You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgesvdx.c 45 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static integer c__6 = 6;
  486. static integer c__0 = 0;
  487. static integer c__2 = 2;
  488. static integer c__1 = 1;
  489. static integer c_n1 = -1;
  490. /* > \brief <b> CGESVDX computes the singular value decomposition (SVD) for GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CGESVDX + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvdx
  497. .f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvdx
  500. .f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvdx
  503. .f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, */
  509. /* $ IL, IU, NS, S, U, LDU, VT, LDVT, WORK, */
  510. /* $ LWORK, RWORK, IWORK, INFO ) */
  511. /* CHARACTER JOBU, JOBVT, RANGE */
  512. /* INTEGER IL, INFO, IU, LDA, LDU, LDVT, LWORK, M, N, NS */
  513. /* REAL VL, VU */
  514. /* INTEGER IWORK( * ) */
  515. /* REAL S( * ), RWORK( * ) */
  516. /* COMPLEX A( LDA, * ), U( LDU, * ), VT( LDVT, * ), */
  517. /* $ WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > CGESVDX computes the singular value decomposition (SVD) of a complex */
  524. /* > M-by-N matrix A, optionally computing the left and/or right singular */
  525. /* > vectors. The SVD is written */
  526. /* > */
  527. /* > A = U * SIGMA * transpose(V) */
  528. /* > */
  529. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  530. /* > f2cmin(m,n) diagonal elements, U is an M-by-M unitary matrix, and */
  531. /* > V is an N-by-N unitary matrix. The diagonal elements of SIGMA */
  532. /* > are the singular values of A; they are real and non-negative, and */
  533. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  534. /* > U and V are the left and right singular vectors of A. */
  535. /* > */
  536. /* > CGESVDX uses an eigenvalue problem for obtaining the SVD, which */
  537. /* > allows for the computation of a subset of singular values and */
  538. /* > vectors. See SBDSVDX for details. */
  539. /* > */
  540. /* > Note that the routine returns V**T, not V. */
  541. /* > \endverbatim */
  542. /* Arguments: */
  543. /* ========== */
  544. /* > \param[in] JOBU */
  545. /* > \verbatim */
  546. /* > JOBU is CHARACTER*1 */
  547. /* > Specifies options for computing all or part of the matrix U: */
  548. /* > = 'V': the first f2cmin(m,n) columns of U (the left singular */
  549. /* > vectors) or as specified by RANGE are returned in */
  550. /* > the array U; */
  551. /* > = 'N': no columns of U (no left singular vectors) are */
  552. /* > computed. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] JOBVT */
  556. /* > \verbatim */
  557. /* > JOBVT is CHARACTER*1 */
  558. /* > Specifies options for computing all or part of the matrix */
  559. /* > V**T: */
  560. /* > = 'V': the first f2cmin(m,n) rows of V**T (the right singular */
  561. /* > vectors) or as specified by RANGE are returned in */
  562. /* > the array VT; */
  563. /* > = 'N': no rows of V**T (no right singular vectors) are */
  564. /* > computed. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] RANGE */
  568. /* > \verbatim */
  569. /* > RANGE is CHARACTER*1 */
  570. /* > = 'A': all singular values will be found. */
  571. /* > = 'V': all singular values in the half-open interval (VL,VU] */
  572. /* > will be found. */
  573. /* > = 'I': the IL-th through IU-th singular values will be found. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] M */
  577. /* > \verbatim */
  578. /* > M is INTEGER */
  579. /* > The number of rows of the input matrix A. M >= 0. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] N */
  583. /* > \verbatim */
  584. /* > N is INTEGER */
  585. /* > The number of columns of the input matrix A. N >= 0. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] A */
  589. /* > \verbatim */
  590. /* > A is COMPLEX array, dimension (LDA,N) */
  591. /* > On entry, the M-by-N matrix A. */
  592. /* > On exit, the contents of A are destroyed. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDA */
  596. /* > \verbatim */
  597. /* > LDA is INTEGER */
  598. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] VL */
  602. /* > \verbatim */
  603. /* > VL is REAL */
  604. /* > If RANGE='V', the lower bound of the interval to */
  605. /* > be searched for singular values. VU > VL. */
  606. /* > Not referenced if RANGE = 'A' or 'I'. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] VU */
  610. /* > \verbatim */
  611. /* > VU is REAL */
  612. /* > If RANGE='V', the upper bound of the interval to */
  613. /* > be searched for singular values. VU > VL. */
  614. /* > Not referenced if RANGE = 'A' or 'I'. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] IL */
  618. /* > \verbatim */
  619. /* > IL is INTEGER */
  620. /* > If RANGE='I', the index of the */
  621. /* > smallest singular value to be returned. */
  622. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  623. /* > Not referenced if RANGE = 'A' or 'V'. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] IU */
  627. /* > \verbatim */
  628. /* > IU is INTEGER */
  629. /* > If RANGE='I', the index of the */
  630. /* > largest singular value to be returned. */
  631. /* > 1 <= IL <= IU <= f2cmin(M,N), if f2cmin(M,N) > 0. */
  632. /* > Not referenced if RANGE = 'A' or 'V'. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] NS */
  636. /* > \verbatim */
  637. /* > NS is INTEGER */
  638. /* > The total number of singular values found, */
  639. /* > 0 <= NS <= f2cmin(M,N). */
  640. /* > If RANGE = 'A', NS = f2cmin(M,N); if RANGE = 'I', NS = IU-IL+1. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] S */
  644. /* > \verbatim */
  645. /* > S is REAL array, dimension (f2cmin(M,N)) */
  646. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] U */
  650. /* > \verbatim */
  651. /* > U is COMPLEX array, dimension (LDU,UCOL) */
  652. /* > If JOBU = 'V', U contains columns of U (the left singular */
  653. /* > vectors, stored columnwise) as specified by RANGE; if */
  654. /* > JOBU = 'N', U is not referenced. */
  655. /* > Note: The user must ensure that UCOL >= NS; if RANGE = 'V', */
  656. /* > the exact value of NS is not known in advance and an upper */
  657. /* > bound must be used. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] LDU */
  661. /* > \verbatim */
  662. /* > LDU is INTEGER */
  663. /* > The leading dimension of the array U. LDU >= 1; if */
  664. /* > JOBU = 'V', LDU >= M. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] VT */
  668. /* > \verbatim */
  669. /* > VT is COMPLEX array, dimension (LDVT,N) */
  670. /* > If JOBVT = 'V', VT contains the rows of V**T (the right singular */
  671. /* > vectors, stored rowwise) as specified by RANGE; if JOBVT = 'N', */
  672. /* > VT is not referenced. */
  673. /* > Note: The user must ensure that LDVT >= NS; if RANGE = 'V', */
  674. /* > the exact value of NS is not known in advance and an upper */
  675. /* > bound must be used. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LDVT */
  679. /* > \verbatim */
  680. /* > LDVT is INTEGER */
  681. /* > The leading dimension of the array VT. LDVT >= 1; if */
  682. /* > JOBVT = 'V', LDVT >= NS (see above). */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] WORK */
  686. /* > \verbatim */
  687. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  688. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[in] LWORK */
  692. /* > \verbatim */
  693. /* > LWORK is INTEGER */
  694. /* > The dimension of the array WORK. */
  695. /* > LWORK >= MAX(1,MIN(M,N)*(MIN(M,N)+4)) for the paths (see */
  696. /* > comments inside the code): */
  697. /* > - PATH 1 (M much larger than N) */
  698. /* > - PATH 1t (N much larger than M) */
  699. /* > LWORK >= MAX(1,MIN(M,N)*2+MAX(M,N)) for the other paths. */
  700. /* > For good performance, LWORK should generally be larger. */
  701. /* > */
  702. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  703. /* > only calculates the optimal size of the WORK array, returns */
  704. /* > this value as the first entry of the WORK array, and no error */
  705. /* > message related to LWORK is issued by XERBLA. */
  706. /* > \endverbatim */
  707. /* > */
  708. /* > \param[out] RWORK */
  709. /* > \verbatim */
  710. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  711. /* > LRWORK >= MIN(M,N)*(MIN(M,N)*2+15*MIN(M,N)). */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] IWORK */
  715. /* > \verbatim */
  716. /* > IWORK is INTEGER array, dimension (12*MIN(M,N)) */
  717. /* > If INFO = 0, the first NS elements of IWORK are zero. If INFO > 0, */
  718. /* > then IWORK contains the indices of the eigenvectors that failed */
  719. /* > to converge in SBDSVDX/SSTEVX. */
  720. /* > \endverbatim */
  721. /* > */
  722. /* > \param[out] INFO */
  723. /* > \verbatim */
  724. /* > INFO is INTEGER */
  725. /* > = 0: successful exit */
  726. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  727. /* > > 0: if INFO = i, then i eigenvectors failed to converge */
  728. /* > in SBDSVDX/SSTEVX. */
  729. /* > if INFO = N*2 + 1, an internal error occurred in */
  730. /* > SBDSVDX */
  731. /* > \endverbatim */
  732. /* Authors: */
  733. /* ======== */
  734. /* > \author Univ. of Tennessee */
  735. /* > \author Univ. of California Berkeley */
  736. /* > \author Univ. of Colorado Denver */
  737. /* > \author NAG Ltd. */
  738. /* > \date June 2016 */
  739. /* > \ingroup complexGEsing */
  740. /* ===================================================================== */
  741. /* Subroutine */ void cgesvdx_(char *jobu, char *jobvt, char *range, integer *
  742. m, integer *n, complex *a, integer *lda, real *vl, real *vu, integer *
  743. il, integer *iu, integer *ns, real *s, complex *u, integer *ldu,
  744. complex *vt, integer *ldvt, complex *work, integer *lwork, real *
  745. rwork, integer *iwork, integer *info)
  746. {
  747. /* System generated locals */
  748. address a__1[2];
  749. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
  750. i__2, i__3, i__4, i__5;
  751. real r__1;
  752. complex q__1;
  753. char ch__1[2];
  754. /* Local variables */
  755. integer iscl;
  756. logical alls, inds;
  757. integer ilqf;
  758. real anrm;
  759. integer ierr, iqrf, itau;
  760. char jobz[1];
  761. logical vals;
  762. integer i__, j, k;
  763. extern logical lsame_(char *, char *);
  764. integer iltgk, itemp, minmn, itaup, itauq, iutgk, itgkz, mnthr;
  765. logical wantu;
  766. integer id, ie;
  767. extern /* Subroutine */ void cgebrd_(integer *, integer *, complex *,
  768. integer *, real *, real *, complex *, complex *, complex *,
  769. integer *, integer *);
  770. extern real clange_(char *, integer *, integer *, complex *, integer *,
  771. real *);
  772. extern /* Subroutine */ void cgelqf_(integer *, integer *, complex *,
  773. integer *, complex *, complex *, integer *, integer *), clascl_(
  774. char *, integer *, integer *, real *, real *, integer *, integer *
  775. , complex *, integer *, integer *), cgeqrf_(integer *,
  776. integer *, complex *, integer *, complex *, complex *, integer *,
  777. integer *);
  778. extern real slamch_(char *);
  779. extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
  780. *, complex *, complex *, integer *), clacpy_(char *,
  781. integer *, integer *, complex *, integer *, complex *, integer *);
  782. extern int xerbla_(char *, integer *, ftnlen);
  783. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  784. integer *, integer *, ftnlen, ftnlen);
  785. real bignum;
  786. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  787. real *, integer *, integer *, real *, integer *, integer *);
  788. real abstol;
  789. extern /* Subroutine */ void cunmbr_(char *, char *, char *, integer *,
  790. integer *, integer *, complex *, integer *, complex *, complex *,
  791. integer *, complex *, integer *, integer *);
  792. char rngtgk[1];
  793. extern /* Subroutine */ void cunmlq_(char *, char *, integer *, integer *,
  794. integer *, complex *, integer *, complex *, complex *, integer *,
  795. complex *, integer *, integer *);
  796. integer itempr;
  797. extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
  798. integer *, complex *, integer *, complex *, complex *, integer *,
  799. complex *, integer *, integer *);
  800. integer minwrk, maxwrk;
  801. real smlnum;
  802. logical lquery, wantvt;
  803. real dum[1], eps;
  804. extern /* Subroutine */ void sbdsvdx_(char *, char *, char *, integer *,
  805. real *, real *, real *, real *, integer *, integer *, integer *,
  806. real *, real *, integer *, real *, integer *, integer *);
  807. /* -- LAPACK driver routine (version 3.8.0) -- */
  808. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  809. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  810. /* June 2016 */
  811. /* ===================================================================== */
  812. /* Test the input arguments. */
  813. /* Parameter adjustments */
  814. a_dim1 = *lda;
  815. a_offset = 1 + a_dim1 * 1;
  816. a -= a_offset;
  817. --s;
  818. u_dim1 = *ldu;
  819. u_offset = 1 + u_dim1 * 1;
  820. u -= u_offset;
  821. vt_dim1 = *ldvt;
  822. vt_offset = 1 + vt_dim1 * 1;
  823. vt -= vt_offset;
  824. --work;
  825. --rwork;
  826. --iwork;
  827. /* Function Body */
  828. *ns = 0;
  829. *info = 0;
  830. abstol = slamch_("S") * 2;
  831. lquery = *lwork == -1;
  832. minmn = f2cmin(*m,*n);
  833. wantu = lsame_(jobu, "V");
  834. wantvt = lsame_(jobvt, "V");
  835. if (wantu || wantvt) {
  836. *(unsigned char *)jobz = 'V';
  837. } else {
  838. *(unsigned char *)jobz = 'N';
  839. }
  840. alls = lsame_(range, "A");
  841. vals = lsame_(range, "V");
  842. inds = lsame_(range, "I");
  843. *info = 0;
  844. if (! lsame_(jobu, "V") && ! lsame_(jobu, "N")) {
  845. *info = -1;
  846. } else if (! lsame_(jobvt, "V") && ! lsame_(jobvt,
  847. "N")) {
  848. *info = -2;
  849. } else if (! (alls || vals || inds)) {
  850. *info = -3;
  851. } else if (*m < 0) {
  852. *info = -4;
  853. } else if (*n < 0) {
  854. *info = -5;
  855. } else if (*m > *lda) {
  856. *info = -7;
  857. } else if (minmn > 0) {
  858. if (vals) {
  859. if (*vl < 0.f) {
  860. *info = -8;
  861. } else if (*vu <= *vl) {
  862. *info = -9;
  863. }
  864. } else if (inds) {
  865. if (*il < 1 || *il > f2cmax(1,minmn)) {
  866. *info = -10;
  867. } else if (*iu < f2cmin(minmn,*il) || *iu > minmn) {
  868. *info = -11;
  869. }
  870. }
  871. if (*info == 0) {
  872. if (wantu && *ldu < *m) {
  873. *info = -15;
  874. } else if (wantvt) {
  875. if (inds) {
  876. if (*ldvt < *iu - *il + 1) {
  877. *info = -17;
  878. }
  879. } else if (*ldvt < minmn) {
  880. *info = -17;
  881. }
  882. }
  883. }
  884. }
  885. /* Compute workspace */
  886. /* (Note: Comments in the code beginning "Workspace:" describe the */
  887. /* minimal amount of workspace needed at that point in the code, */
  888. /* as well as the preferred amount for good performance. */
  889. /* NB refers to the optimal block size for the immediately */
  890. /* following subroutine, as returned by ILAENV.) */
  891. if (*info == 0) {
  892. minwrk = 1;
  893. maxwrk = 1;
  894. if (minmn > 0) {
  895. if (*m >= *n) {
  896. /* Writing concatenation */
  897. i__1[0] = 1, a__1[0] = jobu;
  898. i__1[1] = 1, a__1[1] = jobvt;
  899. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  900. mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
  901. ftnlen)6, (ftnlen)2);
  902. if (*m >= mnthr) {
  903. /* Path 1 (M much larger than N) */
  904. minwrk = *n * (*n + 5);
  905. maxwrk = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, &
  906. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  907. /* Computing MAX */
  908. i__2 = maxwrk, i__3 = *n * *n + (*n << 1) + (*n << 1) *
  909. ilaenv_(&c__1, "CGEBRD", " ", n, n, &c_n1, &c_n1,
  910. (ftnlen)6, (ftnlen)1);
  911. maxwrk = f2cmax(i__2,i__3);
  912. if (wantu || wantvt) {
  913. /* Computing MAX */
  914. i__2 = maxwrk, i__3 = *n * *n + (*n << 1) + *n *
  915. ilaenv_(&c__1, "CUNMQR", "LN", n, n, n, &c_n1,
  916. (ftnlen)6, (ftnlen)2);
  917. maxwrk = f2cmax(i__2,i__3);
  918. }
  919. } else {
  920. /* Path 2 (M at least N, but not much larger) */
  921. minwrk = *n * 3 + *m;
  922. maxwrk = (*n << 1) + (*m + *n) * ilaenv_(&c__1, "CGEBRD",
  923. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  924. if (wantu || wantvt) {
  925. /* Computing MAX */
  926. i__2 = maxwrk, i__3 = (*n << 1) + *n * ilaenv_(&c__1,
  927. "CUNMQR", "LN", n, n, n, &c_n1, (ftnlen)6, (
  928. ftnlen)2);
  929. maxwrk = f2cmax(i__2,i__3);
  930. }
  931. }
  932. } else {
  933. /* Writing concatenation */
  934. i__1[0] = 1, a__1[0] = jobu;
  935. i__1[1] = 1, a__1[1] = jobvt;
  936. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  937. mnthr = ilaenv_(&c__6, "CGESVD", ch__1, m, n, &c__0, &c__0, (
  938. ftnlen)6, (ftnlen)2);
  939. if (*n >= mnthr) {
  940. /* Path 1t (N much larger than M) */
  941. minwrk = *m * (*m + 5);
  942. maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &
  943. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  944. /* Computing MAX */
  945. i__2 = maxwrk, i__3 = *m * *m + (*m << 1) + (*m << 1) *
  946. ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1,
  947. (ftnlen)6, (ftnlen)1);
  948. maxwrk = f2cmax(i__2,i__3);
  949. if (wantu || wantvt) {
  950. /* Computing MAX */
  951. i__2 = maxwrk, i__3 = *m * *m + (*m << 1) + *m *
  952. ilaenv_(&c__1, "CUNMQR", "LN", m, m, m, &c_n1,
  953. (ftnlen)6, (ftnlen)2);
  954. maxwrk = f2cmax(i__2,i__3);
  955. }
  956. } else {
  957. /* Path 2t (N greater than M, but not much larger) */
  958. minwrk = *m * 3 + *n;
  959. maxwrk = (*m << 1) + (*m + *n) * ilaenv_(&c__1, "CGEBRD",
  960. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  961. if (wantu || wantvt) {
  962. /* Computing MAX */
  963. i__2 = maxwrk, i__3 = (*m << 1) + *m * ilaenv_(&c__1,
  964. "CUNMQR", "LN", m, m, m, &c_n1, (ftnlen)6, (
  965. ftnlen)2);
  966. maxwrk = f2cmax(i__2,i__3);
  967. }
  968. }
  969. }
  970. }
  971. maxwrk = f2cmax(maxwrk,minwrk);
  972. r__1 = (real) maxwrk;
  973. q__1.r = r__1, q__1.i = 0.f;
  974. work[1].r = q__1.r, work[1].i = q__1.i;
  975. if (*lwork < minwrk && ! lquery) {
  976. *info = -19;
  977. }
  978. }
  979. if (*info != 0) {
  980. i__2 = -(*info);
  981. xerbla_("CGESVDX", &i__2, (ftnlen)7);
  982. return;
  983. } else if (lquery) {
  984. return;
  985. }
  986. /* Quick return if possible */
  987. if (*m == 0 || *n == 0) {
  988. return;
  989. }
  990. /* Set singular values indices accord to RANGE='A'. */
  991. if (alls) {
  992. *(unsigned char *)rngtgk = 'I';
  993. iltgk = 1;
  994. iutgk = f2cmin(*m,*n);
  995. } else if (inds) {
  996. *(unsigned char *)rngtgk = 'I';
  997. iltgk = *il;
  998. iutgk = *iu;
  999. } else {
  1000. *(unsigned char *)rngtgk = 'V';
  1001. iltgk = 0;
  1002. iutgk = 0;
  1003. }
  1004. /* Get machine constants */
  1005. eps = slamch_("P");
  1006. smlnum = sqrt(slamch_("S")) / eps;
  1007. bignum = 1.f / smlnum;
  1008. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1009. anrm = clange_("M", m, n, &a[a_offset], lda, dum);
  1010. iscl = 0;
  1011. if (anrm > 0.f && anrm < smlnum) {
  1012. iscl = 1;
  1013. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  1014. info);
  1015. } else if (anrm > bignum) {
  1016. iscl = 1;
  1017. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  1018. info);
  1019. }
  1020. if (*m >= *n) {
  1021. /* A has at least as many rows as columns. If A has sufficiently */
  1022. /* more rows than columns, first reduce A using the QR */
  1023. /* decomposition. */
  1024. if (*m >= mnthr) {
  1025. /* Path 1 (M much larger than N): */
  1026. /* A = Q * R = Q * ( QB * B * PB**T ) */
  1027. /* = Q * ( QB * ( UB * S * VB**T ) * PB**T ) */
  1028. /* U = Q * QB * UB; V**T = VB**T * PB**T */
  1029. /* Compute A=Q*R */
  1030. /* (Workspace: need 2*N, prefer N+N*NB) */
  1031. itau = 1;
  1032. itemp = itau + *n;
  1033. i__2 = *lwork - itemp + 1;
  1034. cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1035. info);
  1036. /* Copy R into WORK and bidiagonalize it: */
  1037. /* (Workspace: need N*N+3*N, prefer N*N+N+2*N*NB) */
  1038. iqrf = itemp;
  1039. itauq = itemp + *n * *n;
  1040. itaup = itauq + *n;
  1041. itemp = itaup + *n;
  1042. id = 1;
  1043. ie = id + *n;
  1044. itgkz = ie + *n;
  1045. clacpy_("U", n, n, &a[a_offset], lda, &work[iqrf], n);
  1046. i__2 = *n - 1;
  1047. i__3 = *n - 1;
  1048. claset_("L", &i__2, &i__3, &c_b1, &c_b1, &work[iqrf + 1], n);
  1049. i__2 = *lwork - itemp + 1;
  1050. cgebrd_(n, n, &work[iqrf], n, &rwork[id], &rwork[ie], &work[itauq]
  1051. , &work[itaup], &work[itemp], &i__2, info);
  1052. itempr = itgkz + *n * ((*n << 1) + 1);
  1053. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1054. /* (Workspace: need 2*N*N+14*N) */
  1055. i__2 = *n << 1;
  1056. sbdsvdx_("U", jobz, rngtgk, n, &rwork[id], &rwork[ie], vl, vu, &
  1057. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1058. itempr], &iwork[1], info)
  1059. ;
  1060. /* If needed, compute left singular vectors. */
  1061. if (wantu) {
  1062. k = itgkz;
  1063. i__2 = *ns;
  1064. for (i__ = 1; i__ <= i__2; ++i__) {
  1065. i__3 = *n;
  1066. for (j = 1; j <= i__3; ++j) {
  1067. i__4 = j + i__ * u_dim1;
  1068. i__5 = k;
  1069. q__1.r = rwork[i__5], q__1.i = 0.f;
  1070. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1071. ++k;
  1072. }
  1073. k += *n;
  1074. }
  1075. i__2 = *m - *n;
  1076. claset_("A", &i__2, ns, &c_b1, &c_b1, &u[*n + 1 + u_dim1],
  1077. ldu);
  1078. /* Call CUNMBR to compute QB*UB. */
  1079. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1080. i__2 = *lwork - itemp + 1;
  1081. cunmbr_("Q", "L", "N", n, ns, n, &work[iqrf], n, &work[itauq],
  1082. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1083. /* Call CUNMQR to compute Q*(QB*UB). */
  1084. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1085. i__2 = *lwork - itemp + 1;
  1086. cunmqr_("L", "N", m, ns, n, &a[a_offset], lda, &work[itau], &
  1087. u[u_offset], ldu, &work[itemp], &i__2, info);
  1088. }
  1089. /* If needed, compute right singular vectors. */
  1090. if (wantvt) {
  1091. k = itgkz + *n;
  1092. i__2 = *ns;
  1093. for (i__ = 1; i__ <= i__2; ++i__) {
  1094. i__3 = *n;
  1095. for (j = 1; j <= i__3; ++j) {
  1096. i__4 = i__ + j * vt_dim1;
  1097. i__5 = k;
  1098. q__1.r = rwork[i__5], q__1.i = 0.f;
  1099. vt[i__4].r = q__1.r, vt[i__4].i = q__1.i;
  1100. ++k;
  1101. }
  1102. k += *n;
  1103. }
  1104. /* Call CUNMBR to compute VB**T * PB**T */
  1105. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1106. i__2 = *lwork - itemp + 1;
  1107. cunmbr_("P", "R", "C", ns, n, n, &work[iqrf], n, &work[itaup],
  1108. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1109. }
  1110. } else {
  1111. /* Path 2 (M at least N, but not much larger) */
  1112. /* Reduce A to bidiagonal form without QR decomposition */
  1113. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1114. /* U = QB * UB; V**T = VB**T * PB**T */
  1115. /* Bidiagonalize A */
  1116. /* (Workspace: need 2*N+M, prefer 2*N+(M+N)*NB) */
  1117. itauq = 1;
  1118. itaup = itauq + *n;
  1119. itemp = itaup + *n;
  1120. id = 1;
  1121. ie = id + *n;
  1122. itgkz = ie + *n;
  1123. i__2 = *lwork - itemp + 1;
  1124. cgebrd_(m, n, &a[a_offset], lda, &rwork[id], &rwork[ie], &work[
  1125. itauq], &work[itaup], &work[itemp], &i__2, info);
  1126. itempr = itgkz + *n * ((*n << 1) + 1);
  1127. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1128. /* (Workspace: need 2*N*N+14*N) */
  1129. i__2 = *n << 1;
  1130. sbdsvdx_("U", jobz, rngtgk, n, &rwork[id], &rwork[ie], vl, vu, &
  1131. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1132. itempr], &iwork[1], info)
  1133. ;
  1134. /* If needed, compute left singular vectors. */
  1135. if (wantu) {
  1136. k = itgkz;
  1137. i__2 = *ns;
  1138. for (i__ = 1; i__ <= i__2; ++i__) {
  1139. i__3 = *n;
  1140. for (j = 1; j <= i__3; ++j) {
  1141. i__4 = j + i__ * u_dim1;
  1142. i__5 = k;
  1143. q__1.r = rwork[i__5], q__1.i = 0.f;
  1144. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1145. ++k;
  1146. }
  1147. k += *n;
  1148. }
  1149. i__2 = *m - *n;
  1150. claset_("A", &i__2, ns, &c_b1, &c_b1, &u[*n + 1 + u_dim1],
  1151. ldu);
  1152. /* Call CUNMBR to compute QB*UB. */
  1153. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1154. i__2 = *lwork - itemp + 1;
  1155. cunmbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1156. itauq], &u[u_offset], ldu, &work[itemp], &i__2, &ierr);
  1157. }
  1158. /* If needed, compute right singular vectors. */
  1159. if (wantvt) {
  1160. k = itgkz + *n;
  1161. i__2 = *ns;
  1162. for (i__ = 1; i__ <= i__2; ++i__) {
  1163. i__3 = *n;
  1164. for (j = 1; j <= i__3; ++j) {
  1165. i__4 = i__ + j * vt_dim1;
  1166. i__5 = k;
  1167. q__1.r = rwork[i__5], q__1.i = 0.f;
  1168. vt[i__4].r = q__1.r, vt[i__4].i = q__1.i;
  1169. ++k;
  1170. }
  1171. k += *n;
  1172. }
  1173. /* Call CUNMBR to compute VB**T * PB**T */
  1174. /* (Workspace in WORK( ITEMP ): need N, prefer N*NB) */
  1175. i__2 = *lwork - itemp + 1;
  1176. cunmbr_("P", "R", "C", ns, n, n, &a[a_offset], lda, &work[
  1177. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2, &
  1178. ierr);
  1179. }
  1180. }
  1181. } else {
  1182. /* A has more columns than rows. If A has sufficiently more */
  1183. /* columns than rows, first reduce A using the LQ decomposition. */
  1184. if (*n >= mnthr) {
  1185. /* Path 1t (N much larger than M): */
  1186. /* A = L * Q = ( QB * B * PB**T ) * Q */
  1187. /* = ( QB * ( UB * S * VB**T ) * PB**T ) * Q */
  1188. /* U = QB * UB ; V**T = VB**T * PB**T * Q */
  1189. /* Compute A=L*Q */
  1190. /* (Workspace: need 2*M, prefer M+M*NB) */
  1191. itau = 1;
  1192. itemp = itau + *m;
  1193. i__2 = *lwork - itemp + 1;
  1194. cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[itemp], &i__2,
  1195. info);
  1196. /* Copy L into WORK and bidiagonalize it: */
  1197. /* (Workspace in WORK( ITEMP ): need M*M+3*M, prefer M*M+M+2*M*NB) */
  1198. ilqf = itemp;
  1199. itauq = ilqf + *m * *m;
  1200. itaup = itauq + *m;
  1201. itemp = itaup + *m;
  1202. id = 1;
  1203. ie = id + *m;
  1204. itgkz = ie + *m;
  1205. clacpy_("L", m, m, &a[a_offset], lda, &work[ilqf], m);
  1206. i__2 = *m - 1;
  1207. i__3 = *m - 1;
  1208. claset_("U", &i__2, &i__3, &c_b1, &c_b1, &work[ilqf + *m], m);
  1209. i__2 = *lwork - itemp + 1;
  1210. cgebrd_(m, m, &work[ilqf], m, &rwork[id], &rwork[ie], &work[itauq]
  1211. , &work[itaup], &work[itemp], &i__2, info);
  1212. itempr = itgkz + *m * ((*m << 1) + 1);
  1213. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1214. /* (Workspace: need 2*M*M+14*M) */
  1215. i__2 = *m << 1;
  1216. sbdsvdx_("U", jobz, rngtgk, m, &rwork[id], &rwork[ie], vl, vu, &
  1217. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1218. itempr], &iwork[1], info)
  1219. ;
  1220. /* If needed, compute left singular vectors. */
  1221. if (wantu) {
  1222. k = itgkz;
  1223. i__2 = *ns;
  1224. for (i__ = 1; i__ <= i__2; ++i__) {
  1225. i__3 = *m;
  1226. for (j = 1; j <= i__3; ++j) {
  1227. i__4 = j + i__ * u_dim1;
  1228. i__5 = k;
  1229. q__1.r = rwork[i__5], q__1.i = 0.f;
  1230. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1231. ++k;
  1232. }
  1233. k += *m;
  1234. }
  1235. /* Call CUNMBR to compute QB*UB. */
  1236. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1237. i__2 = *lwork - itemp + 1;
  1238. cunmbr_("Q", "L", "N", m, ns, m, &work[ilqf], m, &work[itauq],
  1239. &u[u_offset], ldu, &work[itemp], &i__2, info);
  1240. }
  1241. /* If needed, compute right singular vectors. */
  1242. if (wantvt) {
  1243. k = itgkz + *m;
  1244. i__2 = *ns;
  1245. for (i__ = 1; i__ <= i__2; ++i__) {
  1246. i__3 = *m;
  1247. for (j = 1; j <= i__3; ++j) {
  1248. i__4 = i__ + j * vt_dim1;
  1249. i__5 = k;
  1250. q__1.r = rwork[i__5], q__1.i = 0.f;
  1251. vt[i__4].r = q__1.r, vt[i__4].i = q__1.i;
  1252. ++k;
  1253. }
  1254. k += *m;
  1255. }
  1256. i__2 = *n - *m;
  1257. claset_("A", ns, &i__2, &c_b1, &c_b1, &vt[(*m + 1) * vt_dim1
  1258. + 1], ldvt);
  1259. /* Call CUNMBR to compute (VB**T)*(PB**T) */
  1260. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1261. i__2 = *lwork - itemp + 1;
  1262. cunmbr_("P", "R", "C", ns, m, m, &work[ilqf], m, &work[itaup],
  1263. &vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1264. /* Call CUNMLQ to compute ((VB**T)*(PB**T))*Q. */
  1265. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1266. i__2 = *lwork - itemp + 1;
  1267. cunmlq_("R", "N", ns, n, m, &a[a_offset], lda, &work[itau], &
  1268. vt[vt_offset], ldvt, &work[itemp], &i__2, info);
  1269. }
  1270. } else {
  1271. /* Path 2t (N greater than M, but not much larger) */
  1272. /* Reduce to bidiagonal form without LQ decomposition */
  1273. /* A = QB * B * PB**T = QB * ( UB * S * VB**T ) * PB**T */
  1274. /* U = QB * UB; V**T = VB**T * PB**T */
  1275. /* Bidiagonalize A */
  1276. /* (Workspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
  1277. itauq = 1;
  1278. itaup = itauq + *m;
  1279. itemp = itaup + *m;
  1280. id = 1;
  1281. ie = id + *m;
  1282. itgkz = ie + *m;
  1283. i__2 = *lwork - itemp + 1;
  1284. cgebrd_(m, n, &a[a_offset], lda, &rwork[id], &rwork[ie], &work[
  1285. itauq], &work[itaup], &work[itemp], &i__2, info);
  1286. itempr = itgkz + *m * ((*m << 1) + 1);
  1287. /* Solve eigenvalue problem TGK*Z=Z*S. */
  1288. /* (Workspace: need 2*M*M+14*M) */
  1289. i__2 = *m << 1;
  1290. sbdsvdx_("L", jobz, rngtgk, m, &rwork[id], &rwork[ie], vl, vu, &
  1291. iltgk, &iutgk, ns, &s[1], &rwork[itgkz], &i__2, &rwork[
  1292. itempr], &iwork[1], info)
  1293. ;
  1294. /* If needed, compute left singular vectors. */
  1295. if (wantu) {
  1296. k = itgkz;
  1297. i__2 = *ns;
  1298. for (i__ = 1; i__ <= i__2; ++i__) {
  1299. i__3 = *m;
  1300. for (j = 1; j <= i__3; ++j) {
  1301. i__4 = j + i__ * u_dim1;
  1302. i__5 = k;
  1303. q__1.r = rwork[i__5], q__1.i = 0.f;
  1304. u[i__4].r = q__1.r, u[i__4].i = q__1.i;
  1305. ++k;
  1306. }
  1307. k += *m;
  1308. }
  1309. /* Call CUNMBR to compute QB*UB. */
  1310. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1311. i__2 = *lwork - itemp + 1;
  1312. cunmbr_("Q", "L", "N", m, ns, n, &a[a_offset], lda, &work[
  1313. itauq], &u[u_offset], ldu, &work[itemp], &i__2, info);
  1314. }
  1315. /* If needed, compute right singular vectors. */
  1316. if (wantvt) {
  1317. k = itgkz + *m;
  1318. i__2 = *ns;
  1319. for (i__ = 1; i__ <= i__2; ++i__) {
  1320. i__3 = *m;
  1321. for (j = 1; j <= i__3; ++j) {
  1322. i__4 = i__ + j * vt_dim1;
  1323. i__5 = k;
  1324. q__1.r = rwork[i__5], q__1.i = 0.f;
  1325. vt[i__4].r = q__1.r, vt[i__4].i = q__1.i;
  1326. ++k;
  1327. }
  1328. k += *m;
  1329. }
  1330. i__2 = *n - *m;
  1331. claset_("A", ns, &i__2, &c_b1, &c_b1, &vt[(*m + 1) * vt_dim1
  1332. + 1], ldvt);
  1333. /* Call CUNMBR to compute VB**T * PB**T */
  1334. /* (Workspace in WORK( ITEMP ): need M, prefer M*NB) */
  1335. i__2 = *lwork - itemp + 1;
  1336. cunmbr_("P", "R", "C", ns, n, m, &a[a_offset], lda, &work[
  1337. itaup], &vt[vt_offset], ldvt, &work[itemp], &i__2,
  1338. info);
  1339. }
  1340. }
  1341. }
  1342. /* Undo scaling if necessary */
  1343. if (iscl == 1) {
  1344. if (anrm > bignum) {
  1345. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1346. minmn, info);
  1347. }
  1348. if (anrm < smlnum) {
  1349. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1350. minmn, info);
  1351. }
  1352. }
  1353. /* Return optimal workspace in WORK(1) */
  1354. r__1 = (real) maxwrk;
  1355. q__1.r = r__1, q__1.i = 0.f;
  1356. work[1].r = q__1.r, work[1].i = q__1.i;
  1357. return;
  1358. /* End of CGESVDX */
  1359. } /* cgesvdx_ */