated eigenvalues */
  563. /* > (those which were deflated) sorted into increasing order. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in,out] Q */
  567. /* > \verbatim */
  568. /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
  569. /* > If ICOMPQ = 0, Q is not referenced. Otherwise, */
  570. /* > on entry, Q contains the eigenvectors of the partially solved */
  571. /* > system which has been previously updated in matrix */
  572. /* > multiplies with other partially solved eigensystems. */
  573. /* > On exit, Q contains the trailing (N-K) updated eigenvectors */
  574. /* > (those which were deflated) in its last N-K columns. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDQ */
  578. /* > \verbatim */
  579. /* > LDQ is INTEGER */
  580. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N). */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] INDXQ */
  584. /* > \verbatim */
  585. /* > INDXQ is INTEGER array, dimension (N) */
  586. /* > The permutation which separately sorts the two sub-problems */
  587. /* > in D into ascending order. Note that elements in the second */
  588. /* > half of this permutation must first have CUTPNT added to */
  589. /* > their values in order to be accurate. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in,out] RHO */
  593. /* > \verbatim */
  594. /* > RHO is DOUBLE PRECISION */
  595. /* > On entry, the off-diagonal element associated with the rank-1 */
  596. /* > cut which originally split the two submatrices which are now */
  597. /* > being recombined. */
  598. /* > On exit, RHO has been modified to the value required by */
  599. /* > DLAED3. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] CUTPNT */
  603. /* > \verbatim */
  604. /* > CUTPNT is INTEGER */
  605. /* > The location of the last eigenvalue in the leading */
  606. /* > sub-matrix. f2cmin(1,N) <= CUTPNT <= N. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] Z */
  610. /* > \verbatim */
  611. /* > Z is DOUBLE PRECISION array, dimension (N) */
  612. /* > On entry, Z contains the updating vector (the last row of */
  613. /* > the first sub-eigenvector matrix and the first row of the */
  614. /* > second sub-eigenvector matrix). */
  615. /* > On exit, the contents of Z are destroyed by the updating */
  616. /* > process. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] DLAMDA */
  620. /* > \verbatim */
  621. /* > DLAMDA is DOUBLE PRECISION array, dimension (N) */
  622. /* > A copy of the first K eigenvalues which will be used by */
  623. /* > DLAED3 to form the secular equation. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] Q2 */
  627. /* > \verbatim */
  628. /* > Q2 is DOUBLE PRECISION array, dimension (LDQ2,N) */
  629. /* > If ICOMPQ = 0, Q2 is not referenced. Otherwise, */
  630. /* > a copy of the first K eigenvectors which will be used by */
  631. /* > DLAED7 in a matrix multiply (DGEMM) to update the new */
  632. /* > eigenvectors. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LDQ2 */
  636. /* > \verbatim */
  637. /* > LDQ2 is INTEGER */
  638. /* > The leading dimension of the array Q2. LDQ2 >= f2cmax(1,N). */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] W */
  642. /* > \verbatim */
  643. /* > W is DOUBLE PRECISION array, dimension (N) */
  644. /* > The first k values of the final deflation-altered z-vector and */
  645. /* > will be passed to DLAED3. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] PERM */
  649. /* > \verbatim */
  650. /* > PERM is INTEGER array, dimension (N) */
  651. /* > The permutations (from deflation and sorting) to be applied */
  652. /* > to each eigenblock. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] GIVPTR */
  656. /* > \verbatim */
  657. /* > GIVPTR is INTEGER */
  658. /* > The number of Givens rotations which took place in this */
  659. /* > subproblem. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] GIVCOL */
  663. /* > \verbatim */
  664. /* > GIVCOL is INTEGER array, dimension (2, N) */
  665. /* > Each pair of numbers indicates a pair of columns to take place */
  666. /* > in a Givens rotation. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[out] GIVNUM */
  670. /* > \verbatim */
  671. /* > GIVNUM is DOUBLE PRECISION array, dimension (2, N) */
  672. /* > Each number indicates the S value to be used in the */
  673. /* > corresponding Givens rotation. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] INDXP */
  677. /* > \verbatim */
  678. /* > INDXP is INTEGER array, dimension (N) */
  679. /* > The permutation used to place deflated values of D at the end */
  680. /* > of the array. INDXP(1:K) points to the nondeflated D-values */
  681. /* > and INDXP(K+1:N) points to the deflated eigenvalues. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[out] INDX */
  685. /* > \verbatim */
  686. /* > INDX is INTEGER array, dimension (N) */
  687. /* > The permutation used to sort the contents of D into ascending */
  688. /* > order. */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[out] INFO */
  692. /* > \verbatim */
  693. /* > INFO is INTEGER */
  694. /* > = 0: successful exit. */
  695. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  696. /* > \endverbatim */
  697. /* Authors: */
  698. /* ======== */
  699. /* > \author Univ. of Tennessee */
  700. /* > \author Univ. of California Berkeley */
  701. /* > \author Univ. of Colorado Denver */
  702. /* > \author NAG Ltd. */
  703. /* > \date December 2016 */
  704. /* > \ingroup auxOTHERcomputational */
  705. /* > \par Contributors: */
  706. /* ================== */
  707. /* > */
  708. /* > Jeff Rutter, Computer Science Division, University of California */
  709. /* > at Berkeley, USA */
  710. /* ===================================================================== */
  711. /* Subroutine */ void dlaed8_(integer *icompq, integer *k, integer *n, integer
  712. *qsiz, doublereal *d__, doublereal *q, integer *ldq, integer *indxq,
  713. doublereal *rho, integer *cutpnt, doublereal *z__, doublereal *dlamda,
  714. doublereal *q2, integer *ldq2, doublereal *w, integer *perm, integer
  715. *givptr, integer *givcol, doublereal *givnum, integer *indxp, integer
  716. *indx, integer *info)
  717. {
  718. /* System generated locals */
  719. integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
  720. doublereal d__1;
  721. /* Local variables */
  722. integer jlam, imax, jmax;
  723. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  724. doublereal *, integer *, doublereal *, doublereal *);
  725. doublereal c__;
  726. integer i__, j;
  727. doublereal s, t;
  728. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  729. integer *), dcopy_(integer *, doublereal *, integer *, doublereal
  730. *, integer *);
  731. integer k2, n1, n2;
  732. extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
  733. integer jp;
  734. extern integer idamax_(integer *, doublereal *, integer *);
  735. extern /* Subroutine */ void dlamrg_(integer *, integer *, doublereal *,
  736. integer *, integer *, integer *), dlacpy_(char *, integer *,
  737. integer *, doublereal *, integer *, doublereal *, integer *);
  738. extern int xerbla_(char *, integer *, ftnlen);
  739. integer n1p1;
  740. doublereal eps, tau, tol;
  741. /* -- LAPACK computational routine (version 3.7.0) -- */
  742. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  743. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  744. /* December 2016 */
  745. /* ===================================================================== */
  746. /* Test the input parameters. */
  747. /* Parameter adjustments */
  748. --d__;
  749. q_dim1 = *ldq;
  750. q_offset = 1 + q_dim1 * 1;
  751. q -= q_offset;
  752. --indxq;
  753. --z__;
  754. --dlamda;
  755. q2_dim1 = *ldq2;
  756. q2_offset = 1 + q2_dim1 * 1;
  757. q2 -= q2_offset;
  758. --w;
  759. --perm;
  760. givcol -= 3;
  761. givnum -= 3;
  762. --indxp;
  763. --indx;
  764. /* Function Body */
  765. *info = 0;
  766. if (*icompq < 0 || *icompq > 1) {
  767. *info = -1;
  768. } else if (*n < 0) {
  769. *info = -3;
  770. } else if (*icompq == 1 && *qsiz < *n) {
  771. *info = -4;
  772. } else if (*ldq < f2cmax(1,*n)) {
  773. *info = -7;
  774. } else if (*cutpnt < f2cmin(1,*n) || *cutpnt > *n) {
  775. *info = -10;
  776. } else if (*ldq2 < f2cmax(1,*n)) {
  777. *info = -14;
  778. }
  779. if (*info != 0) {
  780. i__1 = -(*info);
  781. xerbla_("DLAED8", &i__1, (ftnlen)6);
  782. return;
  783. }
  784. /* Need to initialize GIVPTR to O here in case of quick exit */
  785. /* to prevent an unspecified code behavior (usually sigfault) */
  786. /* when IWORK array on entry to *stedc is not zeroed */
  787. /* (or at least some IWORK entries which used in *laed7 for GIVPTR). */
  788. *givptr = 0;
  789. /* Quick return if possible */
  790. if (*n == 0) {
  791. return;
  792. }
  793. n1 = *cutpnt;
  794. n2 = *n - n1;
  795. n1p1 = n1 + 1;
  796. if (*rho < 0.) {
  797. dscal_(&n2, &c_b3, &z__[n1p1], &c__1);
  798. }
  799. /* Normalize z so that norm(z) = 1 */
  800. t = 1. / sqrt(2.);
  801. i__1 = *n;
  802. for (j = 1; j <= i__1; ++j) {
  803. indx[j] = j;
  804. /* L10: */
  805. }
  806. dscal_(n, &t, &z__[1], &c__1);
  807. *rho = (d__1 = *rho * 2., abs(d__1));
  808. /* Sort the eigenvalues into increasing order */
  809. i__1 = *n;
  810. for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
  811. indxq[i__] += *cutpnt;
  812. /* L20: */
  813. }
  814. i__1 = *n;
  815. for (i__ = 1; i__ <= i__1; ++i__) {
  816. dlamda[i__] = d__[indxq[i__]];
  817. w[i__] = z__[indxq[i__]];
  818. /* L30: */
  819. }
  820. i__ = 1;
  821. j = *cutpnt + 1;
  822. dlamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
  823. i__1 = *n;
  824. for (i__ = 1; i__ <= i__1; ++i__) {
  825. d__[i__] = dlamda[indx[i__]];
  826. z__[i__] = w[indx[i__]];
  827. /* L40: */
  828. }
  829. /* Calculate the allowable deflation tolerance */
  830. imax = idamax_(n, &z__[1], &c__1);
  831. jmax = idamax_(n, &d__[1], &c__1);
  832. eps = dlamch_("Epsilon");
  833. tol = eps * 8. * (d__1 = d__[jmax], abs(d__1));
  834. /* If the rank-1 modifier is small enough, no more needs to be done */
  835. /* except to reorganize Q so that its columns correspond with the */
  836. /* elements in D. */
  837. if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
  838. *k = 0;
  839. if (*icompq == 0) {
  840. i__1 = *n;
  841. for (j = 1; j <= i__1; ++j) {
  842. perm[j] = indxq[indx[j]];
  843. /* L50: */
  844. }
  845. } else {
  846. i__1 = *n;
  847. for (j = 1; j <= i__1; ++j) {
  848. perm[j] = indxq[indx[j]];
  849. dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1
  850. + 1], &c__1);
  851. /* L60: */
  852. }
  853. dlacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
  854. }
  855. return;
  856. }
  857. /* If there are multiple eigenvalues then the problem deflates. Here */
  858. /* the number of equal eigenvalues are found. As each equal */
  859. /* eigenvalue is found, an elementary reflector is computed to rotate */
  860. /* the corresponding eigensubspace so that the corresponding */
  861. /* components of Z are zero in this new basis. */
  862. *k = 0;
  863. k2 = *n + 1;
  864. i__1 = *n;
  865. for (j = 1; j <= i__1; ++j) {
  866. if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
  867. /* Deflate due to small z component. */
  868. --k2;
  869. indxp[k2] = j;
  870. if (j == *n) {
  871. goto L110;
  872. }
  873. } else {
  874. jlam = j;
  875. goto L80;
  876. }
  877. /* L70: */
  878. }
  879. L80:
  880. ++j;
  881. if (j > *n) {
  882. goto L100;
  883. }
  884. if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
  885. /* Deflate due to small z component. */
  886. --k2;
  887. indxp[k2] = j;
  888. } else {
  889. /* Check if eigenvalues are close enough to allow deflation. */
  890. s = z__[jlam];
  891. c__ = z__[j];
  892. /* Find sqrt(a**2+b**2) without overflow or */
  893. /* destructive underflow. */
  894. tau = dlapy2_(&c__, &s);
  895. t = d__[j] - d__[jlam];
  896. c__ /= tau;
  897. s = -s / tau;
  898. if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
  899. /* Deflation is possible. */
  900. z__[j] = tau;
  901. z__[jlam] = 0.;
  902. /* Record the appropriate Givens rotation */
  903. ++(*givptr);
  904. givcol[(*givptr << 1) + 1] = indxq[indx[jlam]];
  905. givcol[(*givptr << 1) + 2] = indxq[indx[j]];
  906. givnum[(*givptr << 1) + 1] = c__;
  907. givnum[(*givptr << 1) + 2] = s;
  908. if (*icompq == 1) {
  909. drot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[
  910. indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
  911. }
  912. t = d__[jlam] * c__ * c__ + d__[j] * s * s;
  913. d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
  914. d__[jlam] = t;
  915. --k2;
  916. i__ = 1;
  917. L90:
  918. if (k2 + i__ <= *n) {
  919. if (d__[jlam] < d__[indxp[k2 + i__]]) {
  920. indxp[k2 + i__ - 1] = indxp[k2 + i__];
  921. indxp[k2 + i__] = jlam;
  922. ++i__;
  923. goto L90;
  924. } else {
  925. indxp[k2 + i__ - 1] = jlam;
  926. }
  927. } else {
  928. indxp[k2 + i__ - 1] = jlam;
  929. }
  930. jlam = j;
  931. } else {
  932. ++(*k);
  933. w[*k] = z__[jlam];
  934. dlamda[*k] = d__[jlam];
  935. indxp[*k] = jlam;
  936. jlam = j;
  937. }
  938. }
  939. goto L80;
  940. L100:
  941. /* Record the last eigenvalue. */
  942. ++(*k);
  943. w[*k] = z__[jlam];
  944. dlamda[*k] = d__[jlam];
  945. indxp[*k] = jlam;
  946. L110:
  947. /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
  948. /* and Q2 respectively. The eigenvalues/vectors which were not */
  949. /* deflated go into the first K slots of DLAMDA and Q2 respectively, */
  950. /* while those which were deflated go into the last N - K slots. */
  951. if (*icompq == 0) {
  952. i__1 = *n;
  953. for (j = 1; j <= i__1; ++j) {
  954. jp = indxp[j];
  955. dlamda[j] = d__[jp];
  956. perm[j] = indxq[indx[jp]];
  957. /* L120: */
  958. }
  959. } else {
  960. i__1 = *n;
  961. for (j = 1; j <= i__1; ++j) {
  962. jp = indxp[j];
  963. dlamda[j] = d__[jp];
  964. perm[j] = indxq[indx[jp]];
  965. dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
  966. , &c__1);
  967. /* L130: */
  968. }
  969. }
  970. /* The deflated eigenvalues and their corresponding vectors go back */
  971. /* into the last N - K slots of D and Q respectively. */
  972. if (*k < *n) {
  973. if (*icompq == 0) {
  974. i__1 = *n - *k;
  975. dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
  976. } else {
  977. i__1 = *n - *k;
  978. dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
  979. i__1 = *n - *k;
  980. dlacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*
  981. k + 1) * q_dim1 + 1], ldq);
  982. }
  983. }
  984. return;
  985. /* End of DLAED8 */
  986. } /* dlaed8_ */