You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clahef_aa.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c__1 = 1;
  487. /* > \brief \b CLAHEF_AA */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CLAHEF_AA + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef_
  494. aa.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef_
  497. aa.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef_
  500. aa.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CLAHEF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
  506. /* H, LDH, WORK ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER J1, M, NB, LDA, LDH */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX A( LDA, * ), H( LDH, * ), WORK( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CLAHEF_AA factorizes a panel of a complex hermitian matrix A using */
  517. /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
  518. /* > when UPLO is U, or a set of NB columns when UPLO is L. */
  519. /* > */
  520. /* > In order to factorize the panel, the Aasen's algorithm requires the */
  521. /* > last row, or column, of the previous panel. The first row, or column, */
  522. /* > of A is set to be the first row, or column, of an identity matrix, */
  523. /* > which is used to factorize the first panel. */
  524. /* > */
  525. /* > The resulting J-th row of U, or J-th column of L, is stored in the */
  526. /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
  527. /* > the diagonal and subdiagonal of A are overwritten by those of T. */
  528. /* > */
  529. /* > \endverbatim */
  530. /* Arguments: */
  531. /* ========== */
  532. /* > \param[in] UPLO */
  533. /* > \verbatim */
  534. /* > UPLO is CHARACTER*1 */
  535. /* > = 'U': Upper triangle of A is stored; */
  536. /* > = 'L': Lower triangle of A is stored. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] J1 */
  540. /* > \verbatim */
  541. /* > J1 is INTEGER */
  542. /* > The location of the first row, or column, of the panel */
  543. /* > within the submatrix of A, passed to this routine, e.g., */
  544. /* > when called by CHETRF_AA, for the first panel, J1 is 1, */
  545. /* > while for the remaining panels, J1 is 2. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] M */
  549. /* > \verbatim */
  550. /* > M is INTEGER */
  551. /* > The dimension of the submatrix. M >= 0. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] NB */
  555. /* > \verbatim */
  556. /* > NB is INTEGER */
  557. /* > The dimension of the panel to be facotorized. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] A */
  561. /* > \verbatim */
  562. /* > A is COMPLEX array, dimension (LDA,M) for */
  563. /* > the first panel, while dimension (LDA,M+1) for the */
  564. /* > remaining panels. */
  565. /* > */
  566. /* > On entry, A contains the last row, or column, of */
  567. /* > the previous panel, and the trailing submatrix of A */
  568. /* > to be factorized, except for the first panel, only */
  569. /* > the panel is passed. */
  570. /* > */
  571. /* > On exit, the leading panel is factorized. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] LDA */
  575. /* > \verbatim */
  576. /* > LDA is INTEGER */
  577. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[out] IPIV */
  581. /* > \verbatim */
  582. /* > IPIV is INTEGER array, dimension (N) */
  583. /* > Details of the row and column interchanges, */
  584. /* > the row and column k were interchanged with the row and */
  585. /* > column IPIV(k). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] H */
  589. /* > \verbatim */
  590. /* > H is COMPLEX workspace, dimension (LDH,NB). */
  591. /* > */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDH */
  595. /* > \verbatim */
  596. /* > LDH is INTEGER */
  597. /* > The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] WORK */
  601. /* > \verbatim */
  602. /* > WORK is COMPLEX workspace, dimension (M). */
  603. /* > \endverbatim */
  604. /* > */
  605. /* Authors: */
  606. /* ======== */
  607. /* > \author Univ. of Tennessee */
  608. /* > \author Univ. of California Berkeley */
  609. /* > \author Univ. of Colorado Denver */
  610. /* > \author NAG Ltd. */
  611. /* > \date November 2017 */
  612. /* > \ingroup complexSYcomputational */
  613. /* ===================================================================== */
  614. /* Subroutine */ void clahef_aa_(char *uplo, integer *j1, integer *m, integer
  615. *nb, complex *a, integer *lda, integer *ipiv, complex *h__, integer *
  616. ldh, complex *work)
  617. {
  618. /* System generated locals */
  619. integer a_dim1, a_offset, h_dim1, h_offset, i__1, i__2;
  620. real r__1;
  621. complex q__1, q__2;
  622. /* Local variables */
  623. integer j, k;
  624. complex alpha;
  625. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  626. integer *);
  627. extern logical lsame_(char *, char *);
  628. extern /* Subroutine */ void cgemv_(char *, integer *, integer *, complex *
  629. , complex *, integer *, complex *, integer *, complex *, complex *
  630. , integer *), ccopy_(integer *, complex *, integer *,
  631. complex *, integer *), cswap_(integer *, complex *, integer *,
  632. complex *, integer *), caxpy_(integer *, complex *, complex *,
  633. integer *, complex *, integer *);
  634. integer i1, k1, i2, mj;
  635. extern /* Subroutine */ void clacgv_(integer *, complex *, integer *);
  636. extern integer icamax_(integer *, complex *, integer *);
  637. extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
  638. *, complex *, complex *, integer *);
  639. complex piv;
  640. /* -- LAPACK computational routine (version 3.8.0) -- */
  641. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  642. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  643. /* November 2017 */
  644. /* ===================================================================== */
  645. /* Parameter adjustments */
  646. a_dim1 = *lda;
  647. a_offset = 1 + a_dim1 * 1;
  648. a -= a_offset;
  649. --ipiv;
  650. h_dim1 = *ldh;
  651. h_offset = 1 + h_dim1 * 1;
  652. h__ -= h_offset;
  653. --work;
  654. /* Function Body */
  655. j = 1;
  656. /* K1 is the first column of the panel to be factorized */
  657. /* i.e., K1 is 2 for the first block column, and 1 for the rest of the blocks */
  658. k1 = 2 - *j1 + 1;
  659. if (lsame_(uplo, "U")) {
  660. /* ..................................................... */
  661. /* Factorize A as U**T*D*U using the upper triangle of A */
  662. /* ..................................................... */
  663. L10:
  664. if (j > f2cmin(*m,*nb)) {
  665. goto L20;
  666. }
  667. /* K is the column to be factorized */
  668. /* when being called from CHETRF_AA, */
  669. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  670. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  671. k = *j1 + j - 1;
  672. if (j == *m) {
  673. /* Only need to compute T(J, J) */
  674. mj = 1;
  675. } else {
  676. mj = *m - j + 1;
  677. }
  678. /* H(J:N, J) := A(J, J:N) - H(J:N, 1:(J-1)) * L(J1:(J-1), J), */
  679. /* where H(J:N, J) has been initialized to be A(J, J:N) */
  680. if (k > 2) {
  681. /* K is the column to be factorized */
  682. /* > for the first block column, K is J, skipping the first two */
  683. /* columns */
  684. /* > for the rest of the columns, K is J+1, skipping only the */
  685. /* first column */
  686. i__1 = j - k1;
  687. clacgv_(&i__1, &a[j * a_dim1 + 1], &c__1);
  688. i__1 = j - k1;
  689. q__1.r = -1.f, q__1.i = 0.f;
  690. cgemv_("No transpose", &mj, &i__1, &q__1, &h__[j + k1 * h_dim1],
  691. ldh, &a[j * a_dim1 + 1], &c__1, &c_b2, &h__[j + j *
  692. h_dim1], &c__1);
  693. i__1 = j - k1;
  694. clacgv_(&i__1, &a[j * a_dim1 + 1], &c__1);
  695. }
  696. /* Copy H(i:n, i) into WORK */
  697. ccopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  698. if (j > k1) {
  699. /* Compute WORK := WORK - L(J-1, J:N) * T(J-1,J), */
  700. /* where A(J-1, J) stores T(J-1, J) and A(J-2, J:N) stores U(J-1, J:N) */
  701. r_cnjg(&q__2, &a[k - 1 + j * a_dim1]);
  702. q__1.r = -q__2.r, q__1.i = -q__2.i;
  703. alpha.r = q__1.r, alpha.i = q__1.i;
  704. caxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
  705. }
  706. /* Set A(J, J) = T(J, J) */
  707. i__1 = k + j * a_dim1;
  708. r__1 = work[1].r;
  709. a[i__1].r = r__1, a[i__1].i = 0.f;
  710. if (j < *m) {
  711. /* Compute WORK(2:N) = T(J, J) L(J, (J+1):N) */
  712. /* where A(J, J) stores T(J, J) and A(J-1, (J+1):N) stores U(J, (J+1):N) */
  713. if (k > 1) {
  714. i__1 = k + j * a_dim1;
  715. q__1.r = -a[i__1].r, q__1.i = -a[i__1].i;
  716. alpha.r = q__1.r, alpha.i = q__1.i;
  717. i__1 = *m - j;
  718. caxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
  719. work[2], &c__1);
  720. }
  721. /* Find f2cmax(|WORK(2:n)|) */
  722. i__1 = *m - j;
  723. i2 = icamax_(&i__1, &work[2], &c__1) + 1;
  724. i__1 = i2;
  725. piv.r = work[i__1].r, piv.i = work[i__1].i;
  726. /* Apply hermitian pivot */
  727. if (i2 != 2 && (piv.r != 0.f || piv.i != 0.)) {
  728. /* Swap WORK(I1) and WORK(I2) */
  729. i1 = 2;
  730. i__1 = i2;
  731. i__2 = i1;
  732. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  733. i__1 = i1;
  734. work[i__1].r = piv.r, work[i__1].i = piv.i;
  735. /* Swap A(I1, I1+1:N) with A(I1+1:N, I2) */
  736. i1 = i1 + j - 1;
  737. i2 = i2 + j - 1;
  738. i__1 = i2 - i1 - 1;
  739. cswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
  740. j1 + i1 + i2 * a_dim1], &c__1);
  741. i__1 = i2 - i1;
  742. clacgv_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda);
  743. i__1 = i2 - i1 - 1;
  744. clacgv_(&i__1, &a[*j1 + i1 + i2 * a_dim1], &c__1);
  745. /* Swap A(I1, I2+1:N) with A(I2, I2+1:N) */
  746. if (i2 < *m) {
  747. i__1 = *m - i2;
  748. cswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
  749. a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
  750. }
  751. /* Swap A(I1, I1) with A(I2,I2) */
  752. i__1 = i1 + *j1 - 1 + i1 * a_dim1;
  753. piv.r = a[i__1].r, piv.i = a[i__1].i;
  754. i__1 = *j1 + i1 - 1 + i1 * a_dim1;
  755. i__2 = *j1 + i2 - 1 + i2 * a_dim1;
  756. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  757. i__1 = *j1 + i2 - 1 + i2 * a_dim1;
  758. a[i__1].r = piv.r, a[i__1].i = piv.i;
  759. /* Swap H(I1, 1:J1) with H(I2, 1:J1) */
  760. i__1 = i1 - 1;
  761. cswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  762. ipiv[i1] = i2;
  763. if (i1 > k1 - 1) {
  764. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  765. /* skipping the first column */
  766. i__1 = i1 - k1 + 1;
  767. cswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1
  768. + 1], &c__1);
  769. }
  770. } else {
  771. ipiv[j + 1] = j + 1;
  772. }
  773. /* Set A(J, J+1) = T(J, J+1) */
  774. i__1 = k + (j + 1) * a_dim1;
  775. a[i__1].r = work[2].r, a[i__1].i = work[2].i;
  776. if (j < *nb) {
  777. /* Copy A(J+1:N, J+1) into H(J:N, J), */
  778. i__1 = *m - j;
  779. ccopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 +
  780. (j + 1) * h_dim1], &c__1);
  781. }
  782. /* Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), */
  783. /* where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) */
  784. if (j < *m - 1) {
  785. i__1 = k + (j + 1) * a_dim1;
  786. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  787. c_div(&q__1, &c_b2, &a[k + (j + 1) * a_dim1]);
  788. alpha.r = q__1.r, alpha.i = q__1.i;
  789. i__1 = *m - j - 1;
  790. ccopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1],
  791. lda);
  792. i__1 = *m - j - 1;
  793. cscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
  794. } else {
  795. i__1 = *m - j - 1;
  796. claset_("Full", &c__1, &i__1, &c_b1, &c_b1, &a[k + (j + 2)
  797. * a_dim1], lda);
  798. }
  799. }
  800. }
  801. ++j;
  802. goto L10;
  803. L20:
  804. ;
  805. } else {
  806. /* ..................................................... */
  807. /* Factorize A as L*D*L**T using the lower triangle of A */
  808. /* ..................................................... */
  809. L30:
  810. if (j > f2cmin(*m,*nb)) {
  811. goto L40;
  812. }
  813. /* K is the column to be factorized */
  814. /* when being called from CHETRF_AA, */
  815. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  816. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  817. k = *j1 + j - 1;
  818. if (j == *m) {
  819. /* Only need to compute T(J, J) */
  820. mj = 1;
  821. } else {
  822. mj = *m - j + 1;
  823. }
  824. /* H(J:N, J) := A(J:N, J) - H(J:N, 1:(J-1)) * L(J, J1:(J-1))^T, */
  825. /* where H(J:N, J) has been initialized to be A(J:N, J) */
  826. if (k > 2) {
  827. /* K is the column to be factorized */
  828. /* > for the first block column, K is J, skipping the first two */
  829. /* columns */
  830. /* > for the rest of the columns, K is J+1, skipping only the */
  831. /* first column */
  832. i__1 = j - k1;
  833. clacgv_(&i__1, &a[j + a_dim1], lda);
  834. i__1 = j - k1;
  835. q__1.r = -1.f, q__1.i = 0.f;
  836. cgemv_("No transpose", &mj, &i__1, &q__1, &h__[j + k1 * h_dim1],
  837. ldh, &a[j + a_dim1], lda, &c_b2, &h__[j + j * h_dim1], &
  838. c__1);
  839. i__1 = j - k1;
  840. clacgv_(&i__1, &a[j + a_dim1], lda);
  841. }
  842. /* Copy H(J:N, J) into WORK */
  843. ccopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  844. if (j > k1) {
  845. /* Compute WORK := WORK - L(J:N, J-1) * T(J-1,J), */
  846. /* where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
  847. r_cnjg(&q__2, &a[j + (k - 1) * a_dim1]);
  848. q__1.r = -q__2.r, q__1.i = -q__2.i;
  849. alpha.r = q__1.r, alpha.i = q__1.i;
  850. caxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
  851. c__1);
  852. }
  853. /* Set A(J, J) = T(J, J) */
  854. i__1 = j + k * a_dim1;
  855. r__1 = work[1].r;
  856. a[i__1].r = r__1, a[i__1].i = 0.f;
  857. if (j < *m) {
  858. /* Compute WORK(2:N) = T(J, J) L((J+1):N, J) */
  859. /* where A(J, J) = T(J, J) and A((J+1):N, J-1) = L((J+1):N, J) */
  860. if (k > 1) {
  861. i__1 = j + k * a_dim1;
  862. q__1.r = -a[i__1].r, q__1.i = -a[i__1].i;
  863. alpha.r = q__1.r, alpha.i = q__1.i;
  864. i__1 = *m - j;
  865. caxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
  866. work[2], &c__1);
  867. }
  868. /* Find f2cmax(|WORK(2:n)|) */
  869. i__1 = *m - j;
  870. i2 = icamax_(&i__1, &work[2], &c__1) + 1;
  871. i__1 = i2;
  872. piv.r = work[i__1].r, piv.i = work[i__1].i;
  873. /* Apply hermitian pivot */
  874. if (i2 != 2 && (piv.r != 0.f || piv.i != 0.)) {
  875. /* Swap WORK(I1) and WORK(I2) */
  876. i1 = 2;
  877. i__1 = i2;
  878. i__2 = i1;
  879. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  880. i__1 = i1;
  881. work[i__1].r = piv.r, work[i__1].i = piv.i;
  882. /* Swap A(I1+1:N, I1) with A(I2, I1+1:N) */
  883. i1 = i1 + j - 1;
  884. i2 = i2 + j - 1;
  885. i__1 = i2 - i1 - 1;
  886. cswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
  887. i2 + (*j1 + i1) * a_dim1], lda);
  888. i__1 = i2 - i1;
  889. clacgv_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1);
  890. i__1 = i2 - i1 - 1;
  891. clacgv_(&i__1, &a[i2 + (*j1 + i1) * a_dim1], lda);
  892. /* Swap A(I2+1:N, I1) with A(I2+1:N, I2) */
  893. if (i2 < *m) {
  894. i__1 = *m - i2;
  895. cswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
  896. &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
  897. }
  898. /* Swap A(I1, I1) with A(I2, I2) */
  899. i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
  900. piv.r = a[i__1].r, piv.i = a[i__1].i;
  901. i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
  902. i__2 = i2 + (*j1 + i2 - 1) * a_dim1;
  903. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  904. i__1 = i2 + (*j1 + i2 - 1) * a_dim1;
  905. a[i__1].r = piv.r, a[i__1].i = piv.i;
  906. /* Swap H(I1, I1:J1) with H(I2, I2:J1) */
  907. i__1 = i1 - 1;
  908. cswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  909. ipiv[i1] = i2;
  910. if (i1 > k1 - 1) {
  911. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  912. /* skipping the first column */
  913. i__1 = i1 - k1 + 1;
  914. cswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
  915. }
  916. } else {
  917. ipiv[j + 1] = j + 1;
  918. }
  919. /* Set A(J+1, J) = T(J+1, J) */
  920. i__1 = j + 1 + k * a_dim1;
  921. a[i__1].r = work[2].r, a[i__1].i = work[2].i;
  922. if (j < *nb) {
  923. /* Copy A(J+1:N, J+1) into H(J+1:N, J), */
  924. i__1 = *m - j;
  925. ccopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1
  926. + (j + 1) * h_dim1], &c__1);
  927. }
  928. /* Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), */
  929. /* where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) */
  930. if (j < *m - 1) {
  931. i__1 = j + 1 + k * a_dim1;
  932. if (a[i__1].r != 0.f || a[i__1].i != 0.f) {
  933. c_div(&q__1, &c_b2, &a[j + 1 + k * a_dim1]);
  934. alpha.r = q__1.r, alpha.i = q__1.i;
  935. i__1 = *m - j - 1;
  936. ccopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
  937. c__1);
  938. i__1 = *m - j - 1;
  939. cscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
  940. } else {
  941. i__1 = *m - j - 1;
  942. claset_("Full", &i__1, &c__1, &c_b1, &c_b1, &a[j + 2 + k *
  943. a_dim1], lda);
  944. }
  945. }
  946. }
  947. ++j;
  948. goto L30;
  949. L40:
  950. ;
  951. }
  952. return;
  953. /* End of CLAHEF_AA */
  954. } /* clahef_aa__ */