You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqr5.c 62 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c__2 = 2;
  487. static integer c__1 = 1;
  488. static integer c__3 = 3;
  489. /* > \brief \b CLAQR5 performs a single small-bulge multi-shift QR sweep. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLAQR5 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr5.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr5.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr5.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S, */
  508. /* H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, */
  509. /* WV, LDWV, NH, WH, LDWH ) */
  510. /* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, */
  511. /* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV */
  512. /* LOGICAL WANTT, WANTZ */
  513. /* COMPLEX H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ), */
  514. /* $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > CLAQR5 called by CLAQR0 performs a */
  521. /* > single small-bulge multi-shift QR sweep. */
  522. /* > \endverbatim */
  523. /* Arguments: */
  524. /* ========== */
  525. /* > \param[in] WANTT */
  526. /* > \verbatim */
  527. /* > WANTT is LOGICAL */
  528. /* > WANTT = .true. if the triangular Schur factor */
  529. /* > is being computed. WANTT is set to .false. otherwise. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] WANTZ */
  533. /* > \verbatim */
  534. /* > WANTZ is LOGICAL */
  535. /* > WANTZ = .true. if the unitary Schur factor is being */
  536. /* > computed. WANTZ is set to .false. otherwise. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] KACC22 */
  540. /* > \verbatim */
  541. /* > KACC22 is INTEGER with value 0, 1, or 2. */
  542. /* > Specifies the computation mode of far-from-diagonal */
  543. /* > orthogonal updates. */
  544. /* > = 0: CLAQR5 does not accumulate reflections and does not */
  545. /* > use matrix-matrix multiply to update far-from-diagonal */
  546. /* > matrix entries. */
  547. /* > = 1: CLAQR5 accumulates reflections and uses matrix-matrix */
  548. /* > multiply to update the far-from-diagonal matrix entries. */
  549. /* > = 2: Same as KACC22 = 1. This option used to enable exploiting */
  550. /* > the 2-by-2 structure during matrix multiplications, but */
  551. /* > this is no longer supported. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] N */
  555. /* > \verbatim */
  556. /* > N is INTEGER */
  557. /* > N is the order of the Hessenberg matrix H upon which this */
  558. /* > subroutine operates. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] KTOP */
  562. /* > \verbatim */
  563. /* > KTOP is INTEGER */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] KBOT */
  567. /* > \verbatim */
  568. /* > KBOT is INTEGER */
  569. /* > These are the first and last rows and columns of an */
  570. /* > isolated diagonal block upon which the QR sweep is to be */
  571. /* > applied. It is assumed without a check that */
  572. /* > either KTOP = 1 or H(KTOP,KTOP-1) = 0 */
  573. /* > and */
  574. /* > either KBOT = N or H(KBOT+1,KBOT) = 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] NSHFTS */
  578. /* > \verbatim */
  579. /* > NSHFTS is INTEGER */
  580. /* > NSHFTS gives the number of simultaneous shifts. NSHFTS */
  581. /* > must be positive and even. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] S */
  585. /* > \verbatim */
  586. /* > S is COMPLEX array, dimension (NSHFTS) */
  587. /* > S contains the shifts of origin that define the multi- */
  588. /* > shift QR sweep. On output S may be reordered. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] H */
  592. /* > \verbatim */
  593. /* > H is COMPLEX array, dimension (LDH,N) */
  594. /* > On input H contains a Hessenberg matrix. On output a */
  595. /* > multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
  596. /* > to the isolated diagonal block in rows and columns KTOP */
  597. /* > through KBOT. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDH */
  601. /* > \verbatim */
  602. /* > LDH is INTEGER */
  603. /* > LDH is the leading dimension of H just as declared in the */
  604. /* > calling procedure. LDH >= MAX(1,N). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] ILOZ */
  608. /* > \verbatim */
  609. /* > ILOZ is INTEGER */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] IHIZ */
  613. /* > \verbatim */
  614. /* > IHIZ is INTEGER */
  615. /* > Specify the rows of Z to which transformations must be */
  616. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in,out] Z */
  620. /* > \verbatim */
  621. /* > Z is COMPLEX array, dimension (LDZ,IHIZ) */
  622. /* > If WANTZ = .TRUE., then the QR Sweep unitary */
  623. /* > similarity transformation is accumulated into */
  624. /* > Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  625. /* > If WANTZ = .FALSE., then Z is unreferenced. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LDZ */
  629. /* > \verbatim */
  630. /* > LDZ is INTEGER */
  631. /* > LDA is the leading dimension of Z just as declared in */
  632. /* > the calling procedure. LDZ >= N. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] V */
  636. /* > \verbatim */
  637. /* > V is COMPLEX array, dimension (LDV,NSHFTS/2) */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] LDV */
  641. /* > \verbatim */
  642. /* > LDV is INTEGER */
  643. /* > LDV is the leading dimension of V as declared in the */
  644. /* > calling procedure. LDV >= 3. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] U */
  648. /* > \verbatim */
  649. /* > U is COMPLEX array, dimension (LDU,2*NSHFTS) */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LDU */
  653. /* > \verbatim */
  654. /* > LDU is INTEGER */
  655. /* > LDU is the leading dimension of U just as declared in the */
  656. /* > in the calling subroutine. LDU >= 2*NSHFTS. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[in] NV */
  660. /* > \verbatim */
  661. /* > NV is INTEGER */
  662. /* > NV is the number of rows in WV agailable for workspace. */
  663. /* > NV >= 1. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] WV */
  667. /* > \verbatim */
  668. /* > WV is COMPLEX array, dimension (LDWV,2*NSHFTS) */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in] LDWV */
  672. /* > \verbatim */
  673. /* > LDWV is INTEGER */
  674. /* > LDWV is the leading dimension of WV as declared in the */
  675. /* > in the calling subroutine. LDWV >= NV. */
  676. /* > \endverbatim */
  677. /* > \param[in] NH */
  678. /* > \verbatim */
  679. /* > NH is INTEGER */
  680. /* > NH is the number of columns in array WH available for */
  681. /* > workspace. NH >= 1. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[out] WH */
  685. /* > \verbatim */
  686. /* > WH is COMPLEX array, dimension (LDWH,NH) */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[in] LDWH */
  690. /* > \verbatim */
  691. /* > LDWH is INTEGER */
  692. /* > Leading dimension of WH just as declared in the */
  693. /* > calling procedure. LDWH >= 2*NSHFTS. */
  694. /* > \endverbatim */
  695. /* > */
  696. /* Authors: */
  697. /* ======== */
  698. /* > \author Univ. of Tennessee */
  699. /* > \author Univ. of California Berkeley */
  700. /* > \author Univ. of Colorado Denver */
  701. /* > \author NAG Ltd. */
  702. /* > \date January 2021 */
  703. /* > \ingroup complexOTHERauxiliary */
  704. /* > \par Contributors: */
  705. /* ================== */
  706. /* > */
  707. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  708. /* > University of Kansas, USA */
  709. /* > */
  710. /* > Lars Karlsson, Daniel Kressner, and Bruno Lang */
  711. /* > */
  712. /* > Thijs Steel, Department of Computer science, */
  713. /* > KU Leuven, Belgium */
  714. /* > \par References: */
  715. /* ================ */
  716. /* > */
  717. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  718. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  719. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  720. /* > 929--947, 2002. */
  721. /* > */
  722. /* > Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed */
  723. /* > chains of bulges in multishift QR algorithms. */
  724. /* > ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). */
  725. /* > */
  726. /* ===================================================================== */
  727. /* Subroutine */ void claqr5_(logical *wantt, logical *wantz, integer *kacc22,
  728. integer *n, integer *ktop, integer *kbot, integer *nshfts, complex *s,
  729. complex *h__, integer *ldh, integer *iloz, integer *ihiz, complex *
  730. z__, integer *ldz, complex *v, integer *ldv, complex *u, integer *ldu,
  731. integer *nv, complex *wv, integer *ldwv, integer *nh, complex *wh,
  732. integer *ldwh)
  733. {
  734. /* System generated locals */
  735. integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1,
  736. wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
  737. i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11;
  738. real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
  739. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8;
  740. /* Local variables */
  741. complex beta;
  742. logical bmp22;
  743. integer jcol, jlen, jbot, mbot, jtop, jrow, mtop, j, k, m;
  744. complex alpha;
  745. logical accum;
  746. extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
  747. integer *, complex *, complex *, integer *, complex *, integer *,
  748. complex *, complex *, integer *);
  749. integer ndcol, incol, krcol, nbmps, i2, k1, i4;
  750. extern /* Subroutine */ void claqr1_(integer *, complex *, integer *,
  751. complex *, complex *, complex *);
  752. real h11, h12, h21, h22;
  753. integer m22;
  754. extern /* Subroutine */ void slabad_(real *, real *), clarfg_(integer *,
  755. complex *, complex *, integer *, complex *);
  756. integer ns, nu;
  757. extern real slamch_(char *);
  758. complex vt[3];
  759. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  760. *, integer *, complex *, integer *), claset_(char *,
  761. integer *, integer *, complex *, complex *, complex *, integer *);
  762. real safmin, safmax;
  763. complex refsum;
  764. real smlnum, scl;
  765. integer kdu, kms;
  766. real ulp;
  767. real tst1, tst2;
  768. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  769. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  770. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  771. /* June 2016 */
  772. /* ================================================================ */
  773. /* ==== If there are no shifts, then there is nothing to do. ==== */
  774. /* Parameter adjustments */
  775. --s;
  776. h_dim1 = *ldh;
  777. h_offset = 1 + h_dim1 * 1;
  778. h__ -= h_offset;
  779. z_dim1 = *ldz;
  780. z_offset = 1 + z_dim1 * 1;
  781. z__ -= z_offset;
  782. v_dim1 = *ldv;
  783. v_offset = 1 + v_dim1 * 1;
  784. v -= v_offset;
  785. u_dim1 = *ldu;
  786. u_offset = 1 + u_dim1 * 1;
  787. u -= u_offset;
  788. wv_dim1 = *ldwv;
  789. wv_offset = 1 + wv_dim1 * 1;
  790. wv -= wv_offset;
  791. wh_dim1 = *ldwh;
  792. wh_offset = 1 + wh_dim1 * 1;
  793. wh -= wh_offset;
  794. /* Function Body */
  795. if (*nshfts < 2) {
  796. return;
  797. }
  798. /* ==== If the active block is empty or 1-by-1, then there */
  799. /* . is nothing to do. ==== */
  800. if (*ktop >= *kbot) {
  801. return;
  802. }
  803. /* ==== NSHFTS is supposed to be even, but if it is odd, */
  804. /* . then simply reduce it by one. ==== */
  805. ns = *nshfts - *nshfts % 2;
  806. /* ==== Machine constants for deflation ==== */
  807. safmin = slamch_("SAFE MINIMUM");
  808. safmax = 1.f / safmin;
  809. slabad_(&safmin, &safmax);
  810. ulp = slamch_("PRECISION");
  811. smlnum = safmin * ((real) (*n) / ulp);
  812. /* ==== Use accumulated reflections to update far-from-diagonal */
  813. /* . entries ? ==== */
  814. accum = *kacc22 == 1 || *kacc22 == 2;
  815. /* ==== clear trash ==== */
  816. if (*ktop + 2 <= *kbot) {
  817. i__1 = *ktop + 2 + *ktop * h_dim1;
  818. h__[i__1].r = 0.f, h__[i__1].i = 0.f;
  819. }
  820. /* ==== NBMPS = number of 2-shift bulges in the chain ==== */
  821. nbmps = ns / 2;
  822. /* ==== KDU = width of slab ==== */
  823. kdu = nbmps << 2;
  824. /* ==== Create and chase chains of NBMPS bulges ==== */
  825. i__1 = *kbot - 2;
  826. i__2 = nbmps << 1;
  827. for (incol = *ktop - (nbmps << 1) + 1; i__2 < 0 ? incol >= i__1 : incol <=
  828. i__1; incol += i__2) {
  829. /* JTOP = Index from which updates from the right start. */
  830. if (accum) {
  831. jtop = f2cmax(*ktop,incol);
  832. } else if (*wantt) {
  833. jtop = 1;
  834. } else {
  835. jtop = *ktop;
  836. }
  837. ndcol = incol + kdu;
  838. if (accum) {
  839. claset_("ALL", &kdu, &kdu, &c_b1, &c_b2, &u[u_offset], ldu);
  840. }
  841. /* ==== Near-the-diagonal bulge chase. The following loop */
  842. /* . performs the near-the-diagonal part of a small bulge */
  843. /* . multi-shift QR sweep. Each 4*NBMPS column diagonal */
  844. /* . chunk extends from column INCOL to column NDCOL */
  845. /* . (including both column INCOL and column NDCOL). The */
  846. /* . following loop chases a 2*NBMPS+1 column long chain of */
  847. /* . NBMPS bulges 2*NBMPS columns to the right. (INCOL */
  848. /* . may be less than KTOP and and NDCOL may be greater than */
  849. /* . KBOT indicating phantom columns from which to chase */
  850. /* . bulges before they are actually introduced or to which */
  851. /* . to chase bulges beyond column KBOT.) ==== */
  852. /* Computing MIN */
  853. i__4 = incol + (nbmps << 1) - 1, i__5 = *kbot - 2;
  854. i__3 = f2cmin(i__4,i__5);
  855. for (krcol = incol; krcol <= i__3; ++krcol) {
  856. /* ==== Bulges number MTOP to MBOT are active double implicit */
  857. /* . shift bulges. There may or may not also be small */
  858. /* . 2-by-2 bulge, if there is room. The inactive bulges */
  859. /* . (if any) must wait until the active bulges have moved */
  860. /* . down the diagonal to make room. The phantom matrix */
  861. /* . paradigm described above helps keep track. ==== */
  862. /* Computing MAX */
  863. i__4 = 1, i__5 = (*ktop - krcol) / 2 + 1;
  864. mtop = f2cmax(i__4,i__5);
  865. /* Computing MIN */
  866. i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 2;
  867. mbot = f2cmin(i__4,i__5);
  868. m22 = mbot + 1;
  869. bmp22 = mbot < nbmps && krcol + (m22 - 1 << 1) == *kbot - 2;
  870. /* ==== Generate reflections to chase the chain right */
  871. /* . one column. (The minimum value of K is KTOP-1.) ==== */
  872. if (bmp22) {
  873. /* ==== Special case: 2-by-2 reflection at bottom treated */
  874. /* . separately ==== */
  875. k = krcol + (m22 - 1 << 1);
  876. if (k == *ktop - 1) {
  877. claqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &s[(
  878. m22 << 1) - 1], &s[m22 * 2], &v[m22 * v_dim1 + 1])
  879. ;
  880. i__4 = m22 * v_dim1 + 1;
  881. beta.r = v[i__4].r, beta.i = v[i__4].i;
  882. clarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
  883. * v_dim1 + 1]);
  884. } else {
  885. i__4 = k + 1 + k * h_dim1;
  886. beta.r = h__[i__4].r, beta.i = h__[i__4].i;
  887. i__4 = m22 * v_dim1 + 2;
  888. i__5 = k + 2 + k * h_dim1;
  889. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  890. clarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
  891. * v_dim1 + 1]);
  892. i__4 = k + 1 + k * h_dim1;
  893. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  894. i__4 = k + 2 + k * h_dim1;
  895. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  896. }
  897. /* ==== Perform update from right within */
  898. /* . computational window. ==== */
  899. /* Computing MIN */
  900. i__5 = *kbot, i__6 = k + 3;
  901. i__4 = f2cmin(i__5,i__6);
  902. for (j = jtop; j <= i__4; ++j) {
  903. i__5 = m22 * v_dim1 + 1;
  904. i__6 = j + (k + 1) * h_dim1;
  905. i__7 = m22 * v_dim1 + 2;
  906. i__8 = j + (k + 2) * h_dim1;
  907. q__3.r = v[i__7].r * h__[i__8].r - v[i__7].i * h__[i__8]
  908. .i, q__3.i = v[i__7].r * h__[i__8].i + v[i__7].i *
  909. h__[i__8].r;
  910. q__2.r = h__[i__6].r + q__3.r, q__2.i = h__[i__6].i +
  911. q__3.i;
  912. q__1.r = v[i__5].r * q__2.r - v[i__5].i * q__2.i, q__1.i =
  913. v[i__5].r * q__2.i + v[i__5].i * q__2.r;
  914. refsum.r = q__1.r, refsum.i = q__1.i;
  915. i__5 = j + (k + 1) * h_dim1;
  916. i__6 = j + (k + 1) * h_dim1;
  917. q__1.r = h__[i__6].r - refsum.r, q__1.i = h__[i__6].i -
  918. refsum.i;
  919. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  920. i__5 = j + (k + 2) * h_dim1;
  921. i__6 = j + (k + 2) * h_dim1;
  922. r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
  923. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
  924. refsum.r * q__3.i + refsum.i * q__3.r;
  925. q__1.r = h__[i__6].r - q__2.r, q__1.i = h__[i__6].i -
  926. q__2.i;
  927. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  928. /* L30: */
  929. }
  930. /* ==== Perform update from left within */
  931. /* . computational window. ==== */
  932. if (accum) {
  933. jbot = f2cmin(ndcol,*kbot);
  934. } else if (*wantt) {
  935. jbot = *n;
  936. } else {
  937. jbot = *kbot;
  938. }
  939. i__4 = jbot;
  940. for (j = k + 1; j <= i__4; ++j) {
  941. r_cnjg(&q__2, &v[m22 * v_dim1 + 1]);
  942. i__5 = k + 1 + j * h_dim1;
  943. r_cnjg(&q__5, &v[m22 * v_dim1 + 2]);
  944. i__6 = k + 2 + j * h_dim1;
  945. q__4.r = q__5.r * h__[i__6].r - q__5.i * h__[i__6].i,
  946. q__4.i = q__5.r * h__[i__6].i + q__5.i * h__[i__6]
  947. .r;
  948. q__3.r = h__[i__5].r + q__4.r, q__3.i = h__[i__5].i +
  949. q__4.i;
  950. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  951. q__2.r * q__3.i + q__2.i * q__3.r;
  952. refsum.r = q__1.r, refsum.i = q__1.i;
  953. i__5 = k + 1 + j * h_dim1;
  954. i__6 = k + 1 + j * h_dim1;
  955. q__1.r = h__[i__6].r - refsum.r, q__1.i = h__[i__6].i -
  956. refsum.i;
  957. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  958. i__5 = k + 2 + j * h_dim1;
  959. i__6 = k + 2 + j * h_dim1;
  960. i__7 = m22 * v_dim1 + 2;
  961. q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i,
  962. q__2.i = refsum.r * v[i__7].i + refsum.i * v[i__7]
  963. .r;
  964. q__1.r = h__[i__6].r - q__2.r, q__1.i = h__[i__6].i -
  965. q__2.i;
  966. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  967. /* L40: */
  968. }
  969. /* ==== The following convergence test requires that */
  970. /* . the tradition small-compared-to-nearby-diagonals */
  971. /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
  972. /* . criteria both be satisfied. The latter improves */
  973. /* . accuracy in some examples. Falling back on an */
  974. /* . alternate convergence criterion when TST1 or TST2 */
  975. /* . is zero (as done here) is traditional but probably */
  976. /* . unnecessary. ==== */
  977. if (k >= *ktop) {
  978. i__4 = k + 1 + k * h_dim1;
  979. if (h__[i__4].r != 0.f || h__[i__4].i != 0.f) {
  980. i__4 = k + k * h_dim1;
  981. i__5 = k + 1 + (k + 1) * h_dim1;
  982. tst1 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  983. r_imag(&h__[k + k * h_dim1]), abs(r__2)) + ((
  984. r__3 = h__[i__5].r, abs(r__3)) + (r__4 =
  985. r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  986. r__4)));
  987. if (tst1 == 0.f) {
  988. if (k >= *ktop + 1) {
  989. i__4 = k + (k - 1) * h_dim1;
  990. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  991. r__2 = r_imag(&h__[k + (k - 1) *
  992. h_dim1]), abs(r__2));
  993. }
  994. if (k >= *ktop + 2) {
  995. i__4 = k + (k - 2) * h_dim1;
  996. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  997. r__2 = r_imag(&h__[k + (k - 2) *
  998. h_dim1]), abs(r__2));
  999. }
  1000. if (k >= *ktop + 3) {
  1001. i__4 = k + (k - 3) * h_dim1;
  1002. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  1003. r__2 = r_imag(&h__[k + (k - 3) *
  1004. h_dim1]), abs(r__2));
  1005. }
  1006. if (k <= *kbot - 2) {
  1007. i__4 = k + 2 + (k + 1) * h_dim1;
  1008. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  1009. r__2 = r_imag(&h__[k + 2 + (k + 1) *
  1010. h_dim1]), abs(r__2));
  1011. }
  1012. if (k <= *kbot - 3) {
  1013. i__4 = k + 3 + (k + 1) * h_dim1;
  1014. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  1015. r__2 = r_imag(&h__[k + 3 + (k + 1) *
  1016. h_dim1]), abs(r__2));
  1017. }
  1018. if (k <= *kbot - 4) {
  1019. i__4 = k + 4 + (k + 1) * h_dim1;
  1020. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
  1021. r__2 = r_imag(&h__[k + 4 + (k + 1) *
  1022. h_dim1]), abs(r__2));
  1023. }
  1024. }
  1025. i__4 = k + 1 + k * h_dim1;
  1026. /* Computing MAX */
  1027. r__3 = smlnum, r__4 = ulp * tst1;
  1028. if ((r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&
  1029. h__[k + 1 + k * h_dim1]), abs(r__2)) <= f2cmax(
  1030. r__3,r__4)) {
  1031. /* Computing MAX */
  1032. i__4 = k + 1 + k * h_dim1;
  1033. i__5 = k + (k + 1) * h_dim1;
  1034. r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1035. r_imag(&h__[k + 1 + k * h_dim1]), abs(
  1036. r__2)), r__6 = (r__3 = h__[i__5].r, abs(
  1037. r__3)) + (r__4 = r_imag(&h__[k + (k + 1) *
  1038. h_dim1]), abs(r__4));
  1039. h12 = f2cmax(r__5,r__6);
  1040. /* Computing MIN */
  1041. i__4 = k + 1 + k * h_dim1;
  1042. i__5 = k + (k + 1) * h_dim1;
  1043. r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1044. r_imag(&h__[k + 1 + k * h_dim1]), abs(
  1045. r__2)), r__6 = (r__3 = h__[i__5].r, abs(
  1046. r__3)) + (r__4 = r_imag(&h__[k + (k + 1) *
  1047. h_dim1]), abs(r__4));
  1048. h21 = f2cmin(r__5,r__6);
  1049. i__4 = k + k * h_dim1;
  1050. i__5 = k + 1 + (k + 1) * h_dim1;
  1051. q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[
  1052. i__4].i - h__[i__5].i;
  1053. q__1.r = q__2.r, q__1.i = q__2.i;
  1054. /* Computing MAX */
  1055. i__6 = k + 1 + (k + 1) * h_dim1;
  1056. r__5 = (r__1 = h__[i__6].r, abs(r__1)) + (r__2 =
  1057. r_imag(&h__[k + 1 + (k + 1) * h_dim1]),
  1058. abs(r__2)), r__6 = (r__3 = q__1.r, abs(
  1059. r__3)) + (r__4 = r_imag(&q__1), abs(r__4))
  1060. ;
  1061. h11 = f2cmax(r__5,r__6);
  1062. i__4 = k + k * h_dim1;
  1063. i__5 = k + 1 + (k + 1) * h_dim1;
  1064. q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[
  1065. i__4].i - h__[i__5].i;
  1066. q__1.r = q__2.r, q__1.i = q__2.i;
  1067. /* Computing MIN */
  1068. i__6 = k + 1 + (k + 1) * h_dim1;
  1069. r__5 = (r__1 = h__[i__6].r, abs(r__1)) + (r__2 =
  1070. r_imag(&h__[k + 1 + (k + 1) * h_dim1]),
  1071. abs(r__2)), r__6 = (r__3 = q__1.r, abs(
  1072. r__3)) + (r__4 = r_imag(&q__1), abs(r__4))
  1073. ;
  1074. h22 = f2cmin(r__5,r__6);
  1075. scl = h11 + h12;
  1076. tst2 = h22 * (h11 / scl);
  1077. /* Computing MAX */
  1078. r__1 = smlnum, r__2 = ulp * tst2;
  1079. if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,
  1080. r__2)) {
  1081. i__4 = k + 1 + k * h_dim1;
  1082. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1083. }
  1084. }
  1085. }
  1086. }
  1087. /* ==== Accumulate orthogonal transformations. ==== */
  1088. if (accum) {
  1089. kms = k - incol;
  1090. /* Computing MAX */
  1091. i__4 = 1, i__5 = *ktop - incol;
  1092. i__6 = kdu;
  1093. for (j = f2cmax(i__4,i__5); j <= i__6; ++j) {
  1094. i__4 = m22 * v_dim1 + 1;
  1095. i__5 = j + (kms + 1) * u_dim1;
  1096. i__7 = m22 * v_dim1 + 2;
  1097. i__8 = j + (kms + 2) * u_dim1;
  1098. q__3.r = v[i__7].r * u[i__8].r - v[i__7].i * u[i__8]
  1099. .i, q__3.i = v[i__7].r * u[i__8].i + v[i__7]
  1100. .i * u[i__8].r;
  1101. q__2.r = u[i__5].r + q__3.r, q__2.i = u[i__5].i +
  1102. q__3.i;
  1103. q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
  1104. q__1.i = v[i__4].r * q__2.i + v[i__4].i *
  1105. q__2.r;
  1106. refsum.r = q__1.r, refsum.i = q__1.i;
  1107. i__4 = j + (kms + 1) * u_dim1;
  1108. i__5 = j + (kms + 1) * u_dim1;
  1109. q__1.r = u[i__5].r - refsum.r, q__1.i = u[i__5].i -
  1110. refsum.i;
  1111. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1112. i__4 = j + (kms + 2) * u_dim1;
  1113. i__5 = j + (kms + 2) * u_dim1;
  1114. r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
  1115. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1116. q__2.i = refsum.r * q__3.i + refsum.i *
  1117. q__3.r;
  1118. q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
  1119. q__2.i;
  1120. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1121. /* L50: */
  1122. }
  1123. } else if (*wantz) {
  1124. i__6 = *ihiz;
  1125. for (j = *iloz; j <= i__6; ++j) {
  1126. i__4 = m22 * v_dim1 + 1;
  1127. i__5 = j + (k + 1) * z_dim1;
  1128. i__7 = m22 * v_dim1 + 2;
  1129. i__8 = j + (k + 2) * z_dim1;
  1130. q__3.r = v[i__7].r * z__[i__8].r - v[i__7].i * z__[
  1131. i__8].i, q__3.i = v[i__7].r * z__[i__8].i + v[
  1132. i__7].i * z__[i__8].r;
  1133. q__2.r = z__[i__5].r + q__3.r, q__2.i = z__[i__5].i +
  1134. q__3.i;
  1135. q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
  1136. q__1.i = v[i__4].r * q__2.i + v[i__4].i *
  1137. q__2.r;
  1138. refsum.r = q__1.r, refsum.i = q__1.i;
  1139. i__4 = j + (k + 1) * z_dim1;
  1140. i__5 = j + (k + 1) * z_dim1;
  1141. q__1.r = z__[i__5].r - refsum.r, q__1.i = z__[i__5].i
  1142. - refsum.i;
  1143. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1144. i__4 = j + (k + 2) * z_dim1;
  1145. i__5 = j + (k + 2) * z_dim1;
  1146. r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
  1147. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1148. q__2.i = refsum.r * q__3.i + refsum.i *
  1149. q__3.r;
  1150. q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
  1151. q__2.i;
  1152. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1153. /* L60: */
  1154. }
  1155. }
  1156. }
  1157. /* ==== Normal case: Chain of 3-by-3 reflections ==== */
  1158. i__6 = mtop;
  1159. for (m = mbot; m >= i__6; --m) {
  1160. k = krcol + (m - 1 << 1);
  1161. if (k == *ktop - 1) {
  1162. claqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &s[(m <<
  1163. 1) - 1], &s[m * 2], &v[m * v_dim1 + 1]);
  1164. i__4 = m * v_dim1 + 1;
  1165. alpha.r = v[i__4].r, alpha.i = v[i__4].i;
  1166. clarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m *
  1167. v_dim1 + 1]);
  1168. } else {
  1169. /* ==== Perform delayed transformation of row below */
  1170. /* . Mth bulge. Exploit fact that first two elements */
  1171. /* . of row are actually zero. ==== */
  1172. i__4 = m * v_dim1 + 1;
  1173. i__5 = m * v_dim1 + 3;
  1174. q__2.r = v[i__4].r * v[i__5].r - v[i__4].i * v[i__5].i,
  1175. q__2.i = v[i__4].r * v[i__5].i + v[i__4].i * v[
  1176. i__5].r;
  1177. i__7 = k + 3 + (k + 2) * h_dim1;
  1178. q__1.r = q__2.r * h__[i__7].r - q__2.i * h__[i__7].i,
  1179. q__1.i = q__2.r * h__[i__7].i + q__2.i * h__[i__7]
  1180. .r;
  1181. refsum.r = q__1.r, refsum.i = q__1.i;
  1182. i__4 = k + 3 + k * h_dim1;
  1183. q__1.r = -refsum.r, q__1.i = -refsum.i;
  1184. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1185. i__4 = k + 3 + (k + 1) * h_dim1;
  1186. q__2.r = -refsum.r, q__2.i = -refsum.i;
  1187. r_cnjg(&q__3, &v[m * v_dim1 + 2]);
  1188. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  1189. q__2.r * q__3.i + q__2.i * q__3.r;
  1190. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1191. i__4 = k + 3 + (k + 2) * h_dim1;
  1192. i__5 = k + 3 + (k + 2) * h_dim1;
  1193. r_cnjg(&q__3, &v[m * v_dim1 + 3]);
  1194. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
  1195. refsum.r * q__3.i + refsum.i * q__3.r;
  1196. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
  1197. q__2.i;
  1198. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1199. /* ==== Calculate reflection to move */
  1200. /* . Mth bulge one step. ==== */
  1201. i__4 = k + 1 + k * h_dim1;
  1202. beta.r = h__[i__4].r, beta.i = h__[i__4].i;
  1203. i__4 = m * v_dim1 + 2;
  1204. i__5 = k + 2 + k * h_dim1;
  1205. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  1206. i__4 = m * v_dim1 + 3;
  1207. i__5 = k + 3 + k * h_dim1;
  1208. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  1209. clarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m *
  1210. v_dim1 + 1]);
  1211. /* ==== A Bulge may collapse because of vigilant */
  1212. /* . deflation or destructive underflow. In the */
  1213. /* . underflow case, try the two-small-subdiagonals */
  1214. /* . trick to try to reinflate the bulge. ==== */
  1215. i__4 = k + 3 + k * h_dim1;
  1216. i__5 = k + 3 + (k + 1) * h_dim1;
  1217. i__7 = k + 3 + (k + 2) * h_dim1;
  1218. if (h__[i__4].r != 0.f || h__[i__4].i != 0.f || (h__[i__5]
  1219. .r != 0.f || h__[i__5].i != 0.f) || h__[i__7].r ==
  1220. 0.f && h__[i__7].i == 0.f) {
  1221. /* ==== Typical case: not collapsed (yet). ==== */
  1222. i__4 = k + 1 + k * h_dim1;
  1223. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  1224. i__4 = k + 2 + k * h_dim1;
  1225. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1226. i__4 = k + 3 + k * h_dim1;
  1227. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1228. } else {
  1229. /* ==== Atypical case: collapsed. Attempt to */
  1230. /* . reintroduce ignoring H(K+1,K) and H(K+2,K). */
  1231. /* . If the fill resulting from the new */
  1232. /* . reflector is too large, then abandon it. */
  1233. /* . Otherwise, use the new one. ==== */
  1234. claqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
  1235. s[(m << 1) - 1], &s[m * 2], vt);
  1236. alpha.r = vt[0].r, alpha.i = vt[0].i;
  1237. clarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
  1238. r_cnjg(&q__2, vt);
  1239. i__4 = k + 1 + k * h_dim1;
  1240. r_cnjg(&q__5, &vt[1]);
  1241. i__5 = k + 2 + k * h_dim1;
  1242. q__4.r = q__5.r * h__[i__5].r - q__5.i * h__[i__5].i,
  1243. q__4.i = q__5.r * h__[i__5].i + q__5.i * h__[
  1244. i__5].r;
  1245. q__3.r = h__[i__4].r + q__4.r, q__3.i = h__[i__4].i +
  1246. q__4.i;
  1247. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  1248. q__2.r * q__3.i + q__2.i * q__3.r;
  1249. refsum.r = q__1.r, refsum.i = q__1.i;
  1250. i__4 = k + 2 + k * h_dim1;
  1251. q__3.r = refsum.r * vt[1].r - refsum.i * vt[1].i,
  1252. q__3.i = refsum.r * vt[1].i + refsum.i * vt[1]
  1253. .r;
  1254. q__2.r = h__[i__4].r - q__3.r, q__2.i = h__[i__4].i -
  1255. q__3.i;
  1256. q__1.r = q__2.r, q__1.i = q__2.i;
  1257. q__5.r = refsum.r * vt[2].r - refsum.i * vt[2].i,
  1258. q__5.i = refsum.r * vt[2].i + refsum.i * vt[2]
  1259. .r;
  1260. q__4.r = q__5.r, q__4.i = q__5.i;
  1261. i__5 = k + k * h_dim1;
  1262. i__7 = k + 1 + (k + 1) * h_dim1;
  1263. i__8 = k + 2 + (k + 2) * h_dim1;
  1264. if ((r__1 = q__1.r, abs(r__1)) + (r__2 = r_imag(&q__1)
  1265. , abs(r__2)) + ((r__3 = q__4.r, abs(r__3)) + (
  1266. r__4 = r_imag(&q__4), abs(r__4))) > ulp * ((
  1267. r__5 = h__[i__5].r, abs(r__5)) + (r__6 =
  1268. r_imag(&h__[k + k * h_dim1]), abs(r__6)) + ((
  1269. r__7 = h__[i__7].r, abs(r__7)) + (r__8 =
  1270. r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1271. r__8))) + ((r__9 = h__[i__8].r, abs(r__9)) + (
  1272. r__10 = r_imag(&h__[k + 2 + (k + 2) * h_dim1])
  1273. , abs(r__10))))) {
  1274. /* ==== Starting a new bulge here would */
  1275. /* . create non-negligible fill. Use */
  1276. /* . the old one with trepidation. ==== */
  1277. i__4 = k + 1 + k * h_dim1;
  1278. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  1279. i__4 = k + 2 + k * h_dim1;
  1280. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1281. i__4 = k + 3 + k * h_dim1;
  1282. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1283. } else {
  1284. /* ==== Starting a new bulge here would */
  1285. /* . create only negligible fill. */
  1286. /* . Replace the old reflector with */
  1287. /* . the new one. ==== */
  1288. i__4 = k + 1 + k * h_dim1;
  1289. i__5 = k + 1 + k * h_dim1;
  1290. q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[
  1291. i__5].i - refsum.i;
  1292. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1293. i__4 = k + 2 + k * h_dim1;
  1294. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1295. i__4 = k + 3 + k * h_dim1;
  1296. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1297. i__4 = m * v_dim1 + 1;
  1298. v[i__4].r = vt[0].r, v[i__4].i = vt[0].i;
  1299. i__4 = m * v_dim1 + 2;
  1300. v[i__4].r = vt[1].r, v[i__4].i = vt[1].i;
  1301. i__4 = m * v_dim1 + 3;
  1302. v[i__4].r = vt[2].r, v[i__4].i = vt[2].i;
  1303. }
  1304. }
  1305. }
  1306. /* ==== Apply reflection from the right and */
  1307. /* . the first column of update from the left. */
  1308. /* . These updates are required for the vigilant */
  1309. /* . deflation check. We still delay most of the */
  1310. /* . updates from the left for efficiency. ==== */
  1311. /* Computing MIN */
  1312. i__5 = *kbot, i__7 = k + 3;
  1313. i__4 = f2cmin(i__5,i__7);
  1314. for (j = jtop; j <= i__4; ++j) {
  1315. i__5 = m * v_dim1 + 1;
  1316. i__7 = j + (k + 1) * h_dim1;
  1317. i__8 = m * v_dim1 + 2;
  1318. i__9 = j + (k + 2) * h_dim1;
  1319. q__4.r = v[i__8].r * h__[i__9].r - v[i__8].i * h__[i__9]
  1320. .i, q__4.i = v[i__8].r * h__[i__9].i + v[i__8].i *
  1321. h__[i__9].r;
  1322. q__3.r = h__[i__7].r + q__4.r, q__3.i = h__[i__7].i +
  1323. q__4.i;
  1324. i__10 = m * v_dim1 + 3;
  1325. i__11 = j + (k + 3) * h_dim1;
  1326. q__5.r = v[i__10].r * h__[i__11].r - v[i__10].i * h__[
  1327. i__11].i, q__5.i = v[i__10].r * h__[i__11].i + v[
  1328. i__10].i * h__[i__11].r;
  1329. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  1330. q__1.r = v[i__5].r * q__2.r - v[i__5].i * q__2.i, q__1.i =
  1331. v[i__5].r * q__2.i + v[i__5].i * q__2.r;
  1332. refsum.r = q__1.r, refsum.i = q__1.i;
  1333. i__5 = j + (k + 1) * h_dim1;
  1334. i__7 = j + (k + 1) * h_dim1;
  1335. q__1.r = h__[i__7].r - refsum.r, q__1.i = h__[i__7].i -
  1336. refsum.i;
  1337. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  1338. i__5 = j + (k + 2) * h_dim1;
  1339. i__7 = j + (k + 2) * h_dim1;
  1340. r_cnjg(&q__3, &v[m * v_dim1 + 2]);
  1341. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
  1342. refsum.r * q__3.i + refsum.i * q__3.r;
  1343. q__1.r = h__[i__7].r - q__2.r, q__1.i = h__[i__7].i -
  1344. q__2.i;
  1345. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  1346. i__5 = j + (k + 3) * h_dim1;
  1347. i__7 = j + (k + 3) * h_dim1;
  1348. r_cnjg(&q__3, &v[m * v_dim1 + 3]);
  1349. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
  1350. refsum.r * q__3.i + refsum.i * q__3.r;
  1351. q__1.r = h__[i__7].r - q__2.r, q__1.i = h__[i__7].i -
  1352. q__2.i;
  1353. h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
  1354. /* L70: */
  1355. }
  1356. /* ==== Perform update from left for subsequent */
  1357. /* . column. ==== */
  1358. r_cnjg(&q__2, &v[m * v_dim1 + 1]);
  1359. i__4 = k + 1 + (k + 1) * h_dim1;
  1360. r_cnjg(&q__6, &v[m * v_dim1 + 2]);
  1361. i__5 = k + 2 + (k + 1) * h_dim1;
  1362. q__5.r = q__6.r * h__[i__5].r - q__6.i * h__[i__5].i, q__5.i =
  1363. q__6.r * h__[i__5].i + q__6.i * h__[i__5].r;
  1364. q__4.r = h__[i__4].r + q__5.r, q__4.i = h__[i__4].i + q__5.i;
  1365. r_cnjg(&q__8, &v[m * v_dim1 + 3]);
  1366. i__7 = k + 3 + (k + 1) * h_dim1;
  1367. q__7.r = q__8.r * h__[i__7].r - q__8.i * h__[i__7].i, q__7.i =
  1368. q__8.r * h__[i__7].i + q__8.i * h__[i__7].r;
  1369. q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i;
  1370. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r *
  1371. q__3.i + q__2.i * q__3.r;
  1372. refsum.r = q__1.r, refsum.i = q__1.i;
  1373. i__4 = k + 1 + (k + 1) * h_dim1;
  1374. i__5 = k + 1 + (k + 1) * h_dim1;
  1375. q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[i__5].i -
  1376. refsum.i;
  1377. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1378. i__4 = k + 2 + (k + 1) * h_dim1;
  1379. i__5 = k + 2 + (k + 1) * h_dim1;
  1380. i__7 = m * v_dim1 + 2;
  1381. q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, q__2.i =
  1382. refsum.r * v[i__7].i + refsum.i * v[i__7].r;
  1383. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
  1384. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1385. i__4 = k + 3 + (k + 1) * h_dim1;
  1386. i__5 = k + 3 + (k + 1) * h_dim1;
  1387. i__7 = m * v_dim1 + 3;
  1388. q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, q__2.i =
  1389. refsum.r * v[i__7].i + refsum.i * v[i__7].r;
  1390. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
  1391. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1392. /* ==== The following convergence test requires that */
  1393. /* . the tradition small-compared-to-nearby-diagonals */
  1394. /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
  1395. /* . criteria both be satisfied. The latter improves */
  1396. /* . accuracy in some examples. Falling back on an */
  1397. /* . alternate convergence criterion when TST1 or TST2 */
  1398. /* . is zero (as done here) is traditional but probably */
  1399. /* . unnecessary. ==== */
  1400. if (k < *ktop) {
  1401. mycycle_();
  1402. }
  1403. i__4 = k + 1 + k * h_dim1;
  1404. if (h__[i__4].r != 0.f || h__[i__4].i != 0.f) {
  1405. i__4 = k + k * h_dim1;
  1406. i__5 = k + 1 + (k + 1) * h_dim1;
  1407. tst1 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&
  1408. h__[k + k * h_dim1]), abs(r__2)) + ((r__3 = h__[
  1409. i__5].r, abs(r__3)) + (r__4 = r_imag(&h__[k + 1 +
  1410. (k + 1) * h_dim1]), abs(r__4)));
  1411. if (tst1 == 0.f) {
  1412. if (k >= *ktop + 1) {
  1413. i__4 = k + (k - 1) * h_dim1;
  1414. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1415. r_imag(&h__[k + (k - 1) * h_dim1]), abs(
  1416. r__2));
  1417. }
  1418. if (k >= *ktop + 2) {
  1419. i__4 = k + (k - 2) * h_dim1;
  1420. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1421. r_imag(&h__[k + (k - 2) * h_dim1]), abs(
  1422. r__2));
  1423. }
  1424. if (k >= *ktop + 3) {
  1425. i__4 = k + (k - 3) * h_dim1;
  1426. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1427. r_imag(&h__[k + (k - 3) * h_dim1]), abs(
  1428. r__2));
  1429. }
  1430. if (k <= *kbot - 2) {
  1431. i__4 = k + 2 + (k + 1) * h_dim1;
  1432. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1433. r_imag(&h__[k + 2 + (k + 1) * h_dim1]),
  1434. abs(r__2));
  1435. }
  1436. if (k <= *kbot - 3) {
  1437. i__4 = k + 3 + (k + 1) * h_dim1;
  1438. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1439. r_imag(&h__[k + 3 + (k + 1) * h_dim1]),
  1440. abs(r__2));
  1441. }
  1442. if (k <= *kbot - 4) {
  1443. i__4 = k + 4 + (k + 1) * h_dim1;
  1444. tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1445. r_imag(&h__[k + 4 + (k + 1) * h_dim1]),
  1446. abs(r__2));
  1447. }
  1448. }
  1449. i__4 = k + 1 + k * h_dim1;
  1450. /* Computing MAX */
  1451. r__3 = smlnum, r__4 = ulp * tst1;
  1452. if ((r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&h__[
  1453. k + 1 + k * h_dim1]), abs(r__2)) <= f2cmax(r__3,r__4)
  1454. ) {
  1455. /* Computing MAX */
  1456. i__4 = k + 1 + k * h_dim1;
  1457. i__5 = k + (k + 1) * h_dim1;
  1458. r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1459. r_imag(&h__[k + 1 + k * h_dim1]), abs(r__2)),
  1460. r__6 = (r__3 = h__[i__5].r, abs(r__3)) + (
  1461. r__4 = r_imag(&h__[k + (k + 1) * h_dim1]),
  1462. abs(r__4));
  1463. h12 = f2cmax(r__5,r__6);
  1464. /* Computing MIN */
  1465. i__4 = k + 1 + k * h_dim1;
  1466. i__5 = k + (k + 1) * h_dim1;
  1467. r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
  1468. r_imag(&h__[k + 1 + k * h_dim1]), abs(r__2)),
  1469. r__6 = (r__3 = h__[i__5].r, abs(r__3)) + (
  1470. r__4 = r_imag(&h__[k + (k + 1) * h_dim1]),
  1471. abs(r__4));
  1472. h21 = f2cmin(r__5,r__6);
  1473. i__4 = k + k * h_dim1;
  1474. i__5 = k + 1 + (k + 1) * h_dim1;
  1475. q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[i__4]
  1476. .i - h__[i__5].i;
  1477. q__1.r = q__2.r, q__1.i = q__2.i;
  1478. /* Computing MAX */
  1479. i__7 = k + 1 + (k + 1) * h_dim1;
  1480. r__5 = (r__1 = h__[i__7].r, abs(r__1)) + (r__2 =
  1481. r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1482. r__2)), r__6 = (r__3 = q__1.r, abs(r__3)) + (
  1483. r__4 = r_imag(&q__1), abs(r__4));
  1484. h11 = f2cmax(r__5,r__6);
  1485. i__4 = k + k * h_dim1;
  1486. i__5 = k + 1 + (k + 1) * h_dim1;
  1487. q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[i__4]
  1488. .i - h__[i__5].i;
  1489. q__1.r = q__2.r, q__1.i = q__2.i;
  1490. /* Computing MIN */
  1491. i__7 = k + 1 + (k + 1) * h_dim1;
  1492. r__5 = (r__1 = h__[i__7].r, abs(r__1)) + (r__2 =
  1493. r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1494. r__2)), r__6 = (r__3 = q__1.r, abs(r__3)) + (
  1495. r__4 = r_imag(&q__1), abs(r__4));
  1496. h22 = f2cmin(r__5,r__6);
  1497. scl = h11 + h12;
  1498. tst2 = h22 * (h11 / scl);
  1499. /* Computing MAX */
  1500. r__1 = smlnum, r__2 = ulp * tst2;
  1501. if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,r__2)
  1502. ) {
  1503. i__4 = k + 1 + k * h_dim1;
  1504. h__[i__4].r = 0.f, h__[i__4].i = 0.f;
  1505. }
  1506. }
  1507. }
  1508. /* L80: */
  1509. }
  1510. /* ==== Multiply H by reflections from the left ==== */
  1511. if (accum) {
  1512. jbot = f2cmin(ndcol,*kbot);
  1513. } else if (*wantt) {
  1514. jbot = *n;
  1515. } else {
  1516. jbot = *kbot;
  1517. }
  1518. i__6 = mtop;
  1519. for (m = mbot; m >= i__6; --m) {
  1520. k = krcol + (m - 1 << 1);
  1521. /* Computing MAX */
  1522. i__4 = *ktop, i__5 = krcol + (m << 1);
  1523. i__7 = jbot;
  1524. for (j = f2cmax(i__4,i__5); j <= i__7; ++j) {
  1525. r_cnjg(&q__2, &v[m * v_dim1 + 1]);
  1526. i__4 = k + 1 + j * h_dim1;
  1527. r_cnjg(&q__6, &v[m * v_dim1 + 2]);
  1528. i__5 = k + 2 + j * h_dim1;
  1529. q__5.r = q__6.r * h__[i__5].r - q__6.i * h__[i__5].i,
  1530. q__5.i = q__6.r * h__[i__5].i + q__6.i * h__[i__5]
  1531. .r;
  1532. q__4.r = h__[i__4].r + q__5.r, q__4.i = h__[i__4].i +
  1533. q__5.i;
  1534. r_cnjg(&q__8, &v[m * v_dim1 + 3]);
  1535. i__8 = k + 3 + j * h_dim1;
  1536. q__7.r = q__8.r * h__[i__8].r - q__8.i * h__[i__8].i,
  1537. q__7.i = q__8.r * h__[i__8].i + q__8.i * h__[i__8]
  1538. .r;
  1539. q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i;
  1540. q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
  1541. q__2.r * q__3.i + q__2.i * q__3.r;
  1542. refsum.r = q__1.r, refsum.i = q__1.i;
  1543. i__4 = k + 1 + j * h_dim1;
  1544. i__5 = k + 1 + j * h_dim1;
  1545. q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[i__5].i -
  1546. refsum.i;
  1547. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1548. i__4 = k + 2 + j * h_dim1;
  1549. i__5 = k + 2 + j * h_dim1;
  1550. i__8 = m * v_dim1 + 2;
  1551. q__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
  1552. q__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
  1553. .r;
  1554. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
  1555. q__2.i;
  1556. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1557. i__4 = k + 3 + j * h_dim1;
  1558. i__5 = k + 3 + j * h_dim1;
  1559. i__8 = m * v_dim1 + 3;
  1560. q__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
  1561. q__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
  1562. .r;
  1563. q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
  1564. q__2.i;
  1565. h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
  1566. /* L90: */
  1567. }
  1568. /* L100: */
  1569. }
  1570. /* ==== Accumulate orthogonal transformations. ==== */
  1571. if (accum) {
  1572. /* ==== Accumulate U. (If needed, update Z later */
  1573. /* . with an efficient matrix-matrix */
  1574. /* . multiply.) ==== */
  1575. i__6 = mtop;
  1576. for (m = mbot; m >= i__6; --m) {
  1577. k = krcol + (m - 1 << 1);
  1578. kms = k - incol;
  1579. /* Computing MAX */
  1580. i__7 = 1, i__4 = *ktop - incol;
  1581. i2 = f2cmax(i__7,i__4);
  1582. /* Computing MAX */
  1583. i__7 = i2, i__4 = kms - (krcol - incol) + 1;
  1584. i2 = f2cmax(i__7,i__4);
  1585. /* Computing MIN */
  1586. i__7 = kdu, i__4 = krcol + (mbot - 1 << 1) - incol + 5;
  1587. i4 = f2cmin(i__7,i__4);
  1588. i__7 = i4;
  1589. for (j = i2; j <= i__7; ++j) {
  1590. i__4 = m * v_dim1 + 1;
  1591. i__5 = j + (kms + 1) * u_dim1;
  1592. i__8 = m * v_dim1 + 2;
  1593. i__9 = j + (kms + 2) * u_dim1;
  1594. q__4.r = v[i__8].r * u[i__9].r - v[i__8].i * u[i__9]
  1595. .i, q__4.i = v[i__8].r * u[i__9].i + v[i__8]
  1596. .i * u[i__9].r;
  1597. q__3.r = u[i__5].r + q__4.r, q__3.i = u[i__5].i +
  1598. q__4.i;
  1599. i__10 = m * v_dim1 + 3;
  1600. i__11 = j + (kms + 3) * u_dim1;
  1601. q__5.r = v[i__10].r * u[i__11].r - v[i__10].i * u[
  1602. i__11].i, q__5.i = v[i__10].r * u[i__11].i +
  1603. v[i__10].i * u[i__11].r;
  1604. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  1605. q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
  1606. q__1.i = v[i__4].r * q__2.i + v[i__4].i *
  1607. q__2.r;
  1608. refsum.r = q__1.r, refsum.i = q__1.i;
  1609. i__4 = j + (kms + 1) * u_dim1;
  1610. i__5 = j + (kms + 1) * u_dim1;
  1611. q__1.r = u[i__5].r - refsum.r, q__1.i = u[i__5].i -
  1612. refsum.i;
  1613. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1614. i__4 = j + (kms + 2) * u_dim1;
  1615. i__5 = j + (kms + 2) * u_dim1;
  1616. r_cnjg(&q__3, &v[m * v_dim1 + 2]);
  1617. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1618. q__2.i = refsum.r * q__3.i + refsum.i *
  1619. q__3.r;
  1620. q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
  1621. q__2.i;
  1622. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1623. i__4 = j + (kms + 3) * u_dim1;
  1624. i__5 = j + (kms + 3) * u_dim1;
  1625. r_cnjg(&q__3, &v[m * v_dim1 + 3]);
  1626. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1627. q__2.i = refsum.r * q__3.i + refsum.i *
  1628. q__3.r;
  1629. q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
  1630. q__2.i;
  1631. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1632. /* L110: */
  1633. }
  1634. /* L120: */
  1635. }
  1636. } else if (*wantz) {
  1637. /* ==== U is not accumulated, so update Z */
  1638. /* . now by multiplying by reflections */
  1639. /* . from the right. ==== */
  1640. i__6 = mtop;
  1641. for (m = mbot; m >= i__6; --m) {
  1642. k = krcol + (m - 1 << 1);
  1643. i__7 = *ihiz;
  1644. for (j = *iloz; j <= i__7; ++j) {
  1645. i__4 = m * v_dim1 + 1;
  1646. i__5 = j + (k + 1) * z_dim1;
  1647. i__8 = m * v_dim1 + 2;
  1648. i__9 = j + (k + 2) * z_dim1;
  1649. q__4.r = v[i__8].r * z__[i__9].r - v[i__8].i * z__[
  1650. i__9].i, q__4.i = v[i__8].r * z__[i__9].i + v[
  1651. i__8].i * z__[i__9].r;
  1652. q__3.r = z__[i__5].r + q__4.r, q__3.i = z__[i__5].i +
  1653. q__4.i;
  1654. i__10 = m * v_dim1 + 3;
  1655. i__11 = j + (k + 3) * z_dim1;
  1656. q__5.r = v[i__10].r * z__[i__11].r - v[i__10].i * z__[
  1657. i__11].i, q__5.i = v[i__10].r * z__[i__11].i
  1658. + v[i__10].i * z__[i__11].r;
  1659. q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
  1660. q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
  1661. q__1.i = v[i__4].r * q__2.i + v[i__4].i *
  1662. q__2.r;
  1663. refsum.r = q__1.r, refsum.i = q__1.i;
  1664. i__4 = j + (k + 1) * z_dim1;
  1665. i__5 = j + (k + 1) * z_dim1;
  1666. q__1.r = z__[i__5].r - refsum.r, q__1.i = z__[i__5].i
  1667. - refsum.i;
  1668. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1669. i__4 = j + (k + 2) * z_dim1;
  1670. i__5 = j + (k + 2) * z_dim1;
  1671. r_cnjg(&q__3, &v[m * v_dim1 + 2]);
  1672. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1673. q__2.i = refsum.r * q__3.i + refsum.i *
  1674. q__3.r;
  1675. q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
  1676. q__2.i;
  1677. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1678. i__4 = j + (k + 3) * z_dim1;
  1679. i__5 = j + (k + 3) * z_dim1;
  1680. r_cnjg(&q__3, &v[m * v_dim1 + 3]);
  1681. q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
  1682. q__2.i = refsum.r * q__3.i + refsum.i *
  1683. q__3.r;
  1684. q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
  1685. q__2.i;
  1686. z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
  1687. /* L130: */
  1688. }
  1689. /* L140: */
  1690. }
  1691. }
  1692. /* ==== End of near-the-diagonal bulge chase. ==== */
  1693. /* L145: */
  1694. }
  1695. /* ==== Use U (if accumulated) to update far-from-diagonal */
  1696. /* . entries in H. If required, use U to update Z as */
  1697. /* . well. ==== */
  1698. if (accum) {
  1699. if (*wantt) {
  1700. jtop = 1;
  1701. jbot = *n;
  1702. } else {
  1703. jtop = *ktop;
  1704. jbot = *kbot;
  1705. }
  1706. /* Computing MAX */
  1707. i__3 = 1, i__6 = *ktop - incol;
  1708. k1 = f2cmax(i__3,i__6);
  1709. /* Computing MAX */
  1710. i__3 = 0, i__6 = ndcol - *kbot;
  1711. nu = kdu - f2cmax(i__3,i__6) - k1 + 1;
  1712. /* ==== Horizontal Multiply ==== */
  1713. i__3 = jbot;
  1714. i__6 = *nh;
  1715. for (jcol = f2cmin(ndcol,*kbot) + 1; i__6 < 0 ? jcol >= i__3 : jcol
  1716. <= i__3; jcol += i__6) {
  1717. /* Computing MIN */
  1718. i__7 = *nh, i__4 = jbot - jcol + 1;
  1719. jlen = f2cmin(i__7,i__4);
  1720. cgemm_("C", "N", &nu, &jlen, &nu, &c_b2, &u[k1 + k1 * u_dim1],
  1721. ldu, &h__[incol + k1 + jcol * h_dim1], ldh, &c_b1, &
  1722. wh[wh_offset], ldwh);
  1723. clacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[incol +
  1724. k1 + jcol * h_dim1], ldh);
  1725. /* L150: */
  1726. }
  1727. /* ==== Vertical multiply ==== */
  1728. i__6 = f2cmax(*ktop,incol) - 1;
  1729. i__3 = *nv;
  1730. for (jrow = jtop; i__3 < 0 ? jrow >= i__6 : jrow <= i__6; jrow +=
  1731. i__3) {
  1732. /* Computing MIN */
  1733. i__7 = *nv, i__4 = f2cmax(*ktop,incol) - jrow;
  1734. jlen = f2cmin(i__7,i__4);
  1735. cgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &h__[jrow + (incol +
  1736. k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], ldu, &c_b1,
  1737. &wv[wv_offset], ldwv);
  1738. clacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[jrow + (
  1739. incol + k1) * h_dim1], ldh);
  1740. /* L160: */
  1741. }
  1742. /* ==== Z multiply (also vertical) ==== */
  1743. if (*wantz) {
  1744. i__3 = *ihiz;
  1745. i__6 = *nv;
  1746. for (jrow = *iloz; i__6 < 0 ? jrow >= i__3 : jrow <= i__3;
  1747. jrow += i__6) {
  1748. /* Computing MIN */
  1749. i__7 = *nv, i__4 = *ihiz - jrow + 1;
  1750. jlen = f2cmin(i__7,i__4);
  1751. cgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &z__[jrow + (
  1752. incol + k1) * z_dim1], ldz, &u[k1 + k1 * u_dim1],
  1753. ldu, &c_b1, &wv[wv_offset], ldwv);
  1754. clacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
  1755. jrow + (incol + k1) * z_dim1], ldz);
  1756. /* L170: */
  1757. }
  1758. }
  1759. }
  1760. /* L180: */
  1761. }
  1762. /* ==== End of CLAQR5 ==== */
  1763. return;
  1764. } /* claqr5_ */