You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgelsd.c 40 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__6 = 6;
  485. static integer c_n1 = -1;
  486. static integer c__9 = 9;
  487. static integer c__0 = 0;
  488. static integer c__1 = 1;
  489. static doublereal c_b82 = 0.;
  490. /* > \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b
  491. > */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download DGELSD + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  510. /* WORK, LWORK, IWORK, INFO ) */
  511. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  512. /* DOUBLE PRECISION RCOND */
  513. /* INTEGER IWORK( * ) */
  514. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DGELSD computes the minimum-norm solution to a real linear least */
  521. /* > squares problem: */
  522. /* > minimize 2-norm(| b - A*x |) */
  523. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  524. /* > matrix which may be rank-deficient. */
  525. /* > */
  526. /* > Several right hand side vectors b and solution vectors x can be */
  527. /* > handled in a single call; they are stored as the columns of the */
  528. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  529. /* > matrix X. */
  530. /* > */
  531. /* > The problem is solved in three steps: */
  532. /* > (1) Reduce the coefficient matrix A to bidiagonal form with */
  533. /* > Householder transformations, reducing the original problem */
  534. /* > into a "bidiagonal least squares problem" (BLS) */
  535. /* > (2) Solve the BLS using a divide and conquer approach. */
  536. /* > (3) Apply back all the Householder transformations to solve */
  537. /* > the original least squares problem. */
  538. /* > */
  539. /* > The effective rank of A is determined by treating as zero those */
  540. /* > singular values which are less than RCOND times the largest singular */
  541. /* > value. */
  542. /* > */
  543. /* > The divide and conquer algorithm makes very mild assumptions about */
  544. /* > floating point arithmetic. It will work on machines with a guard */
  545. /* > digit in add/subtract, or on those binary machines without guard */
  546. /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  547. /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  548. /* > without guard digits, but we know of none. */
  549. /* > \endverbatim */
  550. /* Arguments: */
  551. /* ========== */
  552. /* > \param[in] M */
  553. /* > \verbatim */
  554. /* > M is INTEGER */
  555. /* > The number of rows of A. M >= 0. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The number of columns of A. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] NRHS */
  565. /* > \verbatim */
  566. /* > NRHS is INTEGER */
  567. /* > The number of right hand sides, i.e., the number of columns */
  568. /* > of the matrices B and X. NRHS >= 0. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in,out] A */
  572. /* > \verbatim */
  573. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  574. /* > On entry, the M-by-N matrix A. */
  575. /* > On exit, A has been destroyed. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDA */
  579. /* > \verbatim */
  580. /* > LDA is INTEGER */
  581. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] B */
  585. /* > \verbatim */
  586. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  587. /* > On entry, the M-by-NRHS right hand side matrix B. */
  588. /* > On exit, B is overwritten by the N-by-NRHS solution */
  589. /* > matrix X. If m >= n and RANK = n, the residual */
  590. /* > sum-of-squares for the solution in the i-th column is given */
  591. /* > by the sum of squares of elements n+1:m in that column. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDB */
  595. /* > \verbatim */
  596. /* > LDB is INTEGER */
  597. /* > The leading dimension of the array B. LDB >= f2cmax(1,f2cmax(M,N)). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] S */
  601. /* > \verbatim */
  602. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  603. /* > The singular values of A in decreasing order. */
  604. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] RCOND */
  608. /* > \verbatim */
  609. /* > RCOND is DOUBLE PRECISION */
  610. /* > RCOND is used to determine the effective rank of A. */
  611. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  612. /* > If RCOND < 0, machine precision is used instead. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] RANK */
  616. /* > \verbatim */
  617. /* > RANK is INTEGER */
  618. /* > The effective rank of A, i.e., the number of singular values */
  619. /* > which are greater than RCOND*S(1). */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] WORK */
  623. /* > \verbatim */
  624. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  625. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LWORK */
  629. /* > \verbatim */
  630. /* > LWORK is INTEGER */
  631. /* > The dimension of the array WORK. LWORK must be at least 1. */
  632. /* > The exact minimum amount of workspace needed depends on M, */
  633. /* > N and NRHS. As long as LWORK is at least */
  634. /* > 12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2, */
  635. /* > if M is greater than or equal to N or */
  636. /* > 12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2, */
  637. /* > if M is less than N, the code will execute correctly. */
  638. /* > SMLSIZ is returned by ILAENV and is equal to the maximum */
  639. /* > size of the subproblems at the bottom of the computation */
  640. /* > tree (usually about 25), and */
  641. /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
  642. /* > For good performance, LWORK should generally be larger. */
  643. /* > */
  644. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  645. /* > only calculates the optimal size of the WORK array, returns */
  646. /* > this value as the first entry of the WORK array, and no error */
  647. /* > message related to LWORK is issued by XERBLA. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] IWORK */
  651. /* > \verbatim */
  652. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  653. /* > LIWORK >= f2cmax(1, 3 * MINMN * NLVL + 11 * MINMN), */
  654. /* > where MINMN = MIN( M,N ). */
  655. /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] INFO */
  659. /* > \verbatim */
  660. /* > INFO is INTEGER */
  661. /* > = 0: successful exit */
  662. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  663. /* > > 0: the algorithm for computing the SVD failed to converge; */
  664. /* > if INFO = i, i off-diagonal elements of an intermediate */
  665. /* > bidiagonal form did not converge to zero. */
  666. /* > \endverbatim */
  667. /* Authors: */
  668. /* ======== */
  669. /* > \author Univ. of Tennessee */
  670. /* > \author Univ. of California Berkeley */
  671. /* > \author Univ. of Colorado Denver */
  672. /* > \author NAG Ltd. */
  673. /* > \date June 2017 */
  674. /* > \ingroup doubleGEsolve */
  675. /* > \par Contributors: */
  676. /* ================== */
  677. /* > */
  678. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  679. /* > California at Berkeley, USA \n */
  680. /* > Osni Marques, LBNL/NERSC, USA \n */
  681. /* ===================================================================== */
  682. /* Subroutine */ void dgelsd_(integer *m, integer *n, integer *nrhs,
  683. doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
  684. s, doublereal *rcond, integer *rank, doublereal *work, integer *lwork,
  685. integer *iwork, integer *info)
  686. {
  687. /* System generated locals */
  688. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  689. /* Local variables */
  690. doublereal anrm, bnrm;
  691. integer itau, nlvl, iascl, ibscl;
  692. doublereal sfmin;
  693. integer minmn, maxmn, itaup, itauq, mnthr, nwork;
  694. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  695. integer ie, il;
  696. extern /* Subroutine */ void dgebrd_(integer *, integer *, doublereal *,
  697. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  698. doublereal *, integer *, integer *);
  699. extern doublereal dlamch_(char *);
  700. integer mm;
  701. extern doublereal dlange_(char *, integer *, integer *, doublereal *,
  702. integer *, doublereal *);
  703. extern /* Subroutine */ void dgelqf_(integer *, integer *, doublereal *,
  704. integer *, doublereal *, doublereal *, integer *, integer *),
  705. dlalsd_(char *, integer *, integer *, integer *, doublereal *,
  706. doublereal *, doublereal *, integer *, doublereal *, integer *,
  707. doublereal *, integer *, integer *), dlascl_(char *,
  708. integer *, integer *, doublereal *, doublereal *, integer *,
  709. integer *, doublereal *, integer *, integer *), dgeqrf_(
  710. integer *, integer *, doublereal *, integer *, doublereal *,
  711. doublereal *, integer *, integer *), dlacpy_(char *, integer *,
  712. integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *,
  713. doublereal *, doublereal *, integer *);
  714. extern int xerbla_(char *, integer *, ftnlen);
  715. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  716. integer *, integer *, ftnlen, ftnlen);
  717. doublereal bignum;
  718. extern /* Subroutine */ void dormbr_(char *, char *, char *, integer *,
  719. integer *, integer *, doublereal *, integer *, doublereal *,
  720. doublereal *, integer *, doublereal *, integer *, integer *);
  721. integer wlalsd;
  722. extern /* Subroutine */ void dormlq_(char *, char *, integer *, integer *,
  723. integer *, doublereal *, integer *, doublereal *, doublereal *,
  724. integer *, doublereal *, integer *, integer *);
  725. integer ldwork;
  726. extern /* Subroutine */ void dormqr_(char *, char *, integer *, integer *,
  727. integer *, doublereal *, integer *, doublereal *, doublereal *,
  728. integer *, doublereal *, integer *, integer *);
  729. integer liwork, minwrk, maxwrk;
  730. doublereal smlnum;
  731. logical lquery;
  732. integer smlsiz;
  733. doublereal eps;
  734. /* -- LAPACK driver routine (version 3.7.1) -- */
  735. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  736. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  737. /* June 2017 */
  738. /* ===================================================================== */
  739. /* Test the input arguments. */
  740. /* Parameter adjustments */
  741. a_dim1 = *lda;
  742. a_offset = 1 + a_dim1 * 1;
  743. a -= a_offset;
  744. b_dim1 = *ldb;
  745. b_offset = 1 + b_dim1 * 1;
  746. b -= b_offset;
  747. --s;
  748. --work;
  749. --iwork;
  750. /* Function Body */
  751. *info = 0;
  752. minmn = f2cmin(*m,*n);
  753. maxmn = f2cmax(*m,*n);
  754. mnthr = ilaenv_(&c__6, "DGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)6, (
  755. ftnlen)1);
  756. lquery = *lwork == -1;
  757. if (*m < 0) {
  758. *info = -1;
  759. } else if (*n < 0) {
  760. *info = -2;
  761. } else if (*nrhs < 0) {
  762. *info = -3;
  763. } else if (*lda < f2cmax(1,*m)) {
  764. *info = -5;
  765. } else if (*ldb < f2cmax(1,maxmn)) {
  766. *info = -7;
  767. }
  768. smlsiz = ilaenv_(&c__9, "DGELSD", " ", &c__0, &c__0, &c__0, &c__0, (
  769. ftnlen)6, (ftnlen)1);
  770. /* Compute workspace. */
  771. /* (Note: Comments in the code beginning "Workspace:" describe the */
  772. /* minimal amount of workspace needed at that point in the code, */
  773. /* as well as the preferred amount for good performance. */
  774. /* NB refers to the optimal block size for the immediately */
  775. /* following subroutine, as returned by ILAENV.) */
  776. minwrk = 1;
  777. liwork = 1;
  778. minmn = f2cmax(1,minmn);
  779. /* Computing MAX */
  780. i__1 = (integer) (log((doublereal) minmn / (doublereal) (smlsiz + 1)) /
  781. log(2.)) + 1;
  782. nlvl = f2cmax(i__1,0);
  783. if (*info == 0) {
  784. maxwrk = 0;
  785. liwork = minmn * 3 * nlvl + minmn * 11;
  786. mm = *m;
  787. if (*m >= *n && *m >= mnthr) {
  788. /* Path 1a - overdetermined, with many more rows than columns. */
  789. mm = *n;
  790. /* Computing MAX */
  791. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", m,
  792. n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  793. maxwrk = f2cmax(i__1,i__2);
  794. /* Computing MAX */
  795. i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "DORMQR", "LT",
  796. m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
  797. maxwrk = f2cmax(i__1,i__2);
  798. }
  799. if (*m >= *n) {
  800. /* Path 1 - overdetermined or exactly determined. */
  801. /* Computing MAX */
  802. i__1 = maxwrk, i__2 = *n * 3 + (mm + *n) * ilaenv_(&c__1, "DGEBRD"
  803. , " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  804. maxwrk = f2cmax(i__1,i__2);
  805. /* Computing MAX */
  806. i__1 = maxwrk, i__2 = *n * 3 + *nrhs * ilaenv_(&c__1, "DORMBR",
  807. "QLT", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
  808. maxwrk = f2cmax(i__1,i__2);
  809. /* Computing MAX */
  810. i__1 = maxwrk, i__2 = *n * 3 + (*n - 1) * ilaenv_(&c__1, "DORMBR",
  811. "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
  812. maxwrk = f2cmax(i__1,i__2);
  813. /* Computing 2nd power */
  814. i__1 = smlsiz + 1;
  815. wlalsd = *n * 9 + (*n << 1) * smlsiz + (*n << 3) * nlvl + *n * *
  816. nrhs + i__1 * i__1;
  817. /* Computing MAX */
  818. i__1 = maxwrk, i__2 = *n * 3 + wlalsd;
  819. maxwrk = f2cmax(i__1,i__2);
  820. /* Computing MAX */
  821. i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = f2cmax(i__1,i__2),
  822. i__2 = *n * 3 + wlalsd;
  823. minwrk = f2cmax(i__1,i__2);
  824. }
  825. if (*n > *m) {
  826. /* Computing 2nd power */
  827. i__1 = smlsiz + 1;
  828. wlalsd = *m * 9 + (*m << 1) * smlsiz + (*m << 3) * nlvl + *m * *
  829. nrhs + i__1 * i__1;
  830. if (*n >= mnthr) {
  831. /* Path 2a - underdetermined, with many more columns */
  832. /* than rows. */
  833. maxwrk = *m + *m * ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1,
  834. &c_n1, (ftnlen)6, (ftnlen)1);
  835. /* Computing MAX */
  836. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) *
  837. ilaenv_(&c__1, "DGEBRD", " ", m, m, &c_n1, &c_n1, (
  838. ftnlen)6, (ftnlen)1);
  839. maxwrk = f2cmax(i__1,i__2);
  840. /* Computing MAX */
  841. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * ilaenv_(&
  842. c__1, "DORMBR", "QLT", m, nrhs, m, &c_n1, (ftnlen)6, (
  843. ftnlen)3);
  844. maxwrk = f2cmax(i__1,i__2);
  845. /* Computing MAX */
  846. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) *
  847. ilaenv_(&c__1, "DORMBR", "PLN", m, nrhs, m, &c_n1, (
  848. ftnlen)6, (ftnlen)3);
  849. maxwrk = f2cmax(i__1,i__2);
  850. if (*nrhs > 1) {
  851. /* Computing MAX */
  852. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  853. maxwrk = f2cmax(i__1,i__2);
  854. } else {
  855. /* Computing MAX */
  856. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  857. maxwrk = f2cmax(i__1,i__2);
  858. }
  859. /* Computing MAX */
  860. i__1 = maxwrk, i__2 = *m + *nrhs * ilaenv_(&c__1, "DORMLQ",
  861. "LT", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)2);
  862. maxwrk = f2cmax(i__1,i__2);
  863. /* Computing MAX */
  864. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + wlalsd;
  865. maxwrk = f2cmax(i__1,i__2);
  866. /* XXX: Ensure the Path 2a case below is triggered. The workspace */
  867. /* calculation should use queries for all routines eventually. */
  868. /* Computing MAX */
  869. /* Computing MAX */
  870. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
  871. f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  872. i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + f2cmax(i__3,i__4);
  873. maxwrk = f2cmax(i__1,i__2);
  874. } else {
  875. /* Path 2 - remaining underdetermined cases. */
  876. maxwrk = *m * 3 + (*n + *m) * ilaenv_(&c__1, "DGEBRD", " ", m,
  877. n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  878. /* Computing MAX */
  879. i__1 = maxwrk, i__2 = *m * 3 + *nrhs * ilaenv_(&c__1, "DORMBR"
  880. , "QLT", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
  881. maxwrk = f2cmax(i__1,i__2);
  882. /* Computing MAX */
  883. i__1 = maxwrk, i__2 = *m * 3 + *m * ilaenv_(&c__1, "DORMBR",
  884. "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3);
  885. maxwrk = f2cmax(i__1,i__2);
  886. /* Computing MAX */
  887. i__1 = maxwrk, i__2 = *m * 3 + wlalsd;
  888. maxwrk = f2cmax(i__1,i__2);
  889. }
  890. /* Computing MAX */
  891. i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *m, i__1 = f2cmax(i__1,i__2),
  892. i__2 = *m * 3 + wlalsd;
  893. minwrk = f2cmax(i__1,i__2);
  894. }
  895. minwrk = f2cmin(minwrk,maxwrk);
  896. work[1] = (doublereal) maxwrk;
  897. iwork[1] = liwork;
  898. if (*lwork < minwrk && ! lquery) {
  899. *info = -12;
  900. }
  901. }
  902. if (*info != 0) {
  903. i__1 = -(*info);
  904. xerbla_("DGELSD", &i__1, (ftnlen)6);
  905. return;
  906. } else if (lquery) {
  907. goto L10;
  908. }
  909. /* Quick return if possible. */
  910. if (*m == 0 || *n == 0) {
  911. *rank = 0;
  912. return;
  913. }
  914. /* Get machine parameters. */
  915. eps = dlamch_("P");
  916. sfmin = dlamch_("S");
  917. smlnum = sfmin / eps;
  918. bignum = 1. / smlnum;
  919. dlabad_(&smlnum, &bignum);
  920. /* Scale A if f2cmax entry outside range [SMLNUM,BIGNUM]. */
  921. anrm = dlange_("M", m, n, &a[a_offset], lda, &work[1]);
  922. iascl = 0;
  923. if (anrm > 0. && anrm < smlnum) {
  924. /* Scale matrix norm up to SMLNUM. */
  925. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  926. info);
  927. iascl = 1;
  928. } else if (anrm > bignum) {
  929. /* Scale matrix norm down to BIGNUM. */
  930. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  931. info);
  932. iascl = 2;
  933. } else if (anrm == 0.) {
  934. /* Matrix all zero. Return zero solution. */
  935. i__1 = f2cmax(*m,*n);
  936. dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[b_offset], ldb);
  937. dlaset_("F", &minmn, &c__1, &c_b82, &c_b82, &s[1], &c__1);
  938. *rank = 0;
  939. goto L10;
  940. }
  941. /* Scale B if f2cmax entry outside range [SMLNUM,BIGNUM]. */
  942. bnrm = dlange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
  943. ibscl = 0;
  944. if (bnrm > 0. && bnrm < smlnum) {
  945. /* Scale matrix norm up to SMLNUM. */
  946. dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  947. info);
  948. ibscl = 1;
  949. } else if (bnrm > bignum) {
  950. /* Scale matrix norm down to BIGNUM. */
  951. dlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  952. info);
  953. ibscl = 2;
  954. }
  955. /* If M < N make sure certain entries of B are zero. */
  956. if (*m < *n) {
  957. i__1 = *n - *m;
  958. dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[*m + 1 + b_dim1], ldb);
  959. }
  960. /* Overdetermined case. */
  961. if (*m >= *n) {
  962. /* Path 1 - overdetermined or exactly determined. */
  963. mm = *m;
  964. if (*m >= mnthr) {
  965. /* Path 1a - overdetermined, with many more rows than columns. */
  966. mm = *n;
  967. itau = 1;
  968. nwork = itau + *n;
  969. /* Compute A=Q*R. */
  970. /* (Workspace: need 2*N, prefer N+N*NB) */
  971. i__1 = *lwork - nwork + 1;
  972. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
  973. info);
  974. /* Multiply B by transpose(Q). */
  975. /* (Workspace: need N+NRHS, prefer N+NRHS*NB) */
  976. i__1 = *lwork - nwork + 1;
  977. dormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  978. b_offset], ldb, &work[nwork], &i__1, info);
  979. /* Zero out below R. */
  980. if (*n > 1) {
  981. i__1 = *n - 1;
  982. i__2 = *n - 1;
  983. dlaset_("L", &i__1, &i__2, &c_b82, &c_b82, &a[a_dim1 + 2],
  984. lda);
  985. }
  986. }
  987. ie = 1;
  988. itauq = ie + *n;
  989. itaup = itauq + *n;
  990. nwork = itaup + *n;
  991. /* Bidiagonalize R in A. */
  992. /* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
  993. i__1 = *lwork - nwork + 1;
  994. dgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  995. work[itaup], &work[nwork], &i__1, info);
  996. /* Multiply B by transpose of left bidiagonalizing vectors of R. */
  997. /* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
  998. i__1 = *lwork - nwork + 1;
  999. dormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  1000. &b[b_offset], ldb, &work[nwork], &i__1, info);
  1001. /* Solve the bidiagonal least squares problem. */
  1002. dlalsd_("U", &smlsiz, n, nrhs, &s[1], &work[ie], &b[b_offset], ldb,
  1003. rcond, rank, &work[nwork], &iwork[1], info);
  1004. if (*info != 0) {
  1005. goto L10;
  1006. }
  1007. /* Multiply B by right bidiagonalizing vectors of R. */
  1008. i__1 = *lwork - nwork + 1;
  1009. dormbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
  1010. b[b_offset], ldb, &work[nwork], &i__1, info);
  1011. } else /* if(complicated condition) */ {
  1012. /* Computing MAX */
  1013. i__1 = *m, i__2 = (*m << 1) - 4, i__1 = f2cmax(i__1,i__2), i__1 = f2cmax(
  1014. i__1,*nrhs), i__2 = *n - *m * 3, i__1 = f2cmax(i__1,i__2);
  1015. if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__1,wlalsd)) {
  1016. /* Path 2a - underdetermined, with many more columns than rows */
  1017. /* and sufficient workspace for an efficient algorithm. */
  1018. ldwork = *m;
  1019. /* Computing MAX */
  1020. /* Computing MAX */
  1021. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
  1022. f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  1023. i__1 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__2 = *m * *lda +
  1024. *m + *m * *nrhs, i__1 = f2cmax(i__1,i__2), i__2 = (*m << 2)
  1025. + *m * *lda + wlalsd;
  1026. if (*lwork >= f2cmax(i__1,i__2)) {
  1027. ldwork = *lda;
  1028. }
  1029. itau = 1;
  1030. nwork = *m + 1;
  1031. /* Compute A=L*Q. */
  1032. /* (Workspace: need 2*M, prefer M+M*NB) */
  1033. i__1 = *lwork - nwork + 1;
  1034. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
  1035. info);
  1036. il = nwork;
  1037. /* Copy L to WORK(IL), zeroing out above its diagonal. */
  1038. dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  1039. i__1 = *m - 1;
  1040. i__2 = *m - 1;
  1041. dlaset_("U", &i__1, &i__2, &c_b82, &c_b82, &work[il + ldwork], &
  1042. ldwork);
  1043. ie = il + ldwork * *m;
  1044. itauq = ie + *m;
  1045. itaup = itauq + *m;
  1046. nwork = itaup + *m;
  1047. /* Bidiagonalize L in WORK(IL). */
  1048. /* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
  1049. i__1 = *lwork - nwork + 1;
  1050. dgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq],
  1051. &work[itaup], &work[nwork], &i__1, info);
  1052. /* Multiply B by transpose of left bidiagonalizing vectors of L. */
  1053. /* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
  1054. i__1 = *lwork - nwork + 1;
  1055. dormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
  1056. itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
  1057. /* Solve the bidiagonal least squares problem. */
  1058. dlalsd_("U", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
  1059. ldb, rcond, rank, &work[nwork], &iwork[1], info);
  1060. if (*info != 0) {
  1061. goto L10;
  1062. }
  1063. /* Multiply B by right bidiagonalizing vectors of L. */
  1064. i__1 = *lwork - nwork + 1;
  1065. dormbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
  1066. itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
  1067. /* Zero out below first M rows of B. */
  1068. i__1 = *n - *m;
  1069. dlaset_("F", &i__1, nrhs, &c_b82, &c_b82, &b[*m + 1 + b_dim1],
  1070. ldb);
  1071. nwork = itau + *m;
  1072. /* Multiply transpose(Q) by B. */
  1073. /* (Workspace: need M+NRHS, prefer M+NRHS*NB) */
  1074. i__1 = *lwork - nwork + 1;
  1075. dormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  1076. b_offset], ldb, &work[nwork], &i__1, info);
  1077. } else {
  1078. /* Path 2 - remaining underdetermined cases. */
  1079. ie = 1;
  1080. itauq = ie + *m;
  1081. itaup = itauq + *m;
  1082. nwork = itaup + *m;
  1083. /* Bidiagonalize A. */
  1084. /* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
  1085. i__1 = *lwork - nwork + 1;
  1086. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1087. work[itaup], &work[nwork], &i__1, info);
  1088. /* Multiply B by transpose of left bidiagonalizing vectors. */
  1089. /* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
  1090. i__1 = *lwork - nwork + 1;
  1091. dormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1092. , &b[b_offset], ldb, &work[nwork], &i__1, info);
  1093. /* Solve the bidiagonal least squares problem. */
  1094. dlalsd_("L", &smlsiz, m, nrhs, &s[1], &work[ie], &b[b_offset],
  1095. ldb, rcond, rank, &work[nwork], &iwork[1], info);
  1096. if (*info != 0) {
  1097. goto L10;
  1098. }
  1099. /* Multiply B by right bidiagonalizing vectors of A. */
  1100. i__1 = *lwork - nwork + 1;
  1101. dormbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
  1102. , &b[b_offset], ldb, &work[nwork], &i__1, info);
  1103. }
  1104. }
  1105. /* Undo scaling. */
  1106. if (iascl == 1) {
  1107. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1108. info);
  1109. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1110. minmn, info);
  1111. } else if (iascl == 2) {
  1112. dlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1113. info);
  1114. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1115. minmn, info);
  1116. }
  1117. if (ibscl == 1) {
  1118. dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1119. info);
  1120. } else if (ibscl == 2) {
  1121. dlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1122. info);
  1123. }
  1124. L10:
  1125. work[1] = (doublereal) maxwrk;
  1126. iwork[1] = liwork;
  1127. return;
  1128. /* End of DGELSD */
  1129. } /* dgelsd_ */