You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dorcsd2by1.c 45 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c_n1 = -1;
  485. static integer c__1 = 1;
  486. static logical c_false = FALSE_;
  487. /* > \brief \b DORCSD2BY1 */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download DORCSD2BY1 + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorcsd2
  494. by1.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorcsd2
  497. by1.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorcsd2
  500. by1.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE DORCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, */
  506. /* X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, */
  507. /* LDV1T, WORK, LWORK, IWORK, INFO ) */
  508. /* CHARACTER JOBU1, JOBU2, JOBV1T */
  509. /* INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21, */
  510. /* $ M, P, Q */
  511. /* DOUBLE PRECISION THETA(*) */
  512. /* DOUBLE PRECISION U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*), */
  513. /* $ X11(LDX11,*), X21(LDX21,*) */
  514. /* INTEGER IWORK(*) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* >\verbatim */
  519. /* > */
  520. /* > DORCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with */
  521. /* > orthonormal columns that has been partitioned into a 2-by-1 block */
  522. /* > structure: */
  523. /* > */
  524. /* > [ I1 0 0 ] */
  525. /* > [ 0 C 0 ] */
  526. /* > [ X11 ] [ U1 | ] [ 0 0 0 ] */
  527. /* > X = [-----] = [---------] [----------] V1**T . */
  528. /* > [ X21 ] [ | U2 ] [ 0 0 0 ] */
  529. /* > [ 0 S 0 ] */
  530. /* > [ 0 0 I2] */
  531. /* > */
  532. /* > X11 is P-by-Q. The orthogonal matrices U1, U2, and V1 are P-by-P, */
  533. /* > (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R */
  534. /* > nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which */
  535. /* > R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a */
  536. /* > K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0). */
  537. /* > \endverbatim */
  538. /* Arguments: */
  539. /* ========== */
  540. /* > \param[in] JOBU1 */
  541. /* > \verbatim */
  542. /* > JOBU1 is CHARACTER */
  543. /* > = 'Y': U1 is computed; */
  544. /* > otherwise: U1 is not computed. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] JOBU2 */
  548. /* > \verbatim */
  549. /* > JOBU2 is CHARACTER */
  550. /* > = 'Y': U2 is computed; */
  551. /* > otherwise: U2 is not computed. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] JOBV1T */
  555. /* > \verbatim */
  556. /* > JOBV1T is CHARACTER */
  557. /* > = 'Y': V1T is computed; */
  558. /* > otherwise: V1T is not computed. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] M */
  562. /* > \verbatim */
  563. /* > M is INTEGER */
  564. /* > The number of rows in X. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] P */
  568. /* > \verbatim */
  569. /* > P is INTEGER */
  570. /* > The number of rows in X11. 0 <= P <= M. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] Q */
  574. /* > \verbatim */
  575. /* > Q is INTEGER */
  576. /* > The number of columns in X11 and X21. 0 <= Q <= M. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] X11 */
  580. /* > \verbatim */
  581. /* > X11 is DOUBLE PRECISION array, dimension (LDX11,Q) */
  582. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] LDX11 */
  586. /* > \verbatim */
  587. /* > LDX11 is INTEGER */
  588. /* > The leading dimension of X11. LDX11 >= MAX(1,P). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] X21 */
  592. /* > \verbatim */
  593. /* > X21 is DOUBLE PRECISION array, dimension (LDX21,Q) */
  594. /* > On entry, part of the orthogonal matrix whose CSD is desired. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDX21 */
  598. /* > \verbatim */
  599. /* > LDX21 is INTEGER */
  600. /* > The leading dimension of X21. LDX21 >= MAX(1,M-P). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] THETA */
  604. /* > \verbatim */
  605. /* > THETA is DOUBLE PRECISION array, dimension (R), in which R = */
  606. /* > MIN(P,M-P,Q,M-Q). */
  607. /* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
  608. /* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] U1 */
  612. /* > \verbatim */
  613. /* > U1 is DOUBLE PRECISION array, dimension (P) */
  614. /* > If JOBU1 = 'Y', U1 contains the P-by-P orthogonal matrix U1. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDU1 */
  618. /* > \verbatim */
  619. /* > LDU1 is INTEGER */
  620. /* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
  621. /* > MAX(1,P). */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] U2 */
  625. /* > \verbatim */
  626. /* > U2 is DOUBLE PRECISION array, dimension (M-P) */
  627. /* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) orthogonal */
  628. /* > matrix U2. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] LDU2 */
  632. /* > \verbatim */
  633. /* > LDU2 is INTEGER */
  634. /* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
  635. /* > MAX(1,M-P). */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] V1T */
  639. /* > \verbatim */
  640. /* > V1T is DOUBLE PRECISION array, dimension (Q) */
  641. /* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix orthogonal */
  642. /* > matrix V1**T. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[in] LDV1T */
  646. /* > \verbatim */
  647. /* > LDV1T is INTEGER */
  648. /* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
  649. /* > MAX(1,Q). */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[out] WORK */
  653. /* > \verbatim */
  654. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  655. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  656. /* > If INFO > 0 on exit, WORK(2:R) contains the values PHI(1), */
  657. /* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
  658. /* > define the matrix in intermediate bidiagonal-block form */
  659. /* > remaining after nonconvergence. INFO specifies the number */
  660. /* > of nonzero PHI's. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] LWORK */
  664. /* > \verbatim */
  665. /* > LWORK is INTEGER */
  666. /* > The dimension of the array WORK. */
  667. /* > */
  668. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  669. /* > only calculates the optimal size of the WORK array, returns */
  670. /* > this value as the first entry of the work array, and no error */
  671. /* > message related to LWORK is issued by XERBLA. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] IWORK */
  675. /* > \verbatim */
  676. /* > IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[out] INFO */
  680. /* > \verbatim */
  681. /* > INFO is INTEGER */
  682. /* > = 0: successful exit. */
  683. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  684. /* > > 0: DBBCSD did not converge. See the description of WORK */
  685. /* > above for details. */
  686. /* > \endverbatim */
  687. /* > \par References: */
  688. /* ================ */
  689. /* > */
  690. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  691. /* > Algorithms, 50(1):33-65, 2009. */
  692. /* Authors: */
  693. /* ======== */
  694. /* > \author Univ. of Tennessee */
  695. /* > \author Univ. of California Berkeley */
  696. /* > \author Univ. of Colorado Denver */
  697. /* > \author NAG Ltd. */
  698. /* > \date July 2012 */
  699. /* > \ingroup doubleOTHERcomputational */
  700. /* ===================================================================== */
  701. /* Subroutine */ void dorcsd2by1_(char *jobu1, char *jobu2, char *jobv1t,
  702. integer *m, integer *p, integer *q, doublereal *x11, integer *ldx11,
  703. doublereal *x21, integer *ldx21, doublereal *theta, doublereal *u1,
  704. integer *ldu1, doublereal *u2, integer *ldu2, doublereal *v1t,
  705. integer *ldv1t, doublereal *work, integer *lwork, integer *iwork,
  706. integer *info)
  707. {
  708. /* System generated locals */
  709. integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
  710. x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3;
  711. /* Local variables */
  712. integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e, iphi,
  713. lworkmin, lworkopt, i__, j, r__;
  714. extern logical lsame_(char *, char *);
  715. integer childinfo;
  716. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  717. doublereal *, integer *);
  718. integer lorglqmin, lorgqrmin, lorglqopt, itaup1, itaup2, itauq1,
  719. lorgqropt;
  720. logical wantu1, wantu2;
  721. extern /* Subroutine */ void dbbcsd_(char *, char *, char *, char *, char *
  722. , integer *, integer *, integer *, doublereal *, doublereal *,
  723. doublereal *, integer *, doublereal *, integer *, doublereal *,
  724. integer *, doublereal *, integer *, doublereal *, doublereal *,
  725. doublereal *, doublereal *, doublereal *, doublereal *,
  726. doublereal *, doublereal *, doublereal *, integer *, integer *);
  727. integer ibbcsd, lbbcsd, iorbdb, lorbdb;
  728. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  729. doublereal *, integer *, doublereal *, integer *);
  730. extern int xerbla_(char *, integer *, ftnlen);
  731. extern void dlapmr_(logical *, integer *,
  732. integer *, doublereal *, integer *, integer *), dlapmt_(logical *,
  733. integer *, integer *, doublereal *, integer *, integer *),
  734. dorglq_(integer *, integer *, integer *, doublereal *, integer *,
  735. doublereal *, doublereal *, integer *, integer *);
  736. integer iorglq;
  737. extern /* Subroutine */ void dorgqr_(integer *, integer *, integer *,
  738. doublereal *, integer *, doublereal *, doublereal *, integer *,
  739. integer *);
  740. integer lorglq, iorgqr, lorgqr;
  741. extern /* Subroutine */ void dorbdb1_(integer *, integer *, integer *,
  742. doublereal *, integer *, doublereal *, integer *, doublereal *,
  743. doublereal *, doublereal *, doublereal *, doublereal *,
  744. doublereal *, integer *, integer *), dorbdb2_(integer *, integer *
  745. , integer *, doublereal *, integer *, doublereal *, integer *,
  746. doublereal *, doublereal *, doublereal *, doublereal *,
  747. doublereal *, doublereal *, integer *, integer *), dorbdb3_(
  748. integer *, integer *, integer *, doublereal *, integer *,
  749. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  750. doublereal *, doublereal *, doublereal *, integer *, integer *),
  751. dorbdb4_(integer *, integer *, integer *, doublereal *, integer *,
  752. doublereal *, integer *, doublereal *, doublereal *, doublereal *
  753. , doublereal *, doublereal *, doublereal *, doublereal *, integer
  754. *, integer *);
  755. logical lquery, wantv1t;
  756. doublereal dum1[1], dum2[1] /* was [1][1] */;
  757. /* -- LAPACK computational routine (3.5.0) -- */
  758. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  759. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  760. /* July 2012 */
  761. /* ===================================================================== */
  762. /* Test input arguments */
  763. /* Parameter adjustments */
  764. x11_dim1 = *ldx11;
  765. x11_offset = 1 + x11_dim1 * 1;
  766. x11 -= x11_offset;
  767. x21_dim1 = *ldx21;
  768. x21_offset = 1 + x21_dim1 * 1;
  769. x21 -= x21_offset;
  770. --theta;
  771. u1_dim1 = *ldu1;
  772. u1_offset = 1 + u1_dim1 * 1;
  773. u1 -= u1_offset;
  774. u2_dim1 = *ldu2;
  775. u2_offset = 1 + u2_dim1 * 1;
  776. u2 -= u2_offset;
  777. v1t_dim1 = *ldv1t;
  778. v1t_offset = 1 + v1t_dim1 * 1;
  779. v1t -= v1t_offset;
  780. --work;
  781. --iwork;
  782. /* Function Body */
  783. *info = 0;
  784. wantu1 = lsame_(jobu1, "Y");
  785. wantu2 = lsame_(jobu2, "Y");
  786. wantv1t = lsame_(jobv1t, "Y");
  787. lquery = *lwork == -1;
  788. if (*m < 0) {
  789. *info = -4;
  790. } else if (*p < 0 || *p > *m) {
  791. *info = -5;
  792. } else if (*q < 0 || *q > *m) {
  793. *info = -6;
  794. } else if (*ldx11 < f2cmax(1,*p)) {
  795. *info = -8;
  796. } else /* if(complicated condition) */ {
  797. /* Computing MAX */
  798. i__1 = 1, i__2 = *m - *p;
  799. if (*ldx21 < f2cmax(i__1,i__2)) {
  800. *info = -10;
  801. } else if (wantu1 && *ldu1 < f2cmax(1,*p)) {
  802. *info = -13;
  803. } else /* if(complicated condition) */ {
  804. /* Computing MAX */
  805. i__1 = 1, i__2 = *m - *p;
  806. if (wantu2 && *ldu2 < f2cmax(i__1,i__2)) {
  807. *info = -15;
  808. } else if (wantv1t && *ldv1t < f2cmax(1,*q)) {
  809. *info = -17;
  810. }
  811. }
  812. }
  813. /* Computing MIN */
  814. i__1 = *p, i__2 = *m - *p, i__1 = f2cmin(i__1,i__2), i__1 = f2cmin(i__1,*q),
  815. i__2 = *m - *q;
  816. r__ = f2cmin(i__1,i__2);
  817. /* Compute workspace */
  818. /* WORK layout: */
  819. /* |-------------------------------------------------------| */
  820. /* | LWORKOPT (1) | */
  821. /* |-------------------------------------------------------| */
  822. /* | PHI (MAX(1,R-1)) | */
  823. /* |-------------------------------------------------------| */
  824. /* | TAUP1 (MAX(1,P)) | B11D (R) | */
  825. /* | TAUP2 (MAX(1,M-P)) | B11E (R-1) | */
  826. /* | TAUQ1 (MAX(1,Q)) | B12D (R) | */
  827. /* |-----------------------------------------| B12E (R-1) | */
  828. /* | DORBDB WORK | DORGQR WORK | DORGLQ WORK | B21D (R) | */
  829. /* | | | | B21E (R-1) | */
  830. /* | | | | B22D (R) | */
  831. /* | | | | B22E (R-1) | */
  832. /* | | | | DBBCSD WORK | */
  833. /* |-------------------------------------------------------| */
  834. if (*info == 0) {
  835. iphi = 2;
  836. /* Computing MAX */
  837. i__1 = 1, i__2 = r__ - 1;
  838. ib11d = iphi + f2cmax(i__1,i__2);
  839. ib11e = ib11d + f2cmax(1,r__);
  840. /* Computing MAX */
  841. i__1 = 1, i__2 = r__ - 1;
  842. ib12d = ib11e + f2cmax(i__1,i__2);
  843. ib12e = ib12d + f2cmax(1,r__);
  844. /* Computing MAX */
  845. i__1 = 1, i__2 = r__ - 1;
  846. ib21d = ib12e + f2cmax(i__1,i__2);
  847. ib21e = ib21d + f2cmax(1,r__);
  848. /* Computing MAX */
  849. i__1 = 1, i__2 = r__ - 1;
  850. ib22d = ib21e + f2cmax(i__1,i__2);
  851. ib22e = ib22d + f2cmax(1,r__);
  852. /* Computing MAX */
  853. i__1 = 1, i__2 = r__ - 1;
  854. ibbcsd = ib22e + f2cmax(i__1,i__2);
  855. /* Computing MAX */
  856. i__1 = 1, i__2 = r__ - 1;
  857. itaup1 = iphi + f2cmax(i__1,i__2);
  858. itaup2 = itaup1 + f2cmax(1,*p);
  859. /* Computing MAX */
  860. i__1 = 1, i__2 = *m - *p;
  861. itauq1 = itaup2 + f2cmax(i__1,i__2);
  862. iorbdb = itauq1 + f2cmax(1,*q);
  863. iorgqr = itauq1 + f2cmax(1,*q);
  864. iorglq = itauq1 + f2cmax(1,*q);
  865. lorgqrmin = 1;
  866. lorgqropt = 1;
  867. lorglqmin = 1;
  868. lorglqopt = 1;
  869. if (r__ == *q) {
  870. dorbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  871. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  872. &childinfo);
  873. lorbdb = (integer) work[1];
  874. if (wantu1 && *p > 0) {
  875. dorgqr_(p, p, q, &u1[u1_offset], ldu1, dum1, &work[1], &c_n1,
  876. &childinfo);
  877. lorgqrmin = f2cmax(lorgqrmin,*p);
  878. /* Computing MAX */
  879. i__1 = lorgqropt, i__2 = (integer) work[1];
  880. lorgqropt = f2cmax(i__1,i__2);
  881. }
  882. if (wantu2 && *m - *p > 0) {
  883. i__1 = *m - *p;
  884. i__2 = *m - *p;
  885. dorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, dum1, &work[1],
  886. &c_n1, &childinfo);
  887. /* Computing MAX */
  888. i__1 = lorgqrmin, i__2 = *m - *p;
  889. lorgqrmin = f2cmax(i__1,i__2);
  890. /* Computing MAX */
  891. i__1 = lorgqropt, i__2 = (integer) work[1];
  892. lorgqropt = f2cmax(i__1,i__2);
  893. }
  894. if (wantv1t && *q > 0) {
  895. i__1 = *q - 1;
  896. i__2 = *q - 1;
  897. i__3 = *q - 1;
  898. dorglq_(&i__1, &i__2, &i__3, &v1t[v1t_offset], ldv1t, dum1, &
  899. work[1], &c_n1, &childinfo);
  900. /* Computing MAX */
  901. i__1 = lorglqmin, i__2 = *q - 1;
  902. lorglqmin = f2cmax(i__1,i__2);
  903. /* Computing MAX */
  904. i__1 = lorglqopt, i__2 = (integer) work[1];
  905. lorglqopt = f2cmax(i__1,i__2);
  906. }
  907. dbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], dum1,
  908. &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  909. v1t_offset], ldv1t, dum2, &c__1, dum1, dum1, dum1, dum1,
  910. dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  911. lbbcsd = (integer) work[1];
  912. } else if (r__ == *p) {
  913. dorbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  914. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  915. &childinfo);
  916. lorbdb = (integer) work[1];
  917. if (wantu1 && *p > 0) {
  918. i__1 = *p - 1;
  919. i__2 = *p - 1;
  920. i__3 = *p - 1;
  921. dorgqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1,
  922. dum1, &work[1], &c_n1, &childinfo);
  923. /* Computing MAX */
  924. i__1 = lorgqrmin, i__2 = *p - 1;
  925. lorgqrmin = f2cmax(i__1,i__2);
  926. /* Computing MAX */
  927. i__1 = lorgqropt, i__2 = (integer) work[1];
  928. lorgqropt = f2cmax(i__1,i__2);
  929. }
  930. if (wantu2 && *m - *p > 0) {
  931. i__1 = *m - *p;
  932. i__2 = *m - *p;
  933. dorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, dum1, &work[1],
  934. &c_n1, &childinfo);
  935. /* Computing MAX */
  936. i__1 = lorgqrmin, i__2 = *m - *p;
  937. lorgqrmin = f2cmax(i__1,i__2);
  938. /* Computing MAX */
  939. i__1 = lorgqropt, i__2 = (integer) work[1];
  940. lorgqropt = f2cmax(i__1,i__2);
  941. }
  942. if (wantv1t && *q > 0) {
  943. dorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  944. c_n1, &childinfo);
  945. lorglqmin = f2cmax(lorglqmin,*q);
  946. /* Computing MAX */
  947. i__1 = lorglqopt, i__2 = (integer) work[1];
  948. lorglqopt = f2cmax(i__1,i__2);
  949. }
  950. dbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], dum1,
  951. &v1t[v1t_offset], ldv1t, dum2, &c__1, &u1[u1_offset],
  952. ldu1, &u2[u2_offset], ldu2, dum1, dum1, dum1, dum1, dum1,
  953. dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  954. lbbcsd = (integer) work[1];
  955. } else if (r__ == *m - *p) {
  956. dorbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  957. ldx21, &theta[1], dum1, dum1, dum1, dum1, &work[1], &c_n1,
  958. &childinfo);
  959. lorbdb = (integer) work[1];
  960. if (wantu1 && *p > 0) {
  961. dorgqr_(p, p, q, &u1[u1_offset], ldu1, dum1, &work[1], &c_n1,
  962. &childinfo);
  963. lorgqrmin = f2cmax(lorgqrmin,*p);
  964. /* Computing MAX */
  965. i__1 = lorgqropt, i__2 = (integer) work[1];
  966. lorgqropt = f2cmax(i__1,i__2);
  967. }
  968. if (wantu2 && *m - *p > 0) {
  969. i__1 = *m - *p - 1;
  970. i__2 = *m - *p - 1;
  971. i__3 = *m - *p - 1;
  972. dorgqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2,
  973. dum1, &work[1], &c_n1, &childinfo);
  974. /* Computing MAX */
  975. i__1 = lorgqrmin, i__2 = *m - *p - 1;
  976. lorgqrmin = f2cmax(i__1,i__2);
  977. /* Computing MAX */
  978. i__1 = lorgqropt, i__2 = (integer) work[1];
  979. lorgqropt = f2cmax(i__1,i__2);
  980. }
  981. if (wantv1t && *q > 0) {
  982. dorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  983. c_n1, &childinfo);
  984. lorglqmin = f2cmax(lorglqmin,*q);
  985. /* Computing MAX */
  986. i__1 = lorglqopt, i__2 = (integer) work[1];
  987. lorglqopt = f2cmax(i__1,i__2);
  988. }
  989. i__1 = *m - *q;
  990. i__2 = *m - *p;
  991. dbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1]
  992. , dum1, dum2, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  993. u2_offset], ldu2, &u1[u1_offset], ldu1, dum1, dum1, dum1,
  994. dum1, dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  995. lbbcsd = (integer) work[1];
  996. } else {
  997. dorbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  998. ldx21, &theta[1], dum1, dum1, dum1, dum1, dum1, &work[1],
  999. &c_n1, &childinfo);
  1000. lorbdb = *m + (integer) work[1];
  1001. if (wantu1 && *p > 0) {
  1002. i__1 = *m - *q;
  1003. dorgqr_(p, p, &i__1, &u1[u1_offset], ldu1, dum1, &work[1], &
  1004. c_n1, &childinfo);
  1005. lorgqrmin = f2cmax(lorgqrmin,*p);
  1006. /* Computing MAX */
  1007. i__1 = lorgqropt, i__2 = (integer) work[1];
  1008. lorgqropt = f2cmax(i__1,i__2);
  1009. }
  1010. if (wantu2 && *m - *p > 0) {
  1011. i__1 = *m - *p;
  1012. i__2 = *m - *p;
  1013. i__3 = *m - *q;
  1014. dorgqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, dum1, &
  1015. work[1], &c_n1, &childinfo);
  1016. /* Computing MAX */
  1017. i__1 = lorgqrmin, i__2 = *m - *p;
  1018. lorgqrmin = f2cmax(i__1,i__2);
  1019. /* Computing MAX */
  1020. i__1 = lorgqropt, i__2 = (integer) work[1];
  1021. lorgqropt = f2cmax(i__1,i__2);
  1022. }
  1023. if (wantv1t && *q > 0) {
  1024. dorglq_(q, q, q, &v1t[v1t_offset], ldv1t, dum1, &work[1], &
  1025. c_n1, &childinfo);
  1026. lorglqmin = f2cmax(lorglqmin,*q);
  1027. /* Computing MAX */
  1028. i__1 = lorglqopt, i__2 = (integer) work[1];
  1029. lorglqopt = f2cmax(i__1,i__2);
  1030. }
  1031. i__1 = *m - *p;
  1032. i__2 = *m - *q;
  1033. dbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1]
  1034. , dum1, &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, dum2,
  1035. &c__1, &v1t[v1t_offset], ldv1t, dum1, dum1, dum1, dum1,
  1036. dum1, dum1, dum1, dum1, &work[1], &c_n1, &childinfo);
  1037. lbbcsd = (integer) work[1];
  1038. }
  1039. /* Computing MAX */
  1040. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqrmin - 1, i__1 = f2cmax(
  1041. i__1,i__2), i__2 = iorglq + lorglqmin - 1, i__1 = f2cmax(i__1,
  1042. i__2), i__2 = ibbcsd + lbbcsd - 1;
  1043. lworkmin = f2cmax(i__1,i__2);
  1044. /* Computing MAX */
  1045. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqropt - 1, i__1 = f2cmax(
  1046. i__1,i__2), i__2 = iorglq + lorglqopt - 1, i__1 = f2cmax(i__1,
  1047. i__2), i__2 = ibbcsd + lbbcsd - 1;
  1048. lworkopt = f2cmax(i__1,i__2);
  1049. work[1] = (doublereal) lworkopt;
  1050. if (*lwork < lworkmin && ! lquery) {
  1051. *info = -19;
  1052. }
  1053. }
  1054. if (*info != 0) {
  1055. i__1 = -(*info);
  1056. xerbla_("DORCSD2BY1", &i__1, (ftnlen)10);
  1057. return;
  1058. } else if (lquery) {
  1059. return;
  1060. }
  1061. lorgqr = *lwork - iorgqr + 1;
  1062. lorglq = *lwork - iorglq + 1;
  1063. /* Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q, */
  1064. /* in which R = MIN(P,M-P,Q,M-Q) */
  1065. if (r__ == *q) {
  1066. /* Case 1: R = Q */
  1067. /* Simultaneously bidiagonalize X11 and X21 */
  1068. dorbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1069. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1070. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1071. /* Accumulate Householder reflectors */
  1072. if (wantu1 && *p > 0) {
  1073. dlacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1074. dorgqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1075. iorgqr], &lorgqr, &childinfo);
  1076. }
  1077. if (wantu2 && *m - *p > 0) {
  1078. i__1 = *m - *p;
  1079. dlacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1080. ldu2);
  1081. i__1 = *m - *p;
  1082. i__2 = *m - *p;
  1083. dorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1084. work[iorgqr], &lorgqr, &childinfo);
  1085. }
  1086. if (wantv1t && *q > 0) {
  1087. v1t[v1t_dim1 + 1] = 1.;
  1088. i__1 = *q;
  1089. for (j = 2; j <= i__1; ++j) {
  1090. v1t[j * v1t_dim1 + 1] = 0.;
  1091. v1t[j + v1t_dim1] = 0.;
  1092. }
  1093. i__1 = *q - 1;
  1094. i__2 = *q - 1;
  1095. dlacpy_("U", &i__1, &i__2, &x21[(x21_dim1 << 1) + 1], ldx21, &v1t[
  1096. (v1t_dim1 << 1) + 2], ldv1t);
  1097. i__1 = *q - 1;
  1098. i__2 = *q - 1;
  1099. i__3 = *q - 1;
  1100. dorglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
  1101. work[itauq1], &work[iorglq], &lorglq, &childinfo);
  1102. }
  1103. /* Simultaneously diagonalize X11 and X21. */
  1104. dbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], &work[
  1105. iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  1106. v1t_offset], ldv1t, dum2, &c__1, &work[ib11d], &work[ib11e], &
  1107. work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[
  1108. ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1109. /* Permute rows and columns to place zero submatrices in */
  1110. /* preferred positions */
  1111. if (*q > 0 && wantu2) {
  1112. i__1 = *q;
  1113. for (i__ = 1; i__ <= i__1; ++i__) {
  1114. iwork[i__] = *m - *p - *q + i__;
  1115. }
  1116. i__1 = *m - *p;
  1117. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1118. iwork[i__] = i__ - *q;
  1119. }
  1120. i__1 = *m - *p;
  1121. i__2 = *m - *p;
  1122. dlapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1123. }
  1124. } else if (r__ == *p) {
  1125. /* Case 2: R = P */
  1126. /* Simultaneously bidiagonalize X11 and X21 */
  1127. dorbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1128. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1129. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1130. /* Accumulate Householder reflectors */
  1131. if (wantu1 && *p > 0) {
  1132. u1[u1_dim1 + 1] = 1.;
  1133. i__1 = *p;
  1134. for (j = 2; j <= i__1; ++j) {
  1135. u1[j * u1_dim1 + 1] = 0.;
  1136. u1[j + u1_dim1] = 0.;
  1137. }
  1138. i__1 = *p - 1;
  1139. i__2 = *p - 1;
  1140. dlacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1141. u1_dim1 << 1) + 2], ldu1);
  1142. i__1 = *p - 1;
  1143. i__2 = *p - 1;
  1144. i__3 = *p - 1;
  1145. dorgqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1, &work[
  1146. itaup1], &work[iorgqr], &lorgqr, &childinfo);
  1147. }
  1148. if (wantu2 && *m - *p > 0) {
  1149. i__1 = *m - *p;
  1150. dlacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1151. ldu2);
  1152. i__1 = *m - *p;
  1153. i__2 = *m - *p;
  1154. dorgqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1155. work[iorgqr], &lorgqr, &childinfo);
  1156. }
  1157. if (wantv1t && *q > 0) {
  1158. dlacpy_("U", p, q, &x11[x11_offset], ldx11, &v1t[v1t_offset],
  1159. ldv1t);
  1160. dorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1161. iorglq], &lorglq, &childinfo);
  1162. }
  1163. /* Simultaneously diagonalize X11 and X21. */
  1164. dbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], &work[
  1165. iphi], &v1t[v1t_offset], ldv1t, dum2, &c__1, &u1[u1_offset],
  1166. ldu1, &u2[u2_offset], ldu2, &work[ib11d], &work[ib11e], &work[
  1167. ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[ib22d]
  1168. , &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1169. /* Permute rows and columns to place identity submatrices in */
  1170. /* preferred positions */
  1171. if (*q > 0 && wantu2) {
  1172. i__1 = *q;
  1173. for (i__ = 1; i__ <= i__1; ++i__) {
  1174. iwork[i__] = *m - *p - *q + i__;
  1175. }
  1176. i__1 = *m - *p;
  1177. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1178. iwork[i__] = i__ - *q;
  1179. }
  1180. i__1 = *m - *p;
  1181. i__2 = *m - *p;
  1182. dlapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1183. }
  1184. } else if (r__ == *m - *p) {
  1185. /* Case 3: R = M-P */
  1186. /* Simultaneously bidiagonalize X11 and X21 */
  1187. dorbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1188. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1189. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1190. /* Accumulate Householder reflectors */
  1191. if (wantu1 && *p > 0) {
  1192. dlacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1193. dorgqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1194. iorgqr], &lorgqr, &childinfo);
  1195. }
  1196. if (wantu2 && *m - *p > 0) {
  1197. u2[u2_dim1 + 1] = 1.;
  1198. i__1 = *m - *p;
  1199. for (j = 2; j <= i__1; ++j) {
  1200. u2[j * u2_dim1 + 1] = 0.;
  1201. u2[j + u2_dim1] = 0.;
  1202. }
  1203. i__1 = *m - *p - 1;
  1204. i__2 = *m - *p - 1;
  1205. dlacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1206. u2_dim1 << 1) + 2], ldu2);
  1207. i__1 = *m - *p - 1;
  1208. i__2 = *m - *p - 1;
  1209. i__3 = *m - *p - 1;
  1210. dorgqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2, &work[
  1211. itaup2], &work[iorgqr], &lorgqr, &childinfo);
  1212. }
  1213. if (wantv1t && *q > 0) {
  1214. i__1 = *m - *p;
  1215. dlacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1216. ldv1t);
  1217. dorglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1218. iorglq], &lorglq, &childinfo);
  1219. }
  1220. /* Simultaneously diagonalize X11 and X21. */
  1221. i__1 = *m - *q;
  1222. i__2 = *m - *p;
  1223. dbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1], &
  1224. work[iphi], dum2, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  1225. u2_offset], ldu2, &u1[u1_offset], ldu1, &work[ib11d], &work[
  1226. ib11e], &work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e]
  1227. , &work[ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &
  1228. childinfo);
  1229. /* Permute rows and columns to place identity submatrices in */
  1230. /* preferred positions */
  1231. if (*q > r__) {
  1232. i__1 = r__;
  1233. for (i__ = 1; i__ <= i__1; ++i__) {
  1234. iwork[i__] = *q - r__ + i__;
  1235. }
  1236. i__1 = *q;
  1237. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1238. iwork[i__] = i__ - r__;
  1239. }
  1240. if (wantu1) {
  1241. dlapmt_(&c_false, p, q, &u1[u1_offset], ldu1, &iwork[1]);
  1242. }
  1243. if (wantv1t) {
  1244. dlapmr_(&c_false, q, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1245. }
  1246. }
  1247. } else {
  1248. /* Case 4: R = M-Q */
  1249. /* Simultaneously bidiagonalize X11 and X21 */
  1250. i__1 = lorbdb - *m;
  1251. dorbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1252. theta[1], &work[iphi], &work[itaup1], &work[itaup2], &work[
  1253. itauq1], &work[iorbdb], &work[iorbdb + *m], &i__1, &childinfo)
  1254. ;
  1255. /* Accumulate Householder reflectors */
  1256. if (wantu1 && *p > 0) {
  1257. dcopy_(p, &work[iorbdb], &c__1, &u1[u1_offset], &c__1);
  1258. i__1 = *p;
  1259. for (j = 2; j <= i__1; ++j) {
  1260. u1[j * u1_dim1 + 1] = 0.;
  1261. }
  1262. i__1 = *p - 1;
  1263. i__2 = *m - *q - 1;
  1264. dlacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1265. u1_dim1 << 1) + 2], ldu1);
  1266. i__1 = *m - *q;
  1267. dorgqr_(p, p, &i__1, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1268. iorgqr], &lorgqr, &childinfo);
  1269. }
  1270. if (wantu2 && *m - *p > 0) {
  1271. i__1 = *m - *p;
  1272. dcopy_(&i__1, &work[iorbdb + *p], &c__1, &u2[u2_offset], &c__1);
  1273. i__1 = *m - *p;
  1274. for (j = 2; j <= i__1; ++j) {
  1275. u2[j * u2_dim1 + 1] = 0.;
  1276. }
  1277. i__1 = *m - *p - 1;
  1278. i__2 = *m - *q - 1;
  1279. dlacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1280. u2_dim1 << 1) + 2], ldu2);
  1281. i__1 = *m - *p;
  1282. i__2 = *m - *p;
  1283. i__3 = *m - *q;
  1284. dorgqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, &work[itaup2],
  1285. &work[iorgqr], &lorgqr, &childinfo);
  1286. }
  1287. if (wantv1t && *q > 0) {
  1288. i__1 = *m - *q;
  1289. dlacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1290. ldv1t);
  1291. i__1 = *p - (*m - *q);
  1292. i__2 = *q - (*m - *q);
  1293. dlacpy_("U", &i__1, &i__2, &x11[*m - *q + 1 + (*m - *q + 1) *
  1294. x11_dim1], ldx11, &v1t[*m - *q + 1 + (*m - *q + 1) *
  1295. v1t_dim1], ldv1t);
  1296. i__1 = -(*p) + *q;
  1297. i__2 = *q - *p;
  1298. dlacpy_("U", &i__1, &i__2, &x21[*m - *q + 1 + (*p + 1) * x21_dim1]
  1299. , ldx21, &v1t[*p + 1 + (*p + 1) * v1t_dim1], ldv1t);
  1300. dorglq_(q, q, q, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1301. iorglq], &lorglq, &childinfo);
  1302. }
  1303. /* Simultaneously diagonalize X11 and X21. */
  1304. i__1 = *m - *p;
  1305. i__2 = *m - *q;
  1306. dbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1], &
  1307. work[iphi], &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, dum2,
  1308. &c__1, &v1t[v1t_offset], ldv1t, &work[ib11d], &work[ib11e], &
  1309. work[ib12d], &work[ib12e], &work[ib21d], &work[ib21e], &work[
  1310. ib22d], &work[ib22e], &work[ibbcsd], &lbbcsd, &childinfo);
  1311. /* Permute rows and columns to place identity submatrices in */
  1312. /* preferred positions */
  1313. if (*p > r__) {
  1314. i__1 = r__;
  1315. for (i__ = 1; i__ <= i__1; ++i__) {
  1316. iwork[i__] = *p - r__ + i__;
  1317. }
  1318. i__1 = *p;
  1319. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1320. iwork[i__] = i__ - r__;
  1321. }
  1322. if (wantu1) {
  1323. dlapmt_(&c_false, p, p, &u1[u1_offset], ldu1, &iwork[1]);
  1324. }
  1325. if (wantv1t) {
  1326. dlapmr_(&c_false, p, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1327. }
  1328. }
  1329. }
  1330. return;
  1331. /* End of DORCSD2BY1 */
  1332. } /* dorcsd2by1_ */