You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgbbrd.c 35 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* -- translated by f2c (version 20000121).
  484. You must link the resulting object file with the libraries:
  485. -lf2c -lm (in that order)
  486. */
  487. /* Table of constant values */
  488. static complex c_b1 = {0.f,0.f};
  489. static complex c_b2 = {1.f,0.f};
  490. static integer c__1 = 1;
  491. /* > \brief \b CGBBRD */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download CGBBRD + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbbrd.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbbrd.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbbrd.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, */
  510. /* LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) */
  511. /* CHARACTER VECT */
  512. /* INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC */
  513. /* REAL D( * ), E( * ), RWORK( * ) */
  514. /* COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), */
  515. /* $ Q( LDQ, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > CGBBRD reduces a complex general m-by-n band matrix A to real upper */
  522. /* > bidiagonal form B by a unitary transformation: Q**H * A * P = B. */
  523. /* > */
  524. /* > The routine computes B, and optionally forms Q or P**H, or computes */
  525. /* > Q**H*C for a given matrix C. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] VECT */
  530. /* > \verbatim */
  531. /* > VECT is CHARACTER*1 */
  532. /* > Specifies whether or not the matrices Q and P**H are to be */
  533. /* > formed. */
  534. /* > = 'N': do not form Q or P**H; */
  535. /* > = 'Q': form Q only; */
  536. /* > = 'P': form P**H only; */
  537. /* > = 'B': form both. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] M */
  541. /* > \verbatim */
  542. /* > M is INTEGER */
  543. /* > The number of rows of the matrix A. M >= 0. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The number of columns of the matrix A. N >= 0. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] NCC */
  553. /* > \verbatim */
  554. /* > NCC is INTEGER */
  555. /* > The number of columns of the matrix C. NCC >= 0. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] KL */
  559. /* > \verbatim */
  560. /* > KL is INTEGER */
  561. /* > The number of subdiagonals of the matrix A. KL >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] KU */
  565. /* > \verbatim */
  566. /* > KU is INTEGER */
  567. /* > The number of superdiagonals of the matrix A. KU >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in,out] AB */
  571. /* > \verbatim */
  572. /* > AB is COMPLEX array, dimension (LDAB,N) */
  573. /* > On entry, the m-by-n band matrix A, stored in rows 1 to */
  574. /* > KL+KU+1. The j-th column of A is stored in the j-th column of */
  575. /* > the array AB as follows: */
  576. /* > AB(ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl). */
  577. /* > On exit, A is overwritten by values generated during the */
  578. /* > reduction. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LDAB */
  582. /* > \verbatim */
  583. /* > LDAB is INTEGER */
  584. /* > The leading dimension of the array A. LDAB >= KL+KU+1. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] D */
  588. /* > \verbatim */
  589. /* > D is REAL array, dimension (f2cmin(M,N)) */
  590. /* > The diagonal elements of the bidiagonal matrix B. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] E */
  594. /* > \verbatim */
  595. /* > E is REAL array, dimension (f2cmin(M,N)-1) */
  596. /* > The superdiagonal elements of the bidiagonal matrix B. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[out] Q */
  600. /* > \verbatim */
  601. /* > Q is COMPLEX array, dimension (LDQ,M) */
  602. /* > If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. */
  603. /* > If VECT = 'N' or 'P', the array Q is not referenced. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] LDQ */
  607. /* > \verbatim */
  608. /* > LDQ is INTEGER */
  609. /* > The leading dimension of the array Q. */
  610. /* > LDQ >= f2cmax(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] PT */
  614. /* > \verbatim */
  615. /* > PT is COMPLEX array, dimension (LDPT,N) */
  616. /* > If VECT = 'P' or 'B', the n-by-n unitary matrix P'. */
  617. /* > If VECT = 'N' or 'Q', the array PT is not referenced. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] LDPT */
  621. /* > \verbatim */
  622. /* > LDPT is INTEGER */
  623. /* > The leading dimension of the array PT. */
  624. /* > LDPT >= f2cmax(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in,out] C */
  628. /* > \verbatim */
  629. /* > C is COMPLEX array, dimension (LDC,NCC) */
  630. /* > On entry, an m-by-ncc matrix C. */
  631. /* > On exit, C is overwritten by Q**H*C. */
  632. /* > C is not referenced if NCC = 0. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LDC */
  636. /* > \verbatim */
  637. /* > LDC is INTEGER */
  638. /* > The leading dimension of the array C. */
  639. /* > LDC >= f2cmax(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] WORK */
  643. /* > \verbatim */
  644. /* > WORK is COMPLEX array, dimension (f2cmax(M,N)) */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] RWORK */
  648. /* > \verbatim */
  649. /* > RWORK is REAL array, dimension (f2cmax(M,N)) */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[out] INFO */
  653. /* > \verbatim */
  654. /* > INFO is INTEGER */
  655. /* > = 0: successful exit. */
  656. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  657. /* > \endverbatim */
  658. /* Authors: */
  659. /* ======== */
  660. /* > \author Univ. of Tennessee */
  661. /* > \author Univ. of California Berkeley */
  662. /* > \author Univ. of Colorado Denver */
  663. /* > \author NAG Ltd. */
  664. /* > \date December 2016 */
  665. /* > \ingroup complexGBcomputational */
  666. /* ===================================================================== */
  667. /* Subroutine */ void cgbbrd_(char *vect, integer *m, integer *n, integer *ncc,
  668. integer *kl, integer *ku, complex *ab, integer *ldab, real *d__,
  669. real *e, complex *q, integer *ldq, complex *pt, integer *ldpt,
  670. complex *c__, integer *ldc, complex *work, real *rwork, integer *info)
  671. {
  672. /* System generated locals */
  673. integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1,
  674. q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
  675. complex q__1, q__2, q__3;
  676. /* Local variables */
  677. integer inca;
  678. real abst;
  679. extern /* Subroutine */ void crot_(integer *, complex *, integer *,
  680. complex *, integer *, real *, complex *);
  681. integer i__, j, l;
  682. complex t;
  683. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  684. integer *);
  685. extern logical lsame_(char *, char *);
  686. logical wantb, wantc;
  687. integer minmn;
  688. logical wantq;
  689. integer j1, j2, kb;
  690. complex ra;
  691. real rc;
  692. integer kk;
  693. complex rb;
  694. integer ml, nr, mu;
  695. complex rs;
  696. extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
  697. *, complex *, complex *, integer *), clartg_(complex *,
  698. complex *, real *, complex *, complex *);
  699. extern int xerbla_(char *, integer *, ftnlen);
  700. extern void clargv_(integer *, complex *, integer *, complex *,
  701. integer *, real *, integer *), clartv_(integer *, complex *,
  702. integer *, complex *, integer *, real *, complex *, integer *);
  703. integer kb1, ml0;
  704. logical wantpt;
  705. integer mu0, klm, kun, nrt, klu1;
  706. /* -- LAPACK computational routine (version 3.7.0) -- */
  707. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  708. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  709. /* December 2016 */
  710. /* ===================================================================== */
  711. /* Test the input parameters */
  712. /* Parameter adjustments */
  713. ab_dim1 = *ldab;
  714. ab_offset = 1 + ab_dim1 * 1;
  715. ab -= ab_offset;
  716. --d__;
  717. --e;
  718. q_dim1 = *ldq;
  719. q_offset = 1 + q_dim1 * 1;
  720. q -= q_offset;
  721. pt_dim1 = *ldpt;
  722. pt_offset = 1 + pt_dim1 * 1;
  723. pt -= pt_offset;
  724. c_dim1 = *ldc;
  725. c_offset = 1 + c_dim1 * 1;
  726. c__ -= c_offset;
  727. --work;
  728. --rwork;
  729. /* Function Body */
  730. wantb = lsame_(vect, "B");
  731. wantq = lsame_(vect, "Q") || wantb;
  732. wantpt = lsame_(vect, "P") || wantb;
  733. wantc = *ncc > 0;
  734. klu1 = *kl + *ku + 1;
  735. *info = 0;
  736. if (! wantq && ! wantpt && ! lsame_(vect, "N")) {
  737. *info = -1;
  738. } else if (*m < 0) {
  739. *info = -2;
  740. } else if (*n < 0) {
  741. *info = -3;
  742. } else if (*ncc < 0) {
  743. *info = -4;
  744. } else if (*kl < 0) {
  745. *info = -5;
  746. } else if (*ku < 0) {
  747. *info = -6;
  748. } else if (*ldab < klu1) {
  749. *info = -8;
  750. } else if (*ldq < 1 || wantq && *ldq < f2cmax(1,*m)) {
  751. *info = -12;
  752. } else if (*ldpt < 1 || wantpt && *ldpt < f2cmax(1,*n)) {
  753. *info = -14;
  754. } else if (*ldc < 1 || wantc && *ldc < f2cmax(1,*m)) {
  755. *info = -16;
  756. }
  757. if (*info != 0) {
  758. i__1 = -(*info);
  759. xerbla_("CGBBRD", &i__1, (ftnlen)6);
  760. return;
  761. }
  762. /* Initialize Q and P**H to the unit matrix, if needed */
  763. if (wantq) {
  764. claset_("Full", m, m, &c_b1, &c_b2, &q[q_offset], ldq);
  765. }
  766. if (wantpt) {
  767. claset_("Full", n, n, &c_b1, &c_b2, &pt[pt_offset], ldpt);
  768. }
  769. /* Quick return if possible. */
  770. if (*m == 0 || *n == 0) {
  771. return;
  772. }
  773. minmn = f2cmin(*m,*n);
  774. if (*kl + *ku > 1) {
  775. /* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
  776. /* first to lower bidiagonal form and then transform to upper */
  777. /* bidiagonal */
  778. if (*ku > 0) {
  779. ml0 = 1;
  780. mu0 = 2;
  781. } else {
  782. ml0 = 2;
  783. mu0 = 1;
  784. }
  785. /* Wherever possible, plane rotations are generated and applied in */
  786. /* vector operations of length NR over the index set J1:J2:KLU1. */
  787. /* The complex sines of the plane rotations are stored in WORK, */
  788. /* and the real cosines in RWORK. */
  789. /* Computing MIN */
  790. i__1 = *m - 1;
  791. klm = f2cmin(i__1,*kl);
  792. /* Computing MIN */
  793. i__1 = *n - 1;
  794. kun = f2cmin(i__1,*ku);
  795. kb = klm + kun;
  796. kb1 = kb + 1;
  797. inca = kb1 * *ldab;
  798. nr = 0;
  799. j1 = klm + 2;
  800. j2 = 1 - kun;
  801. i__1 = minmn;
  802. for (i__ = 1; i__ <= i__1; ++i__) {
  803. /* Reduce i-th column and i-th row of matrix to bidiagonal form */
  804. ml = klm + 1;
  805. mu = kun + 1;
  806. i__2 = kb;
  807. for (kk = 1; kk <= i__2; ++kk) {
  808. j1 += kb;
  809. j2 += kb;
  810. /* generate plane rotations to annihilate nonzero elements */
  811. /* which have been created below the band */
  812. if (nr > 0) {
  813. clargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca,
  814. &work[j1], &kb1, &rwork[j1], &kb1);
  815. }
  816. /* apply plane rotations from the left */
  817. i__3 = kb;
  818. for (l = 1; l <= i__3; ++l) {
  819. if (j2 - klm + l - 1 > *n) {
  820. nrt = nr - 1;
  821. } else {
  822. nrt = nr;
  823. }
  824. if (nrt > 0) {
  825. clartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) *
  826. ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm
  827. + l - 1) * ab_dim1], &inca, &rwork[j1], &work[
  828. j1], &kb1);
  829. }
  830. /* L10: */
  831. }
  832. if (ml > ml0) {
  833. if (ml <= *m - i__ + 1) {
  834. /* generate plane rotation to annihilate a(i+ml-1,i) */
  835. /* within the band, and apply rotation from the left */
  836. clartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku +
  837. ml + i__ * ab_dim1], &rwork[i__ + ml - 1], &
  838. work[i__ + ml - 1], &ra);
  839. i__3 = *ku + ml - 1 + i__ * ab_dim1;
  840. ab[i__3].r = ra.r, ab[i__3].i = ra.i;
  841. if (i__ < *n) {
  842. /* Computing MIN */
  843. i__4 = *ku + ml - 2, i__5 = *n - i__;
  844. i__3 = f2cmin(i__4,i__5);
  845. i__6 = *ldab - 1;
  846. i__7 = *ldab - 1;
  847. crot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) *
  848. ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__
  849. + 1) * ab_dim1], &i__7, &rwork[i__ + ml -
  850. 1], &work[i__ + ml - 1]);
  851. }
  852. }
  853. ++nr;
  854. j1 -= kb1;
  855. }
  856. if (wantq) {
  857. /* accumulate product of plane rotations in Q */
  858. i__3 = j2;
  859. i__4 = kb1;
  860. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4)
  861. {
  862. r_cnjg(&q__1, &work[j]);
  863. crot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j *
  864. q_dim1 + 1], &c__1, &rwork[j], &q__1);
  865. /* L20: */
  866. }
  867. }
  868. if (wantc) {
  869. /* apply plane rotations to C */
  870. i__4 = j2;
  871. i__3 = kb1;
  872. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
  873. {
  874. crot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
  875. , ldc, &rwork[j], &work[j]);
  876. /* L30: */
  877. }
  878. }
  879. if (j2 + kun > *n) {
  880. /* adjust J2 to keep within the bounds of the matrix */
  881. --nr;
  882. j2 -= kb1;
  883. }
  884. i__3 = j2;
  885. i__4 = kb1;
  886. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  887. /* create nonzero element a(j-1,j+ku) above the band */
  888. /* and store it in WORK(n+1:2*n) */
  889. i__5 = j + kun;
  890. i__6 = j;
  891. i__7 = (j + kun) * ab_dim1 + 1;
  892. q__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
  893. i__7].i, q__1.i = work[i__6].r * ab[i__7].i +
  894. work[i__6].i * ab[i__7].r;
  895. work[i__5].r = q__1.r, work[i__5].i = q__1.i;
  896. i__5 = (j + kun) * ab_dim1 + 1;
  897. i__6 = j;
  898. i__7 = (j + kun) * ab_dim1 + 1;
  899. q__1.r = rwork[i__6] * ab[i__7].r, q__1.i = rwork[i__6] *
  900. ab[i__7].i;
  901. ab[i__5].r = q__1.r, ab[i__5].i = q__1.i;
  902. /* L40: */
  903. }
  904. /* generate plane rotations to annihilate nonzero elements */
  905. /* which have been generated above the band */
  906. if (nr > 0) {
  907. clargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
  908. work[j1 + kun], &kb1, &rwork[j1 + kun], &kb1);
  909. }
  910. /* apply plane rotations from the right */
  911. i__4 = kb;
  912. for (l = 1; l <= i__4; ++l) {
  913. if (j2 + l - 1 > *m) {
  914. nrt = nr - 1;
  915. } else {
  916. nrt = nr;
  917. }
  918. if (nrt > 0) {
  919. clartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
  920. inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
  921. rwork[j1 + kun], &work[j1 + kun], &kb1);
  922. }
  923. /* L50: */
  924. }
  925. if (ml == ml0 && mu > mu0) {
  926. if (mu <= *n - i__ + 1) {
  927. /* generate plane rotation to annihilate a(i,i+mu-1) */
  928. /* within the band, and apply rotation from the right */
  929. clartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1],
  930. &ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1],
  931. &rwork[i__ + mu - 1], &work[i__ + mu - 1], &
  932. ra);
  933. i__4 = *ku - mu + 3 + (i__ + mu - 2) * ab_dim1;
  934. ab[i__4].r = ra.r, ab[i__4].i = ra.i;
  935. /* Computing MIN */
  936. i__3 = *kl + mu - 2, i__5 = *m - i__;
  937. i__4 = f2cmin(i__3,i__5);
  938. crot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) *
  939. ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu
  940. - 1) * ab_dim1], &c__1, &rwork[i__ + mu - 1],
  941. &work[i__ + mu - 1]);
  942. }
  943. ++nr;
  944. j1 -= kb1;
  945. }
  946. if (wantpt) {
  947. /* accumulate product of plane rotations in P**H */
  948. i__4 = j2;
  949. i__3 = kb1;
  950. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
  951. {
  952. r_cnjg(&q__1, &work[j + kun]);
  953. crot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j +
  954. kun + pt_dim1], ldpt, &rwork[j + kun], &q__1);
  955. /* L60: */
  956. }
  957. }
  958. if (j2 + kb > *m) {
  959. /* adjust J2 to keep within the bounds of the matrix */
  960. --nr;
  961. j2 -= kb1;
  962. }
  963. i__3 = j2;
  964. i__4 = kb1;
  965. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  966. /* create nonzero element a(j+kl+ku,j+ku-1) below the */
  967. /* band and store it in WORK(1:n) */
  968. i__5 = j + kb;
  969. i__6 = j + kun;
  970. i__7 = klu1 + (j + kun) * ab_dim1;
  971. q__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
  972. i__7].i, q__1.i = work[i__6].r * ab[i__7].i +
  973. work[i__6].i * ab[i__7].r;
  974. work[i__5].r = q__1.r, work[i__5].i = q__1.i;
  975. i__5 = klu1 + (j + kun) * ab_dim1;
  976. i__6 = j + kun;
  977. i__7 = klu1 + (j + kun) * ab_dim1;
  978. q__1.r = rwork[i__6] * ab[i__7].r, q__1.i = rwork[i__6] *
  979. ab[i__7].i;
  980. ab[i__5].r = q__1.r, ab[i__5].i = q__1.i;
  981. /* L70: */
  982. }
  983. if (ml > ml0) {
  984. --ml;
  985. } else {
  986. --mu;
  987. }
  988. /* L80: */
  989. }
  990. /* L90: */
  991. }
  992. }
  993. if (*ku == 0 && *kl > 0) {
  994. /* A has been reduced to complex lower bidiagonal form */
  995. /* Transform lower bidiagonal form to upper bidiagonal by applying */
  996. /* plane rotations from the left, overwriting superdiagonal */
  997. /* elements on subdiagonal elements */
  998. /* Computing MIN */
  999. i__2 = *m - 1;
  1000. i__1 = f2cmin(i__2,*n);
  1001. for (i__ = 1; i__ <= i__1; ++i__) {
  1002. clartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs,
  1003. &ra);
  1004. i__2 = i__ * ab_dim1 + 1;
  1005. ab[i__2].r = ra.r, ab[i__2].i = ra.i;
  1006. if (i__ < *n) {
  1007. i__2 = i__ * ab_dim1 + 2;
  1008. i__4 = (i__ + 1) * ab_dim1 + 1;
  1009. q__1.r = rs.r * ab[i__4].r - rs.i * ab[i__4].i, q__1.i = rs.r
  1010. * ab[i__4].i + rs.i * ab[i__4].r;
  1011. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1012. i__2 = (i__ + 1) * ab_dim1 + 1;
  1013. i__4 = (i__ + 1) * ab_dim1 + 1;
  1014. q__1.r = rc * ab[i__4].r, q__1.i = rc * ab[i__4].i;
  1015. ab[i__2].r = q__1.r, ab[i__2].i = q__1.i;
  1016. }
  1017. if (wantq) {
  1018. r_cnjg(&q__1, &rs);
  1019. crot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 +
  1020. 1], &c__1, &rc, &q__1);
  1021. }
  1022. if (wantc) {
  1023. crot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1],
  1024. ldc, &rc, &rs);
  1025. }
  1026. /* L100: */
  1027. }
  1028. } else {
  1029. /* A has been reduced to complex upper bidiagonal form or is */
  1030. /* diagonal */
  1031. if (*ku > 0 && *m < *n) {
  1032. /* Annihilate a(m,m+1) by applying plane rotations from the */
  1033. /* right */
  1034. i__1 = *ku + (*m + 1) * ab_dim1;
  1035. rb.r = ab[i__1].r, rb.i = ab[i__1].i;
  1036. for (i__ = *m; i__ >= 1; --i__) {
  1037. clartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
  1038. i__1 = *ku + 1 + i__ * ab_dim1;
  1039. ab[i__1].r = ra.r, ab[i__1].i = ra.i;
  1040. if (i__ > 1) {
  1041. r_cnjg(&q__3, &rs);
  1042. q__2.r = -q__3.r, q__2.i = -q__3.i;
  1043. i__1 = *ku + i__ * ab_dim1;
  1044. q__1.r = q__2.r * ab[i__1].r - q__2.i * ab[i__1].i,
  1045. q__1.i = q__2.r * ab[i__1].i + q__2.i * ab[i__1]
  1046. .r;
  1047. rb.r = q__1.r, rb.i = q__1.i;
  1048. i__1 = *ku + i__ * ab_dim1;
  1049. i__2 = *ku + i__ * ab_dim1;
  1050. q__1.r = rc * ab[i__2].r, q__1.i = rc * ab[i__2].i;
  1051. ab[i__1].r = q__1.r, ab[i__1].i = q__1.i;
  1052. }
  1053. if (wantpt) {
  1054. r_cnjg(&q__1, &rs);
  1055. crot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1],
  1056. ldpt, &rc, &q__1);
  1057. }
  1058. /* L110: */
  1059. }
  1060. }
  1061. }
  1062. /* Make diagonal and superdiagonal elements real, storing them in D */
  1063. /* and E */
  1064. i__1 = *ku + 1 + ab_dim1;
  1065. t.r = ab[i__1].r, t.i = ab[i__1].i;
  1066. i__1 = minmn;
  1067. for (i__ = 1; i__ <= i__1; ++i__) {
  1068. abst = c_abs(&t);
  1069. d__[i__] = abst;
  1070. if (abst != 0.f) {
  1071. q__1.r = t.r / abst, q__1.i = t.i / abst;
  1072. t.r = q__1.r, t.i = q__1.i;
  1073. } else {
  1074. t.r = 1.f, t.i = 0.f;
  1075. }
  1076. if (wantq) {
  1077. cscal_(m, &t, &q[i__ * q_dim1 + 1], &c__1);
  1078. }
  1079. if (wantc) {
  1080. r_cnjg(&q__1, &t);
  1081. cscal_(ncc, &q__1, &c__[i__ + c_dim1], ldc);
  1082. }
  1083. if (i__ < minmn) {
  1084. if (*ku == 0 && *kl == 0) {
  1085. e[i__] = 0.f;
  1086. i__2 = (i__ + 1) * ab_dim1 + 1;
  1087. t.r = ab[i__2].r, t.i = ab[i__2].i;
  1088. } else {
  1089. if (*ku == 0) {
  1090. i__2 = i__ * ab_dim1 + 2;
  1091. r_cnjg(&q__2, &t);
  1092. q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i,
  1093. q__1.i = ab[i__2].r * q__2.i + ab[i__2].i *
  1094. q__2.r;
  1095. t.r = q__1.r, t.i = q__1.i;
  1096. } else {
  1097. i__2 = *ku + (i__ + 1) * ab_dim1;
  1098. r_cnjg(&q__2, &t);
  1099. q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i,
  1100. q__1.i = ab[i__2].r * q__2.i + ab[i__2].i *
  1101. q__2.r;
  1102. t.r = q__1.r, t.i = q__1.i;
  1103. }
  1104. abst = c_abs(&t);
  1105. e[i__] = abst;
  1106. if (abst != 0.f) {
  1107. q__1.r = t.r / abst, q__1.i = t.i / abst;
  1108. t.r = q__1.r, t.i = q__1.i;
  1109. } else {
  1110. t.r = 1.f, t.i = 0.f;
  1111. }
  1112. if (wantpt) {
  1113. cscal_(n, &t, &pt[i__ + 1 + pt_dim1], ldpt);
  1114. }
  1115. i__2 = *ku + 1 + (i__ + 1) * ab_dim1;
  1116. r_cnjg(&q__2, &t);
  1117. q__1.r = ab[i__2].r * q__2.r - ab[i__2].i * q__2.i, q__1.i =
  1118. ab[i__2].r * q__2.i + ab[i__2].i * q__2.r;
  1119. t.r = q__1.r, t.i = q__1.i;
  1120. }
  1121. }
  1122. /* L120: */
  1123. }
  1124. return;
  1125. /* End of CGBBRD */
  1126. } /* cgbbrd_ */