You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetf2_rk.c 54 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b CHETF2_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded
  486. Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm). */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CHETF2_RK + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetf2_
  493. rk.f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetf2_
  496. rk.f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetf2_
  499. rk.f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE CHETF2_RK( UPLO, N, A, LDA, E, IPIV, INFO ) */
  505. /* CHARACTER UPLO */
  506. /* INTEGER INFO, LDA, N */
  507. /* INTEGER IPIV( * ) */
  508. /* COMPLEX A( LDA, * ), E ( * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > CHETF2_RK computes the factorization of a complex Hermitian matrix A */
  514. /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
  515. /* > */
  516. /* > A = P*U*D*(U**H)*(P**T) or A = P*L*D*(L**H)*(P**T), */
  517. /* > */
  518. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  519. /* > U**H (or L**H) is the conjugate of U (or L), P is a permutation */
  520. /* > matrix, P**T is the transpose of P, and D is Hermitian and block */
  521. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  522. /* > */
  523. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  524. /* > For more information see Further Details section. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] UPLO */
  529. /* > \verbatim */
  530. /* > UPLO is CHARACTER*1 */
  531. /* > Specifies whether the upper or lower triangular part of the */
  532. /* > Hermitian matrix A is stored: */
  533. /* > = 'U': Upper triangular */
  534. /* > = 'L': Lower triangular */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix A. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in,out] A */
  544. /* > \verbatim */
  545. /* > A is COMPLEX array, dimension (LDA,N) */
  546. /* > On entry, the Hermitian matrix A. */
  547. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  548. /* > of A contains the upper triangular part of the matrix A, */
  549. /* > and the strictly lower triangular part of A is not */
  550. /* > referenced. */
  551. /* > */
  552. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  553. /* > of A contains the lower triangular part of the matrix A, */
  554. /* > and the strictly upper triangular part of A is not */
  555. /* > referenced. */
  556. /* > */
  557. /* > On exit, contains: */
  558. /* > a) ONLY diagonal elements of the Hermitian block diagonal */
  559. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  560. /* > (superdiagonal (or subdiagonal) elements of D */
  561. /* > are stored on exit in array E), and */
  562. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  563. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[out] E */
  573. /* > \verbatim */
  574. /* > E is COMPLEX array, dimension (N) */
  575. /* > On exit, contains the superdiagonal (or subdiagonal) */
  576. /* > elements of the Hermitian block diagonal matrix D */
  577. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  578. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  579. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  580. /* > */
  581. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  582. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  583. /* > UPLO = 'U' or UPLO = 'L' cases. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[out] IPIV */
  587. /* > \verbatim */
  588. /* > IPIV is INTEGER array, dimension (N) */
  589. /* > IPIV describes the permutation matrix P in the factorization */
  590. /* > of matrix A as follows. The absolute value of IPIV(k) */
  591. /* > represents the index of row and column that were */
  592. /* > interchanged with the k-th row and column. The value of UPLO */
  593. /* > describes the order in which the interchanges were applied. */
  594. /* > Also, the sign of IPIV represents the block structure of */
  595. /* > the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2 */
  596. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  597. /* > at each factorization step. For more info see Further */
  598. /* > Details section. */
  599. /* > */
  600. /* > If UPLO = 'U', */
  601. /* > ( in factorization order, k decreases from N to 1 ): */
  602. /* > a) A single positive entry IPIV(k) > 0 means: */
  603. /* > D(k,k) is a 1-by-1 diagonal block. */
  604. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  605. /* > interchanged in the matrix A(1:N,1:N); */
  606. /* > If IPIV(k) = k, no interchange occurred. */
  607. /* > */
  608. /* > b) A pair of consecutive negative entries */
  609. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  610. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  611. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  612. /* > 1) If -IPIV(k) != k, rows and columns */
  613. /* > k and -IPIV(k) were interchanged */
  614. /* > in the matrix A(1:N,1:N). */
  615. /* > If -IPIV(k) = k, no interchange occurred. */
  616. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  617. /* > k-1 and -IPIV(k-1) were interchanged */
  618. /* > in the matrix A(1:N,1:N). */
  619. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  620. /* > */
  621. /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
  622. /* > */
  623. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  624. /* > */
  625. /* > If UPLO = 'L', */
  626. /* > ( in factorization order, k increases from 1 to N ): */
  627. /* > a) A single positive entry IPIV(k) > 0 means: */
  628. /* > D(k,k) is a 1-by-1 diagonal block. */
  629. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  630. /* > interchanged in the matrix A(1:N,1:N). */
  631. /* > If IPIV(k) = k, no interchange occurred. */
  632. /* > */
  633. /* > b) A pair of consecutive negative entries */
  634. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  635. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  636. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  637. /* > 1) If -IPIV(k) != k, rows and columns */
  638. /* > k and -IPIV(k) were interchanged */
  639. /* > in the matrix A(1:N,1:N). */
  640. /* > If -IPIV(k) = k, no interchange occurred. */
  641. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  642. /* > k-1 and -IPIV(k-1) were interchanged */
  643. /* > in the matrix A(1:N,1:N). */
  644. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  645. /* > */
  646. /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
  647. /* > */
  648. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] INFO */
  652. /* > \verbatim */
  653. /* > INFO is INTEGER */
  654. /* > = 0: successful exit */
  655. /* > */
  656. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  657. /* > */
  658. /* > > 0: If INFO = k, the matrix A is singular, because: */
  659. /* > If UPLO = 'U': column k in the upper */
  660. /* > triangular part of A contains all zeros. */
  661. /* > If UPLO = 'L': column k in the lower */
  662. /* > triangular part of A contains all zeros. */
  663. /* > */
  664. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  665. /* > elements of column k of U (or subdiagonal elements of */
  666. /* > column k of L ) are all zeros. The factorization has */
  667. /* > been completed, but the block diagonal matrix D is */
  668. /* > exactly singular, and division by zero will occur if */
  669. /* > it is used to solve a system of equations. */
  670. /* > */
  671. /* > NOTE: INFO only stores the first occurrence of */
  672. /* > a singularity, any subsequent occurrence of singularity */
  673. /* > is not stored in INFO even though the factorization */
  674. /* > always completes. */
  675. /* > \endverbatim */
  676. /* Authors: */
  677. /* ======== */
  678. /* > \author Univ. of Tennessee */
  679. /* > \author Univ. of California Berkeley */
  680. /* > \author Univ. of Colorado Denver */
  681. /* > \author NAG Ltd. */
  682. /* > \date December 2016 */
  683. /* > \ingroup complexHEcomputational */
  684. /* > \par Further Details: */
  685. /* ===================== */
  686. /* > */
  687. /* > \verbatim */
  688. /* > TODO: put further details */
  689. /* > \endverbatim */
  690. /* > \par Contributors: */
  691. /* ================== */
  692. /* > */
  693. /* > \verbatim */
  694. /* > */
  695. /* > December 2016, Igor Kozachenko, */
  696. /* > Computer Science Division, */
  697. /* > University of California, Berkeley */
  698. /* > */
  699. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  700. /* > School of Mathematics, */
  701. /* > University of Manchester */
  702. /* > */
  703. /* > 01-01-96 - Based on modifications by */
  704. /* > J. Lewis, Boeing Computer Services Company */
  705. /* > A. Petitet, Computer Science Dept., */
  706. /* > Univ. of Tenn., Knoxville abd , USA */
  707. /* > \endverbatim */
  708. /* ===================================================================== */
  709. /* Subroutine */ void chetf2_rk_(char *uplo, integer *n, complex *a, integer *
  710. lda, complex *e, integer *ipiv, integer *info)
  711. {
  712. /* System generated locals */
  713. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  714. real r__1, r__2;
  715. complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8;
  716. /* Local variables */
  717. extern /* Subroutine */ void cher_(char *, integer *, real *, complex *,
  718. integer *, complex *, integer *);
  719. logical done;
  720. integer imax, jmax;
  721. real d__;
  722. integer i__, j, k, p;
  723. complex t;
  724. real alpha;
  725. extern logical lsame_(char *, char *);
  726. real sfmin;
  727. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  728. complex *, integer *);
  729. integer itemp, kstep;
  730. real stemp;
  731. logical upper;
  732. real r1, d11;
  733. complex d12;
  734. real d22;
  735. complex d21;
  736. extern real slapy2_(real *, real *);
  737. integer ii, kk, kp;
  738. real absakk;
  739. complex wk;
  740. extern integer icamax_(integer *, complex *, integer *);
  741. extern real slamch_(char *);
  742. real tt;
  743. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  744. *);
  745. extern int xerbla_(char *, integer *, ftnlen);
  746. real colmax, rowmax;
  747. complex wkm1, wkp1;
  748. /* -- LAPACK computational routine (version 3.7.0) -- */
  749. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  750. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  751. /* December 2016 */
  752. /* ====================================================================== */
  753. /* Test the input parameters. */
  754. /* Parameter adjustments */
  755. a_dim1 = *lda;
  756. a_offset = 1 + a_dim1 * 1;
  757. a -= a_offset;
  758. --e;
  759. --ipiv;
  760. /* Function Body */
  761. *info = 0;
  762. upper = lsame_(uplo, "U");
  763. if (! upper && ! lsame_(uplo, "L")) {
  764. *info = -1;
  765. } else if (*n < 0) {
  766. *info = -2;
  767. } else if (*lda < f2cmax(1,*n)) {
  768. *info = -4;
  769. }
  770. if (*info != 0) {
  771. i__1 = -(*info);
  772. xerbla_("CHETF2_RK", &i__1, (ftnlen)9);
  773. return;
  774. }
  775. /* Initialize ALPHA for use in choosing pivot block size. */
  776. alpha = (sqrt(17.f) + 1.f) / 8.f;
  777. /* Compute machine safe minimum */
  778. sfmin = slamch_("S");
  779. if (upper) {
  780. /* Factorize A as U*D*U**H using the upper triangle of A */
  781. /* Initialize the first entry of array E, where superdiagonal */
  782. /* elements of D are stored */
  783. e[1].r = 0.f, e[1].i = 0.f;
  784. /* K is the main loop index, decreasing from N to 1 in steps of */
  785. /* 1 or 2 */
  786. k = *n;
  787. L10:
  788. /* If K < 1, exit from loop */
  789. if (k < 1) {
  790. goto L34;
  791. }
  792. kstep = 1;
  793. p = k;
  794. /* Determine rows and columns to be interchanged and whether */
  795. /* a 1-by-1 or 2-by-2 pivot block will be used */
  796. i__1 = k + k * a_dim1;
  797. absakk = (r__1 = a[i__1].r, abs(r__1));
  798. /* IMAX is the row-index of the largest off-diagonal element in */
  799. /* column K, and COLMAX is its absolute value. */
  800. /* Determine both COLMAX and IMAX. */
  801. if (k > 1) {
  802. i__1 = k - 1;
  803. imax = icamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  804. i__1 = imax + k * a_dim1;
  805. colmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[imax +
  806. k * a_dim1]), abs(r__2));
  807. } else {
  808. colmax = 0.f;
  809. }
  810. if (f2cmax(absakk,colmax) == 0.f) {
  811. /* Column K is zero or underflow: set INFO and continue */
  812. if (*info == 0) {
  813. *info = k;
  814. }
  815. kp = k;
  816. i__1 = k + k * a_dim1;
  817. i__2 = k + k * a_dim1;
  818. r__1 = a[i__2].r;
  819. a[i__1].r = r__1, a[i__1].i = 0.f;
  820. /* Set E( K ) to zero */
  821. if (k > 1) {
  822. i__1 = k;
  823. e[i__1].r = 0.f, e[i__1].i = 0.f;
  824. }
  825. } else {
  826. /* ============================================================ */
  827. /* BEGIN pivot search */
  828. /* Case(1) */
  829. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  830. /* (used to handle NaN and Inf) */
  831. if (! (absakk < alpha * colmax)) {
  832. /* no interchange, use 1-by-1 pivot block */
  833. kp = k;
  834. } else {
  835. done = FALSE_;
  836. /* Loop until pivot found */
  837. L12:
  838. /* BEGIN pivot search loop body */
  839. /* JMAX is the column-index of the largest off-diagonal */
  840. /* element in row IMAX, and ROWMAX is its absolute value. */
  841. /* Determine both ROWMAX and JMAX. */
  842. if (imax != k) {
  843. i__1 = k - imax;
  844. jmax = imax + icamax_(&i__1, &a[imax + (imax + 1) *
  845. a_dim1], lda);
  846. i__1 = imax + jmax * a_dim1;
  847. rowmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  848. a[imax + jmax * a_dim1]), abs(r__2));
  849. } else {
  850. rowmax = 0.f;
  851. }
  852. if (imax > 1) {
  853. i__1 = imax - 1;
  854. itemp = icamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  855. i__1 = itemp + imax * a_dim1;
  856. stemp = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[
  857. itemp + imax * a_dim1]), abs(r__2));
  858. if (stemp > rowmax) {
  859. rowmax = stemp;
  860. jmax = itemp;
  861. }
  862. }
  863. /* Case(2) */
  864. /* Equivalent to testing for */
  865. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  866. /* (used to handle NaN and Inf) */
  867. i__1 = imax + imax * a_dim1;
  868. if (! ((r__1 = a[i__1].r, abs(r__1)) < alpha * rowmax)) {
  869. /* interchange rows and columns K and IMAX, */
  870. /* use 1-by-1 pivot block */
  871. kp = imax;
  872. done = TRUE_;
  873. /* Case(3) */
  874. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  875. /* (used to handle NaN and Inf) */
  876. } else if (p == jmax || rowmax <= colmax) {
  877. /* interchange rows and columns K-1 and IMAX, */
  878. /* use 2-by-2 pivot block */
  879. kp = imax;
  880. kstep = 2;
  881. done = TRUE_;
  882. /* Case(4) */
  883. } else {
  884. /* Pivot not found: set params and repeat */
  885. p = imax;
  886. colmax = rowmax;
  887. imax = jmax;
  888. }
  889. /* END pivot search loop body */
  890. if (! done) {
  891. goto L12;
  892. }
  893. }
  894. /* END pivot search */
  895. /* ============================================================ */
  896. /* KK is the column of A where pivoting step stopped */
  897. kk = k - kstep + 1;
  898. /* For only a 2x2 pivot, interchange rows and columns K and P */
  899. /* in the leading submatrix A(1:k,1:k) */
  900. if (kstep == 2 && p != k) {
  901. /* (1) Swap columnar parts */
  902. if (p > 1) {
  903. i__1 = p - 1;
  904. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  905. 1], &c__1);
  906. }
  907. /* (2) Swap and conjugate middle parts */
  908. i__1 = k - 1;
  909. for (j = p + 1; j <= i__1; ++j) {
  910. r_cnjg(&q__1, &a[j + k * a_dim1]);
  911. t.r = q__1.r, t.i = q__1.i;
  912. i__2 = j + k * a_dim1;
  913. r_cnjg(&q__1, &a[p + j * a_dim1]);
  914. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  915. i__2 = p + j * a_dim1;
  916. a[i__2].r = t.r, a[i__2].i = t.i;
  917. /* L14: */
  918. }
  919. /* (3) Swap and conjugate corner elements at row-col interserction */
  920. i__1 = p + k * a_dim1;
  921. r_cnjg(&q__1, &a[p + k * a_dim1]);
  922. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  923. /* (4) Swap diagonal elements at row-col intersection */
  924. i__1 = k + k * a_dim1;
  925. r1 = a[i__1].r;
  926. i__1 = k + k * a_dim1;
  927. i__2 = p + p * a_dim1;
  928. r__1 = a[i__2].r;
  929. a[i__1].r = r__1, a[i__1].i = 0.f;
  930. i__1 = p + p * a_dim1;
  931. a[i__1].r = r1, a[i__1].i = 0.f;
  932. /* Convert upper triangle of A into U form by applying */
  933. /* the interchanges in columns k+1:N. */
  934. if (k < *n) {
  935. i__1 = *n - k;
  936. cswap_(&i__1, &a[k + (k + 1) * a_dim1], lda, &a[p + (k +
  937. 1) * a_dim1], lda);
  938. }
  939. }
  940. /* For both 1x1 and 2x2 pivots, interchange rows and */
  941. /* columns KK and KP in the leading submatrix A(1:k,1:k) */
  942. if (kp != kk) {
  943. /* (1) Swap columnar parts */
  944. if (kp > 1) {
  945. i__1 = kp - 1;
  946. cswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  947. + 1], &c__1);
  948. }
  949. /* (2) Swap and conjugate middle parts */
  950. i__1 = kk - 1;
  951. for (j = kp + 1; j <= i__1; ++j) {
  952. r_cnjg(&q__1, &a[j + kk * a_dim1]);
  953. t.r = q__1.r, t.i = q__1.i;
  954. i__2 = j + kk * a_dim1;
  955. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  956. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  957. i__2 = kp + j * a_dim1;
  958. a[i__2].r = t.r, a[i__2].i = t.i;
  959. /* L15: */
  960. }
  961. /* (3) Swap and conjugate corner elements at row-col interserction */
  962. i__1 = kp + kk * a_dim1;
  963. r_cnjg(&q__1, &a[kp + kk * a_dim1]);
  964. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  965. /* (4) Swap diagonal elements at row-col intersection */
  966. i__1 = kk + kk * a_dim1;
  967. r1 = a[i__1].r;
  968. i__1 = kk + kk * a_dim1;
  969. i__2 = kp + kp * a_dim1;
  970. r__1 = a[i__2].r;
  971. a[i__1].r = r__1, a[i__1].i = 0.f;
  972. i__1 = kp + kp * a_dim1;
  973. a[i__1].r = r1, a[i__1].i = 0.f;
  974. if (kstep == 2) {
  975. /* (*) Make sure that diagonal element of pivot is real */
  976. i__1 = k + k * a_dim1;
  977. i__2 = k + k * a_dim1;
  978. r__1 = a[i__2].r;
  979. a[i__1].r = r__1, a[i__1].i = 0.f;
  980. /* (5) Swap row elements */
  981. i__1 = k - 1 + k * a_dim1;
  982. t.r = a[i__1].r, t.i = a[i__1].i;
  983. i__1 = k - 1 + k * a_dim1;
  984. i__2 = kp + k * a_dim1;
  985. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  986. i__1 = kp + k * a_dim1;
  987. a[i__1].r = t.r, a[i__1].i = t.i;
  988. }
  989. /* Convert upper triangle of A into U form by applying */
  990. /* the interchanges in columns k+1:N. */
  991. if (k < *n) {
  992. i__1 = *n - k;
  993. cswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  994. + 1) * a_dim1], lda);
  995. }
  996. } else {
  997. /* (*) Make sure that diagonal element of pivot is real */
  998. i__1 = k + k * a_dim1;
  999. i__2 = k + k * a_dim1;
  1000. r__1 = a[i__2].r;
  1001. a[i__1].r = r__1, a[i__1].i = 0.f;
  1002. if (kstep == 2) {
  1003. i__1 = k - 1 + (k - 1) * a_dim1;
  1004. i__2 = k - 1 + (k - 1) * a_dim1;
  1005. r__1 = a[i__2].r;
  1006. a[i__1].r = r__1, a[i__1].i = 0.f;
  1007. }
  1008. }
  1009. /* Update the leading submatrix */
  1010. if (kstep == 1) {
  1011. /* 1-by-1 pivot block D(k): column k now holds */
  1012. /* W(k) = U(k)*D(k) */
  1013. /* where U(k) is the k-th column of U */
  1014. if (k > 1) {
  1015. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  1016. /* store U(k) in column k */
  1017. i__1 = k + k * a_dim1;
  1018. if ((r__1 = a[i__1].r, abs(r__1)) >= sfmin) {
  1019. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  1020. /* A := A - U(k)*D(k)*U(k)**T */
  1021. /* = A - W(k)*1/D(k)*W(k)**T */
  1022. i__1 = k + k * a_dim1;
  1023. d11 = 1.f / a[i__1].r;
  1024. i__1 = k - 1;
  1025. r__1 = -d11;
  1026. cher_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  1027. a[a_offset], lda);
  1028. /* Store U(k) in column k */
  1029. i__1 = k - 1;
  1030. csscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  1031. } else {
  1032. /* Store L(k) in column K */
  1033. i__1 = k + k * a_dim1;
  1034. d11 = a[i__1].r;
  1035. i__1 = k - 1;
  1036. for (ii = 1; ii <= i__1; ++ii) {
  1037. i__2 = ii + k * a_dim1;
  1038. i__3 = ii + k * a_dim1;
  1039. q__1.r = a[i__3].r / d11, q__1.i = a[i__3].i /
  1040. d11;
  1041. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1042. /* L16: */
  1043. }
  1044. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1045. /* A := A - U(k)*D(k)*U(k)**T */
  1046. /* = A - W(k)*(1/D(k))*W(k)**T */
  1047. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1048. i__1 = k - 1;
  1049. r__1 = -d11;
  1050. cher_(uplo, &i__1, &r__1, &a[k * a_dim1 + 1], &c__1, &
  1051. a[a_offset], lda);
  1052. }
  1053. /* Store the superdiagonal element of D in array E */
  1054. i__1 = k;
  1055. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1056. }
  1057. } else {
  1058. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  1059. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  1060. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  1061. /* of U */
  1062. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  1063. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  1064. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  1065. /* and store L(k) and L(k+1) in columns k and k+1 */
  1066. if (k > 2) {
  1067. /* D = |A12| */
  1068. i__1 = k - 1 + k * a_dim1;
  1069. r__1 = a[i__1].r;
  1070. r__2 = r_imag(&a[k - 1 + k * a_dim1]);
  1071. d__ = slapy2_(&r__1, &r__2);
  1072. i__1 = k + k * a_dim1;
  1073. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1074. d11 = q__1.r;
  1075. i__1 = k - 1 + (k - 1) * a_dim1;
  1076. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1077. d22 = q__1.r;
  1078. i__1 = k - 1 + k * a_dim1;
  1079. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1080. d12.r = q__1.r, d12.i = q__1.i;
  1081. tt = 1.f / (d11 * d22 - 1.f);
  1082. for (j = k - 2; j >= 1; --j) {
  1083. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1084. i__1 = j + (k - 1) * a_dim1;
  1085. q__3.r = d11 * a[i__1].r, q__3.i = d11 * a[i__1].i;
  1086. r_cnjg(&q__5, &d12);
  1087. i__2 = j + k * a_dim1;
  1088. q__4.r = q__5.r * a[i__2].r - q__5.i * a[i__2].i,
  1089. q__4.i = q__5.r * a[i__2].i + q__5.i * a[i__2]
  1090. .r;
  1091. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1092. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1093. wkm1.r = q__1.r, wkm1.i = q__1.i;
  1094. i__1 = j + k * a_dim1;
  1095. q__3.r = d22 * a[i__1].r, q__3.i = d22 * a[i__1].i;
  1096. i__2 = j + (k - 1) * a_dim1;
  1097. q__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
  1098. q__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
  1099. .r;
  1100. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1101. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1102. wk.r = q__1.r, wk.i = q__1.i;
  1103. /* Perform a rank-2 update of A(1:k-2,1:k-2) */
  1104. for (i__ = j; i__ >= 1; --i__) {
  1105. i__1 = i__ + j * a_dim1;
  1106. i__2 = i__ + j * a_dim1;
  1107. i__3 = i__ + k * a_dim1;
  1108. q__4.r = a[i__3].r / d__, q__4.i = a[i__3].i /
  1109. d__;
  1110. r_cnjg(&q__5, &wk);
  1111. q__3.r = q__4.r * q__5.r - q__4.i * q__5.i,
  1112. q__3.i = q__4.r * q__5.i + q__4.i *
  1113. q__5.r;
  1114. q__2.r = a[i__2].r - q__3.r, q__2.i = a[i__2].i -
  1115. q__3.i;
  1116. i__4 = i__ + (k - 1) * a_dim1;
  1117. q__7.r = a[i__4].r / d__, q__7.i = a[i__4].i /
  1118. d__;
  1119. r_cnjg(&q__8, &wkm1);
  1120. q__6.r = q__7.r * q__8.r - q__7.i * q__8.i,
  1121. q__6.i = q__7.r * q__8.i + q__7.i *
  1122. q__8.r;
  1123. q__1.r = q__2.r - q__6.r, q__1.i = q__2.i -
  1124. q__6.i;
  1125. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1126. /* L20: */
  1127. }
  1128. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  1129. i__1 = j + k * a_dim1;
  1130. q__1.r = wk.r / d__, q__1.i = wk.i / d__;
  1131. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1132. i__1 = j + (k - 1) * a_dim1;
  1133. q__1.r = wkm1.r / d__, q__1.i = wkm1.i / d__;
  1134. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1135. /* (*) Make sure that diagonal element of pivot is real */
  1136. i__1 = j + j * a_dim1;
  1137. i__2 = j + j * a_dim1;
  1138. r__1 = a[i__2].r;
  1139. q__1.r = r__1, q__1.i = 0.f;
  1140. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1141. /* L30: */
  1142. }
  1143. }
  1144. /* Copy superdiagonal elements of D(K) to E(K) and */
  1145. /* ZERO out superdiagonal entry of A */
  1146. i__1 = k;
  1147. i__2 = k - 1 + k * a_dim1;
  1148. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1149. i__1 = k - 1;
  1150. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1151. i__1 = k - 1 + k * a_dim1;
  1152. a[i__1].r = 0.f, a[i__1].i = 0.f;
  1153. }
  1154. /* End column K is nonsingular */
  1155. }
  1156. /* Store details of the interchanges in IPIV */
  1157. if (kstep == 1) {
  1158. ipiv[k] = kp;
  1159. } else {
  1160. ipiv[k] = -p;
  1161. ipiv[k - 1] = -kp;
  1162. }
  1163. /* Decrease K and return to the start of the main loop */
  1164. k -= kstep;
  1165. goto L10;
  1166. L34:
  1167. ;
  1168. } else {
  1169. /* Factorize A as L*D*L**H using the lower triangle of A */
  1170. /* Initialize the unused last entry of the subdiagonal array E. */
  1171. i__1 = *n;
  1172. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1173. /* K is the main loop index, increasing from 1 to N in steps of */
  1174. /* 1 or 2 */
  1175. k = 1;
  1176. L40:
  1177. /* If K > N, exit from loop */
  1178. if (k > *n) {
  1179. goto L64;
  1180. }
  1181. kstep = 1;
  1182. p = k;
  1183. /* Determine rows and columns to be interchanged and whether */
  1184. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1185. i__1 = k + k * a_dim1;
  1186. absakk = (r__1 = a[i__1].r, abs(r__1));
  1187. /* IMAX is the row-index of the largest off-diagonal element in */
  1188. /* column K, and COLMAX is its absolute value. */
  1189. /* Determine both COLMAX and IMAX. */
  1190. if (k < *n) {
  1191. i__1 = *n - k;
  1192. imax = k + icamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1193. i__1 = imax + k * a_dim1;
  1194. colmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[imax +
  1195. k * a_dim1]), abs(r__2));
  1196. } else {
  1197. colmax = 0.f;
  1198. }
  1199. if (f2cmax(absakk,colmax) == 0.f) {
  1200. /* Column K is zero or underflow: set INFO and continue */
  1201. if (*info == 0) {
  1202. *info = k;
  1203. }
  1204. kp = k;
  1205. i__1 = k + k * a_dim1;
  1206. i__2 = k + k * a_dim1;
  1207. r__1 = a[i__2].r;
  1208. a[i__1].r = r__1, a[i__1].i = 0.f;
  1209. /* Set E( K ) to zero */
  1210. if (k < *n) {
  1211. i__1 = k;
  1212. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1213. }
  1214. } else {
  1215. /* ============================================================ */
  1216. /* BEGIN pivot search */
  1217. /* Case(1) */
  1218. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1219. /* (used to handle NaN and Inf) */
  1220. if (! (absakk < alpha * colmax)) {
  1221. /* no interchange, use 1-by-1 pivot block */
  1222. kp = k;
  1223. } else {
  1224. done = FALSE_;
  1225. /* Loop until pivot found */
  1226. L42:
  1227. /* BEGIN pivot search loop body */
  1228. /* JMAX is the column-index of the largest off-diagonal */
  1229. /* element in row IMAX, and ROWMAX is its absolute value. */
  1230. /* Determine both ROWMAX and JMAX. */
  1231. if (imax != k) {
  1232. i__1 = imax - k;
  1233. jmax = k - 1 + icamax_(&i__1, &a[imax + k * a_dim1], lda);
  1234. i__1 = imax + jmax * a_dim1;
  1235. rowmax = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&
  1236. a[imax + jmax * a_dim1]), abs(r__2));
  1237. } else {
  1238. rowmax = 0.f;
  1239. }
  1240. if (imax < *n) {
  1241. i__1 = *n - imax;
  1242. itemp = imax + icamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1243. , &c__1);
  1244. i__1 = itemp + imax * a_dim1;
  1245. stemp = (r__1 = a[i__1].r, abs(r__1)) + (r__2 = r_imag(&a[
  1246. itemp + imax * a_dim1]), abs(r__2));
  1247. if (stemp > rowmax) {
  1248. rowmax = stemp;
  1249. jmax = itemp;
  1250. }
  1251. }
  1252. /* Case(2) */
  1253. /* Equivalent to testing for */
  1254. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  1255. /* (used to handle NaN and Inf) */
  1256. i__1 = imax + imax * a_dim1;
  1257. if (! ((r__1 = a[i__1].r, abs(r__1)) < alpha * rowmax)) {
  1258. /* interchange rows and columns K and IMAX, */
  1259. /* use 1-by-1 pivot block */
  1260. kp = imax;
  1261. done = TRUE_;
  1262. /* Case(3) */
  1263. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1264. /* (used to handle NaN and Inf) */
  1265. } else if (p == jmax || rowmax <= colmax) {
  1266. /* interchange rows and columns K+1 and IMAX, */
  1267. /* use 2-by-2 pivot block */
  1268. kp = imax;
  1269. kstep = 2;
  1270. done = TRUE_;
  1271. /* Case(4) */
  1272. } else {
  1273. /* Pivot not found: set params and repeat */
  1274. p = imax;
  1275. colmax = rowmax;
  1276. imax = jmax;
  1277. }
  1278. /* END pivot search loop body */
  1279. if (! done) {
  1280. goto L42;
  1281. }
  1282. }
  1283. /* END pivot search */
  1284. /* ============================================================ */
  1285. /* KK is the column of A where pivoting step stopped */
  1286. kk = k + kstep - 1;
  1287. /* For only a 2x2 pivot, interchange rows and columns K and P */
  1288. /* in the trailing submatrix A(k:n,k:n) */
  1289. if (kstep == 2 && p != k) {
  1290. /* (1) Swap columnar parts */
  1291. if (p < *n) {
  1292. i__1 = *n - p;
  1293. cswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1294. * a_dim1], &c__1);
  1295. }
  1296. /* (2) Swap and conjugate middle parts */
  1297. i__1 = p - 1;
  1298. for (j = k + 1; j <= i__1; ++j) {
  1299. r_cnjg(&q__1, &a[j + k * a_dim1]);
  1300. t.r = q__1.r, t.i = q__1.i;
  1301. i__2 = j + k * a_dim1;
  1302. r_cnjg(&q__1, &a[p + j * a_dim1]);
  1303. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1304. i__2 = p + j * a_dim1;
  1305. a[i__2].r = t.r, a[i__2].i = t.i;
  1306. /* L44: */
  1307. }
  1308. /* (3) Swap and conjugate corner elements at row-col interserction */
  1309. i__1 = p + k * a_dim1;
  1310. r_cnjg(&q__1, &a[p + k * a_dim1]);
  1311. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1312. /* (4) Swap diagonal elements at row-col intersection */
  1313. i__1 = k + k * a_dim1;
  1314. r1 = a[i__1].r;
  1315. i__1 = k + k * a_dim1;
  1316. i__2 = p + p * a_dim1;
  1317. r__1 = a[i__2].r;
  1318. a[i__1].r = r__1, a[i__1].i = 0.f;
  1319. i__1 = p + p * a_dim1;
  1320. a[i__1].r = r1, a[i__1].i = 0.f;
  1321. /* Convert lower triangle of A into L form by applying */
  1322. /* the interchanges in columns 1:k-1. */
  1323. if (k > 1) {
  1324. i__1 = k - 1;
  1325. cswap_(&i__1, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
  1326. }
  1327. }
  1328. /* For both 1x1 and 2x2 pivots, interchange rows and */
  1329. /* columns KK and KP in the trailing submatrix A(k:n,k:n) */
  1330. if (kp != kk) {
  1331. /* (1) Swap columnar parts */
  1332. if (kp < *n) {
  1333. i__1 = *n - kp;
  1334. cswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1335. + kp * a_dim1], &c__1);
  1336. }
  1337. /* (2) Swap and conjugate middle parts */
  1338. i__1 = kp - 1;
  1339. for (j = kk + 1; j <= i__1; ++j) {
  1340. r_cnjg(&q__1, &a[j + kk * a_dim1]);
  1341. t.r = q__1.r, t.i = q__1.i;
  1342. i__2 = j + kk * a_dim1;
  1343. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  1344. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1345. i__2 = kp + j * a_dim1;
  1346. a[i__2].r = t.r, a[i__2].i = t.i;
  1347. /* L45: */
  1348. }
  1349. /* (3) Swap and conjugate corner elements at row-col interserction */
  1350. i__1 = kp + kk * a_dim1;
  1351. r_cnjg(&q__1, &a[kp + kk * a_dim1]);
  1352. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1353. /* (4) Swap diagonal elements at row-col intersection */
  1354. i__1 = kk + kk * a_dim1;
  1355. r1 = a[i__1].r;
  1356. i__1 = kk + kk * a_dim1;
  1357. i__2 = kp + kp * a_dim1;
  1358. r__1 = a[i__2].r;
  1359. a[i__1].r = r__1, a[i__1].i = 0.f;
  1360. i__1 = kp + kp * a_dim1;
  1361. a[i__1].r = r1, a[i__1].i = 0.f;
  1362. if (kstep == 2) {
  1363. /* (*) Make sure that diagonal element of pivot is real */
  1364. i__1 = k + k * a_dim1;
  1365. i__2 = k + k * a_dim1;
  1366. r__1 = a[i__2].r;
  1367. a[i__1].r = r__1, a[i__1].i = 0.f;
  1368. /* (5) Swap row elements */
  1369. i__1 = k + 1 + k * a_dim1;
  1370. t.r = a[i__1].r, t.i = a[i__1].i;
  1371. i__1 = k + 1 + k * a_dim1;
  1372. i__2 = kp + k * a_dim1;
  1373. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1374. i__1 = kp + k * a_dim1;
  1375. a[i__1].r = t.r, a[i__1].i = t.i;
  1376. }
  1377. /* Convert lower triangle of A into L form by applying */
  1378. /* the interchanges in columns 1:k-1. */
  1379. if (k > 1) {
  1380. i__1 = k - 1;
  1381. cswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1382. }
  1383. } else {
  1384. /* (*) Make sure that diagonal element of pivot is real */
  1385. i__1 = k + k * a_dim1;
  1386. i__2 = k + k * a_dim1;
  1387. r__1 = a[i__2].r;
  1388. a[i__1].r = r__1, a[i__1].i = 0.f;
  1389. if (kstep == 2) {
  1390. i__1 = k + 1 + (k + 1) * a_dim1;
  1391. i__2 = k + 1 + (k + 1) * a_dim1;
  1392. r__1 = a[i__2].r;
  1393. a[i__1].r = r__1, a[i__1].i = 0.f;
  1394. }
  1395. }
  1396. /* Update the trailing submatrix */
  1397. if (kstep == 1) {
  1398. /* 1-by-1 pivot block D(k): column k of A now holds */
  1399. /* W(k) = L(k)*D(k), */
  1400. /* where L(k) is the k-th column of L */
  1401. if (k < *n) {
  1402. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1403. /* store L(k) in column k */
  1404. /* Handle division by a small number */
  1405. i__1 = k + k * a_dim1;
  1406. if ((r__1 = a[i__1].r, abs(r__1)) >= sfmin) {
  1407. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1408. /* A := A - L(k)*D(k)*L(k)**T */
  1409. /* = A - W(k)*(1/D(k))*W(k)**T */
  1410. i__1 = k + k * a_dim1;
  1411. d11 = 1.f / a[i__1].r;
  1412. i__1 = *n - k;
  1413. r__1 = -d11;
  1414. cher_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1415. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1416. /* Store L(k) in column k */
  1417. i__1 = *n - k;
  1418. csscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1419. } else {
  1420. /* Store L(k) in column k */
  1421. i__1 = k + k * a_dim1;
  1422. d11 = a[i__1].r;
  1423. i__1 = *n;
  1424. for (ii = k + 1; ii <= i__1; ++ii) {
  1425. i__2 = ii + k * a_dim1;
  1426. i__3 = ii + k * a_dim1;
  1427. q__1.r = a[i__3].r / d11, q__1.i = a[i__3].i /
  1428. d11;
  1429. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1430. /* L46: */
  1431. }
  1432. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1433. /* A := A - L(k)*D(k)*L(k)**T */
  1434. /* = A - W(k)*(1/D(k))*W(k)**T */
  1435. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1436. i__1 = *n - k;
  1437. r__1 = -d11;
  1438. cher_(uplo, &i__1, &r__1, &a[k + 1 + k * a_dim1], &
  1439. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1440. }
  1441. /* Store the subdiagonal element of D in array E */
  1442. i__1 = k;
  1443. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1444. }
  1445. } else {
  1446. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1447. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1448. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1449. /* of L */
  1450. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1451. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1452. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1453. /* and store L(k) and L(k+1) in columns k and k+1 */
  1454. if (k < *n - 1) {
  1455. /* D = |A21| */
  1456. i__1 = k + 1 + k * a_dim1;
  1457. r__1 = a[i__1].r;
  1458. r__2 = r_imag(&a[k + 1 + k * a_dim1]);
  1459. d__ = slapy2_(&r__1, &r__2);
  1460. i__1 = k + 1 + (k + 1) * a_dim1;
  1461. d11 = a[i__1].r / d__;
  1462. i__1 = k + k * a_dim1;
  1463. d22 = a[i__1].r / d__;
  1464. i__1 = k + 1 + k * a_dim1;
  1465. q__1.r = a[i__1].r / d__, q__1.i = a[i__1].i / d__;
  1466. d21.r = q__1.r, d21.i = q__1.i;
  1467. tt = 1.f / (d11 * d22 - 1.f);
  1468. i__1 = *n;
  1469. for (j = k + 2; j <= i__1; ++j) {
  1470. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1471. i__2 = j + k * a_dim1;
  1472. q__3.r = d11 * a[i__2].r, q__3.i = d11 * a[i__2].i;
  1473. i__3 = j + (k + 1) * a_dim1;
  1474. q__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
  1475. q__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
  1476. .r;
  1477. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1478. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1479. wk.r = q__1.r, wk.i = q__1.i;
  1480. i__2 = j + (k + 1) * a_dim1;
  1481. q__3.r = d22 * a[i__2].r, q__3.i = d22 * a[i__2].i;
  1482. r_cnjg(&q__5, &d21);
  1483. i__3 = j + k * a_dim1;
  1484. q__4.r = q__5.r * a[i__3].r - q__5.i * a[i__3].i,
  1485. q__4.i = q__5.r * a[i__3].i + q__5.i * a[i__3]
  1486. .r;
  1487. q__2.r = q__3.r - q__4.r, q__2.i = q__3.i - q__4.i;
  1488. q__1.r = tt * q__2.r, q__1.i = tt * q__2.i;
  1489. wkp1.r = q__1.r, wkp1.i = q__1.i;
  1490. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1491. i__2 = *n;
  1492. for (i__ = j; i__ <= i__2; ++i__) {
  1493. i__3 = i__ + j * a_dim1;
  1494. i__4 = i__ + j * a_dim1;
  1495. i__5 = i__ + k * a_dim1;
  1496. q__4.r = a[i__5].r / d__, q__4.i = a[i__5].i /
  1497. d__;
  1498. r_cnjg(&q__5, &wk);
  1499. q__3.r = q__4.r * q__5.r - q__4.i * q__5.i,
  1500. q__3.i = q__4.r * q__5.i + q__4.i *
  1501. q__5.r;
  1502. q__2.r = a[i__4].r - q__3.r, q__2.i = a[i__4].i -
  1503. q__3.i;
  1504. i__6 = i__ + (k + 1) * a_dim1;
  1505. q__7.r = a[i__6].r / d__, q__7.i = a[i__6].i /
  1506. d__;
  1507. r_cnjg(&q__8, &wkp1);
  1508. q__6.r = q__7.r * q__8.r - q__7.i * q__8.i,
  1509. q__6.i = q__7.r * q__8.i + q__7.i *
  1510. q__8.r;
  1511. q__1.r = q__2.r - q__6.r, q__1.i = q__2.i -
  1512. q__6.i;
  1513. a[i__3].r = q__1.r, a[i__3].i = q__1.i;
  1514. /* L50: */
  1515. }
  1516. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1517. i__2 = j + k * a_dim1;
  1518. q__1.r = wk.r / d__, q__1.i = wk.i / d__;
  1519. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1520. i__2 = j + (k + 1) * a_dim1;
  1521. q__1.r = wkp1.r / d__, q__1.i = wkp1.i / d__;
  1522. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1523. /* (*) Make sure that diagonal element of pivot is real */
  1524. i__2 = j + j * a_dim1;
  1525. i__3 = j + j * a_dim1;
  1526. r__1 = a[i__3].r;
  1527. q__1.r = r__1, q__1.i = 0.f;
  1528. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1529. /* L60: */
  1530. }
  1531. }
  1532. /* Copy subdiagonal elements of D(K) to E(K) and */
  1533. /* ZERO out subdiagonal entry of A */
  1534. i__1 = k;
  1535. i__2 = k + 1 + k * a_dim1;
  1536. e[i__1].r = a[i__2].r, e[i__1].i = a[i__2].i;
  1537. i__1 = k + 1;
  1538. e[i__1].r = 0.f, e[i__1].i = 0.f;
  1539. i__1 = k + 1 + k * a_dim1;
  1540. a[i__1].r = 0.f, a[i__1].i = 0.f;
  1541. }
  1542. /* End column K is nonsingular */
  1543. }
  1544. /* Store details of the interchanges in IPIV */
  1545. if (kstep == 1) {
  1546. ipiv[k] = kp;
  1547. } else {
  1548. ipiv[k] = -p;
  1549. ipiv[k + 1] = -kp;
  1550. }
  1551. /* Increase K and return to the start of the main loop */
  1552. k += kstep;
  1553. goto L40;
  1554. L64:
  1555. ;
  1556. }
  1557. return;
  1558. /* End of CHETF2_RK */
  1559. } /* chetf2_rk__ */