You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqr4.c 43 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__13 = 13;
  485. static integer c__15 = 15;
  486. static integer c_n1 = -1;
  487. static integer c__12 = 12;
  488. static integer c__14 = 14;
  489. static integer c__16 = 16;
  490. static logical c_false = FALSE_;
  491. static integer c__1 = 1;
  492. static integer c__3 = 3;
  493. /* > \brief \b CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
  494. hur decomposition. */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download CLAQR4 + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr4.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr4.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr4.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE CLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, */
  513. /* IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
  514. /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
  515. /* LOGICAL WANTT, WANTZ */
  516. /* COMPLEX H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CLAQR4 implements one level of recursion for CLAQR0. */
  523. /* > It is a complete implementation of the small bulge multi-shift */
  524. /* > QR algorithm. It may be called by CLAQR0 and, for large enough */
  525. /* > deflation window size, it may be called by CLAQR3. This */
  526. /* > subroutine is identical to CLAQR0 except that it calls CLAQR2 */
  527. /* > instead of CLAQR3. */
  528. /* > */
  529. /* > CLAQR4 computes the eigenvalues of a Hessenberg matrix H */
  530. /* > and, optionally, the matrices T and Z from the Schur decomposition */
  531. /* > H = Z T Z**H, where T is an upper triangular matrix (the */
  532. /* > Schur form), and Z is the unitary matrix of Schur vectors. */
  533. /* > */
  534. /* > Optionally Z may be postmultiplied into an input unitary */
  535. /* > matrix Q so that this routine can give the Schur factorization */
  536. /* > of a matrix A which has been reduced to the Hessenberg form H */
  537. /* > by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H. */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] WANTT */
  542. /* > \verbatim */
  543. /* > WANTT is LOGICAL */
  544. /* > = .TRUE. : the full Schur form T is required; */
  545. /* > = .FALSE.: only eigenvalues are required. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] WANTZ */
  549. /* > \verbatim */
  550. /* > WANTZ is LOGICAL */
  551. /* > = .TRUE. : the matrix of Schur vectors Z is required; */
  552. /* > = .FALSE.: Schur vectors are not required. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] N */
  556. /* > \verbatim */
  557. /* > N is INTEGER */
  558. /* > The order of the matrix H. N >= 0. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] ILO */
  562. /* > \verbatim */
  563. /* > ILO is INTEGER */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] IHI */
  567. /* > \verbatim */
  568. /* > IHI is INTEGER */
  569. /* > It is assumed that H is already upper triangular in rows */
  570. /* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
  571. /* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
  572. /* > previous call to CGEBAL, and then passed to CGEHRD when the */
  573. /* > matrix output by CGEBAL is reduced to Hessenberg form. */
  574. /* > Otherwise, ILO and IHI should be set to 1 and N, */
  575. /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
  576. /* > If N = 0, then ILO = 1 and IHI = 0. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] H */
  580. /* > \verbatim */
  581. /* > H is COMPLEX array, dimension (LDH,N) */
  582. /* > On entry, the upper Hessenberg matrix H. */
  583. /* > On exit, if INFO = 0 and WANTT is .TRUE., then H */
  584. /* > contains the upper triangular matrix T from the Schur */
  585. /* > decomposition (the Schur form). If INFO = 0 and WANT is */
  586. /* > .FALSE., then the contents of H are unspecified on exit. */
  587. /* > (The output value of H when INFO > 0 is given under the */
  588. /* > description of INFO below.) */
  589. /* > */
  590. /* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
  591. /* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDH */
  595. /* > \verbatim */
  596. /* > LDH is INTEGER */
  597. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] W */
  601. /* > \verbatim */
  602. /* > W is COMPLEX array, dimension (N) */
  603. /* > The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored */
  604. /* > in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are */
  605. /* > stored in the same order as on the diagonal of the Schur */
  606. /* > form returned in H, with W(i) = H(i,i). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] ILOZ */
  610. /* > \verbatim */
  611. /* > ILOZ is INTEGER */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] IHIZ */
  615. /* > \verbatim */
  616. /* > IHIZ is INTEGER */
  617. /* > Specify the rows of Z to which transformations must be */
  618. /* > applied if WANTZ is .TRUE.. */
  619. /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in,out] Z */
  623. /* > \verbatim */
  624. /* > Z is COMPLEX array, dimension (LDZ,IHI) */
  625. /* > If WANTZ is .FALSE., then Z is not referenced. */
  626. /* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
  627. /* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
  628. /* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
  629. /* > (The output value of Z when INFO > 0 is given under */
  630. /* > the description of INFO below.) */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] LDZ */
  634. /* > \verbatim */
  635. /* > LDZ is INTEGER */
  636. /* > The leading dimension of the array Z. if WANTZ is .TRUE. */
  637. /* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] WORK */
  641. /* > \verbatim */
  642. /* > WORK is COMPLEX array, dimension LWORK */
  643. /* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
  644. /* > the optimal value for LWORK. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LWORK */
  648. /* > \verbatim */
  649. /* > LWORK is INTEGER */
  650. /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
  651. /* > is sufficient, but LWORK typically as large as 6*N may */
  652. /* > be required for optimal performance. A workspace query */
  653. /* > to determine the optimal workspace size is recommended. */
  654. /* > */
  655. /* > If LWORK = -1, then CLAQR4 does a workspace query. */
  656. /* > In this case, CLAQR4 checks the input parameters and */
  657. /* > estimates the optimal workspace size for the given */
  658. /* > values of N, ILO and IHI. The estimate is returned */
  659. /* > in WORK(1). No error message related to LWORK is */
  660. /* > issued by XERBLA. Neither H nor Z are accessed. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] INFO */
  664. /* > \verbatim */
  665. /* > INFO is INTEGER */
  666. /* > = 0: successful exit */
  667. /* > > 0: if INFO = i, CLAQR4 failed to compute all of */
  668. /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
  669. /* > and WI contain those eigenvalues which have been */
  670. /* > successfully computed. (Failures are rare.) */
  671. /* > */
  672. /* > If INFO > 0 and WANT is .FALSE., then on exit, */
  673. /* > the remaining unconverged eigenvalues are the eigen- */
  674. /* > values of the upper Hessenberg matrix rows and */
  675. /* > columns ILO through INFO of the final, output */
  676. /* > value of H. */
  677. /* > */
  678. /* > If INFO > 0 and WANTT is .TRUE., then on exit */
  679. /* > */
  680. /* > (*) (initial value of H)*U = U*(final value of H) */
  681. /* > */
  682. /* > where U is a unitary matrix. The final */
  683. /* > value of H is upper Hessenberg and triangular in */
  684. /* > rows and columns INFO+1 through IHI. */
  685. /* > */
  686. /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
  687. /* > */
  688. /* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
  689. /* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
  690. /* > */
  691. /* > where U is the unitary matrix in (*) (regard- */
  692. /* > less of the value of WANTT.) */
  693. /* > */
  694. /* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
  695. /* > accessed. */
  696. /* > \endverbatim */
  697. /* Authors: */
  698. /* ======== */
  699. /* > \author Univ. of Tennessee */
  700. /* > \author Univ. of California Berkeley */
  701. /* > \author Univ. of Colorado Denver */
  702. /* > \author NAG Ltd. */
  703. /* > \date June 2017 */
  704. /* > \ingroup complexOTHERauxiliary */
  705. /* > \par Contributors: */
  706. /* ================== */
  707. /* > */
  708. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  709. /* > University of Kansas, USA */
  710. /* > \par References: */
  711. /* ================ */
  712. /* > */
  713. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  714. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  715. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  716. /* > 929--947, 2002. */
  717. /* > \n */
  718. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  719. /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
  720. /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
  721. /* > */
  722. /* ===================================================================== */
  723. /* Subroutine */ void claqr4_(logical *wantt, logical *wantz, integer *n,
  724. integer *ilo, integer *ihi, complex *h__, integer *ldh, complex *w,
  725. integer *iloz, integer *ihiz, complex *z__, integer *ldz, complex *
  726. work, integer *lwork, integer *info)
  727. {
  728. /* System generated locals */
  729. integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  730. real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8;
  731. complex q__1, q__2, q__3, q__4, q__5;
  732. /* Local variables */
  733. integer ndec, ndfl, kbot, nmin;
  734. complex swap;
  735. integer ktop;
  736. complex zdum[1] /* was [1][1] */;
  737. integer kacc22, i__, k;
  738. real s;
  739. integer itmax, nsmax, nwmax, kwtop;
  740. extern /* Subroutine */ void claqr2_(logical *, logical *, integer *,
  741. integer *, integer *, integer *, complex *, integer *, integer *,
  742. integer *, complex *, integer *, integer *, integer *, complex *,
  743. complex *, integer *, integer *, complex *, integer *, integer *,
  744. complex *, integer *, complex *, integer *), claqr5_(logical *,
  745. logical *, integer *, integer *, integer *, integer *, integer *,
  746. complex *, complex *, integer *, integer *, integer *, complex *,
  747. integer *, complex *, integer *, complex *, integer *, integer *,
  748. complex *, integer *, integer *, complex *, integer *);
  749. complex aa, bb, cc, dd;
  750. integer ld, nh, nibble, it, ks, kt, ku, kv, ls, ns, nw;
  751. extern /* Subroutine */ void clahqr_(logical *, logical *, integer *,
  752. integer *, integer *, complex *, integer *, complex *, integer *,
  753. integer *, complex *, integer *, integer *), clacpy_(char *,
  754. integer *, integer *, complex *, integer *, complex *, integer *);
  755. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  756. integer *, integer *, ftnlen, ftnlen);
  757. char jbcmpz[2];
  758. complex rtdisc;
  759. integer nwupbd;
  760. logical sorted;
  761. integer lwkopt;
  762. complex tr2, det;
  763. integer inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
  764. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  765. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  766. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  767. /* June 2017 */
  768. /* ================================================================ */
  769. /* ==== Matrices of order NTINY or smaller must be processed by */
  770. /* . CLAHQR because of insufficient subdiagonal scratch space. */
  771. /* . (This is a hard limit.) ==== */
  772. /* ==== Exceptional deflation windows: try to cure rare */
  773. /* . slow convergence by varying the size of the */
  774. /* . deflation window after KEXNW iterations. ==== */
  775. /* ==== Exceptional shifts: try to cure rare slow convergence */
  776. /* . with ad-hoc exceptional shifts every KEXSH iterations. */
  777. /* . ==== */
  778. /* ==== The constant WILK1 is used to form the exceptional */
  779. /* . shifts. ==== */
  780. /* Parameter adjustments */
  781. h_dim1 = *ldh;
  782. h_offset = 1 + h_dim1 * 1;
  783. h__ -= h_offset;
  784. --w;
  785. z_dim1 = *ldz;
  786. z_offset = 1 + z_dim1 * 1;
  787. z__ -= z_offset;
  788. --work;
  789. /* Function Body */
  790. *info = 0;
  791. /* ==== Quick return for N = 0: nothing to do. ==== */
  792. if (*n == 0) {
  793. work[1].r = 1.f, work[1].i = 0.f;
  794. return;
  795. }
  796. if (*n <= 15) {
  797. /* ==== Tiny matrices must use CLAHQR. ==== */
  798. lwkopt = 1;
  799. if (*lwork != -1) {
  800. clahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
  801. iloz, ihiz, &z__[z_offset], ldz, info);
  802. }
  803. } else {
  804. /* ==== Use small bulge multi-shift QR with aggressive early */
  805. /* . deflation on larger-than-tiny matrices. ==== */
  806. /* ==== Hope for the best. ==== */
  807. *info = 0;
  808. /* ==== Set up job flags for ILAENV. ==== */
  809. if (*wantt) {
  810. *(unsigned char *)jbcmpz = 'S';
  811. } else {
  812. *(unsigned char *)jbcmpz = 'E';
  813. }
  814. if (*wantz) {
  815. *(unsigned char *)&jbcmpz[1] = 'V';
  816. } else {
  817. *(unsigned char *)&jbcmpz[1] = 'N';
  818. }
  819. /* ==== NWR = recommended deflation window size. At this */
  820. /* . point, N .GT. NTINY = 15, so there is enough */
  821. /* . subdiagonal workspace for NWR.GE.2 as required. */
  822. /* . (In fact, there is enough subdiagonal space for */
  823. /* . NWR.GE.4.) ==== */
  824. nwr = ilaenv_(&c__13, "CLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  825. (ftnlen)2);
  826. nwr = f2cmax(2,nwr);
  827. /* Computing MIN */
  828. i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
  829. nwr = f2cmin(i__1,nwr);
  830. /* ==== NSR = recommended number of simultaneous shifts. */
  831. /* . At this point N .GT. NTINY = 15, so there is at */
  832. /* . enough subdiagonal workspace for NSR to be even */
  833. /* . and greater than or equal to two as required. ==== */
  834. nsr = ilaenv_(&c__15, "CLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  835. (ftnlen)2);
  836. /* Computing MIN */
  837. i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
  838. *ilo;
  839. nsr = f2cmin(i__1,i__2);
  840. /* Computing MAX */
  841. i__1 = 2, i__2 = nsr - nsr % 2;
  842. nsr = f2cmax(i__1,i__2);
  843. /* ==== Estimate optimal workspace ==== */
  844. /* ==== Workspace query call to CLAQR2 ==== */
  845. i__1 = nwr + 1;
  846. claqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
  847. ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[h_offset],
  848. ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1],
  849. &c_n1);
  850. /* ==== Optimal workspace = MAX(CLAQR5, CLAQR2) ==== */
  851. /* Computing MAX */
  852. i__1 = nsr * 3 / 2, i__2 = (integer) work[1].r;
  853. lwkopt = f2cmax(i__1,i__2);
  854. /* ==== Quick return in case of workspace query. ==== */
  855. if (*lwork == -1) {
  856. r__1 = (real) lwkopt;
  857. q__1.r = r__1, q__1.i = 0.f;
  858. work[1].r = q__1.r, work[1].i = q__1.i;
  859. return;
  860. }
  861. /* ==== CLAHQR/CLAQR0 crossover point ==== */
  862. nmin = ilaenv_(&c__12, "CLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
  863. 6, (ftnlen)2);
  864. nmin = f2cmax(15,nmin);
  865. /* ==== Nibble crossover point ==== */
  866. nibble = ilaenv_(&c__14, "CLAQR4", jbcmpz, n, ilo, ihi, lwork, (
  867. ftnlen)6, (ftnlen)2);
  868. nibble = f2cmax(0,nibble);
  869. /* ==== Accumulate reflections during ttswp? Use block */
  870. /* . 2-by-2 structure during matrix-matrix multiply? ==== */
  871. kacc22 = ilaenv_(&c__16, "CLAQR4", jbcmpz, n, ilo, ihi, lwork, (
  872. ftnlen)6, (ftnlen)2);
  873. kacc22 = f2cmax(0,kacc22);
  874. kacc22 = f2cmin(2,kacc22);
  875. /* ==== NWMAX = the largest possible deflation window for */
  876. /* . which there is sufficient workspace. ==== */
  877. /* Computing MIN */
  878. i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
  879. nwmax = f2cmin(i__1,i__2);
  880. nw = nwmax;
  881. /* ==== NSMAX = the Largest number of simultaneous shifts */
  882. /* . for which there is sufficient workspace. ==== */
  883. /* Computing MIN */
  884. i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
  885. nsmax = f2cmin(i__1,i__2);
  886. nsmax -= nsmax % 2;
  887. /* ==== NDFL: an iteration count restarted at deflation. ==== */
  888. ndfl = 1;
  889. /* ==== ITMAX = iteration limit ==== */
  890. /* Computing MAX */
  891. i__1 = 10, i__2 = *ihi - *ilo + 1;
  892. itmax = 30 * f2cmax(i__1,i__2);
  893. /* ==== Last row and column in the active block ==== */
  894. kbot = *ihi;
  895. /* ==== Main Loop ==== */
  896. i__1 = itmax;
  897. for (it = 1; it <= i__1; ++it) {
  898. /* ==== Done when KBOT falls below ILO ==== */
  899. if (kbot < *ilo) {
  900. goto L80;
  901. }
  902. /* ==== Locate active block ==== */
  903. i__2 = *ilo + 1;
  904. for (k = kbot; k >= i__2; --k) {
  905. i__3 = k + (k - 1) * h_dim1;
  906. if (h__[i__3].r == 0.f && h__[i__3].i == 0.f) {
  907. goto L20;
  908. }
  909. /* L10: */
  910. }
  911. k = *ilo;
  912. L20:
  913. ktop = k;
  914. /* ==== Select deflation window size: */
  915. /* . Typical Case: */
  916. /* . If possible and advisable, nibble the entire */
  917. /* . active block. If not, use size MIN(NWR,NWMAX) */
  918. /* . or MIN(NWR+1,NWMAX) depending upon which has */
  919. /* . the smaller corresponding subdiagonal entry */
  920. /* . (a heuristic). */
  921. /* . */
  922. /* . Exceptional Case: */
  923. /* . If there have been no deflations in KEXNW or */
  924. /* . more iterations, then vary the deflation window */
  925. /* . size. At first, because, larger windows are, */
  926. /* . in general, more powerful than smaller ones, */
  927. /* . rapidly increase the window to the maximum possible. */
  928. /* . Then, gradually reduce the window size. ==== */
  929. nh = kbot - ktop + 1;
  930. nwupbd = f2cmin(nh,nwmax);
  931. if (ndfl < 5) {
  932. nw = f2cmin(nwupbd,nwr);
  933. } else {
  934. /* Computing MIN */
  935. i__2 = nwupbd, i__3 = nw << 1;
  936. nw = f2cmin(i__2,i__3);
  937. }
  938. if (nw < nwmax) {
  939. if (nw >= nh - 1) {
  940. nw = nh;
  941. } else {
  942. kwtop = kbot - nw + 1;
  943. i__2 = kwtop + (kwtop - 1) * h_dim1;
  944. i__3 = kwtop - 1 + (kwtop - 2) * h_dim1;
  945. if ((r__1 = h__[i__2].r, abs(r__1)) + (r__2 = r_imag(&h__[
  946. kwtop + (kwtop - 1) * h_dim1]), abs(r__2)) > (
  947. r__3 = h__[i__3].r, abs(r__3)) + (r__4 = r_imag(&
  948. h__[kwtop - 1 + (kwtop - 2) * h_dim1]), abs(r__4))
  949. ) {
  950. ++nw;
  951. }
  952. }
  953. }
  954. if (ndfl < 5) {
  955. ndec = -1;
  956. } else if (ndec >= 0 || nw >= nwupbd) {
  957. ++ndec;
  958. if (nw - ndec < 2) {
  959. ndec = 0;
  960. }
  961. nw -= ndec;
  962. }
  963. /* ==== Aggressive early deflation: */
  964. /* . split workspace under the subdiagonal into */
  965. /* . - an nw-by-nw work array V in the lower */
  966. /* . left-hand-corner, */
  967. /* . - an NW-by-at-least-NW-but-more-is-better */
  968. /* . (NW-by-NHO) horizontal work array along */
  969. /* . the bottom edge, */
  970. /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
  971. /* . vertical work array along the left-hand-edge. */
  972. /* . ==== */
  973. kv = *n - nw + 1;
  974. kt = nw + 1;
  975. nho = *n - nw - 1 - kt + 1;
  976. kwv = nw + 2;
  977. nve = *n - nw - kwv + 1;
  978. /* ==== Aggressive early deflation ==== */
  979. claqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
  980. iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[kv
  981. + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &
  982. h__[kwv + h_dim1], ldh, &work[1], lwork);
  983. /* ==== Adjust KBOT accounting for new deflations. ==== */
  984. kbot -= ld;
  985. /* ==== KS points to the shifts. ==== */
  986. ks = kbot - ls + 1;
  987. /* ==== Skip an expensive QR sweep if there is a (partly */
  988. /* . heuristic) reason to expect that many eigenvalues */
  989. /* . will deflate without it. Here, the QR sweep is */
  990. /* . skipped if many eigenvalues have just been deflated */
  991. /* . or if the remaining active block is small. */
  992. if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
  993. nmin,nwmax)) {
  994. /* ==== NS = nominal number of simultaneous shifts. */
  995. /* . This may be lowered (slightly) if CLAQR2 */
  996. /* . did not provide that many shifts. ==== */
  997. /* Computing MIN */
  998. /* Computing MAX */
  999. i__4 = 2, i__5 = kbot - ktop;
  1000. i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
  1001. ns = f2cmin(i__2,i__3);
  1002. ns -= ns % 2;
  1003. /* ==== If there have been no deflations */
  1004. /* . in a multiple of KEXSH iterations, */
  1005. /* . then try exceptional shifts. */
  1006. /* . Otherwise use shifts provided by */
  1007. /* . CLAQR2 above or from the eigenvalues */
  1008. /* . of a trailing principal submatrix. ==== */
  1009. if (ndfl % 6 == 0) {
  1010. ks = kbot - ns + 1;
  1011. i__2 = ks + 1;
  1012. for (i__ = kbot; i__ >= i__2; i__ += -2) {
  1013. i__3 = i__;
  1014. i__4 = i__ + i__ * h_dim1;
  1015. i__5 = i__ + (i__ - 1) * h_dim1;
  1016. r__3 = ((r__1 = h__[i__5].r, abs(r__1)) + (r__2 =
  1017. r_imag(&h__[i__ + (i__ - 1) * h_dim1]), abs(
  1018. r__2))) * .75f;
  1019. q__1.r = h__[i__4].r + r__3, q__1.i = h__[i__4].i;
  1020. w[i__3].r = q__1.r, w[i__3].i = q__1.i;
  1021. i__3 = i__ - 1;
  1022. i__4 = i__;
  1023. w[i__3].r = w[i__4].r, w[i__3].i = w[i__4].i;
  1024. /* L30: */
  1025. }
  1026. } else {
  1027. /* ==== Got NS/2 or fewer shifts? Use CLAHQR */
  1028. /* . on a trailing principal submatrix to */
  1029. /* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
  1030. /* . there is enough space below the subdiagonal */
  1031. /* . to fit an NS-by-NS scratch array.) ==== */
  1032. if (kbot - ks + 1 <= ns / 2) {
  1033. ks = kbot - ns + 1;
  1034. kt = *n - ns + 1;
  1035. clacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
  1036. h__[kt + h_dim1], ldh);
  1037. clahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt
  1038. + h_dim1], ldh, &w[ks], &c__1, &c__1, zdum, &
  1039. c__1, &inf);
  1040. ks += inf;
  1041. /* ==== In case of a rare QR failure use */
  1042. /* . eigenvalues of the trailing 2-by-2 */
  1043. /* . principal submatrix. Scale to avoid */
  1044. /* . overflows, underflows and subnormals. */
  1045. /* . (The scale factor S can not be zero, */
  1046. /* . because H(KBOT,KBOT-1) is nonzero.) ==== */
  1047. if (ks >= kbot) {
  1048. i__2 = kbot - 1 + (kbot - 1) * h_dim1;
  1049. i__3 = kbot + (kbot - 1) * h_dim1;
  1050. i__4 = kbot - 1 + kbot * h_dim1;
  1051. i__5 = kbot + kbot * h_dim1;
  1052. s = (r__1 = h__[i__2].r, abs(r__1)) + (r__2 =
  1053. r_imag(&h__[kbot - 1 + (kbot - 1) *
  1054. h_dim1]), abs(r__2)) + ((r__3 = h__[i__3]
  1055. .r, abs(r__3)) + (r__4 = r_imag(&h__[kbot
  1056. + (kbot - 1) * h_dim1]), abs(r__4))) + ((
  1057. r__5 = h__[i__4].r, abs(r__5)) + (r__6 =
  1058. r_imag(&h__[kbot - 1 + kbot * h_dim1]),
  1059. abs(r__6))) + ((r__7 = h__[i__5].r, abs(
  1060. r__7)) + (r__8 = r_imag(&h__[kbot + kbot *
  1061. h_dim1]), abs(r__8)));
  1062. i__2 = kbot - 1 + (kbot - 1) * h_dim1;
  1063. q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i /
  1064. s;
  1065. aa.r = q__1.r, aa.i = q__1.i;
  1066. i__2 = kbot + (kbot - 1) * h_dim1;
  1067. q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i /
  1068. s;
  1069. cc.r = q__1.r, cc.i = q__1.i;
  1070. i__2 = kbot - 1 + kbot * h_dim1;
  1071. q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i /
  1072. s;
  1073. bb.r = q__1.r, bb.i = q__1.i;
  1074. i__2 = kbot + kbot * h_dim1;
  1075. q__1.r = h__[i__2].r / s, q__1.i = h__[i__2].i /
  1076. s;
  1077. dd.r = q__1.r, dd.i = q__1.i;
  1078. q__2.r = aa.r + dd.r, q__2.i = aa.i + dd.i;
  1079. q__1.r = q__2.r / 2.f, q__1.i = q__2.i / 2.f;
  1080. tr2.r = q__1.r, tr2.i = q__1.i;
  1081. q__3.r = aa.r - tr2.r, q__3.i = aa.i - tr2.i;
  1082. q__4.r = dd.r - tr2.r, q__4.i = dd.i - tr2.i;
  1083. q__2.r = q__3.r * q__4.r - q__3.i * q__4.i,
  1084. q__2.i = q__3.r * q__4.i + q__3.i *
  1085. q__4.r;
  1086. q__5.r = bb.r * cc.r - bb.i * cc.i, q__5.i = bb.r
  1087. * cc.i + bb.i * cc.r;
  1088. q__1.r = q__2.r - q__5.r, q__1.i = q__2.i -
  1089. q__5.i;
  1090. det.r = q__1.r, det.i = q__1.i;
  1091. q__2.r = -det.r, q__2.i = -det.i;
  1092. c_sqrt(&q__1, &q__2);
  1093. rtdisc.r = q__1.r, rtdisc.i = q__1.i;
  1094. i__2 = kbot - 1;
  1095. q__2.r = tr2.r + rtdisc.r, q__2.i = tr2.i +
  1096. rtdisc.i;
  1097. q__1.r = s * q__2.r, q__1.i = s * q__2.i;
  1098. w[i__2].r = q__1.r, w[i__2].i = q__1.i;
  1099. i__2 = kbot;
  1100. q__2.r = tr2.r - rtdisc.r, q__2.i = tr2.i -
  1101. rtdisc.i;
  1102. q__1.r = s * q__2.r, q__1.i = s * q__2.i;
  1103. w[i__2].r = q__1.r, w[i__2].i = q__1.i;
  1104. ks = kbot - 1;
  1105. }
  1106. }
  1107. if (kbot - ks + 1 > ns) {
  1108. /* ==== Sort the shifts (Helps a little) ==== */
  1109. sorted = FALSE_;
  1110. i__2 = ks + 1;
  1111. for (k = kbot; k >= i__2; --k) {
  1112. if (sorted) {
  1113. goto L60;
  1114. }
  1115. sorted = TRUE_;
  1116. i__3 = k - 1;
  1117. for (i__ = ks; i__ <= i__3; ++i__) {
  1118. i__4 = i__;
  1119. i__5 = i__ + 1;
  1120. if ((r__1 = w[i__4].r, abs(r__1)) + (r__2 =
  1121. r_imag(&w[i__]), abs(r__2)) < (r__3 =
  1122. w[i__5].r, abs(r__3)) + (r__4 =
  1123. r_imag(&w[i__ + 1]), abs(r__4))) {
  1124. sorted = FALSE_;
  1125. i__4 = i__;
  1126. swap.r = w[i__4].r, swap.i = w[i__4].i;
  1127. i__4 = i__;
  1128. i__5 = i__ + 1;
  1129. w[i__4].r = w[i__5].r, w[i__4].i = w[i__5]
  1130. .i;
  1131. i__4 = i__ + 1;
  1132. w[i__4].r = swap.r, w[i__4].i = swap.i;
  1133. }
  1134. /* L40: */
  1135. }
  1136. /* L50: */
  1137. }
  1138. L60:
  1139. ;
  1140. }
  1141. }
  1142. /* ==== If there are only two shifts, then use */
  1143. /* . only one. ==== */
  1144. if (kbot - ks + 1 == 2) {
  1145. i__2 = kbot;
  1146. i__3 = kbot + kbot * h_dim1;
  1147. q__2.r = w[i__2].r - h__[i__3].r, q__2.i = w[i__2].i -
  1148. h__[i__3].i;
  1149. q__1.r = q__2.r, q__1.i = q__2.i;
  1150. i__4 = kbot - 1;
  1151. i__5 = kbot + kbot * h_dim1;
  1152. q__4.r = w[i__4].r - h__[i__5].r, q__4.i = w[i__4].i -
  1153. h__[i__5].i;
  1154. q__3.r = q__4.r, q__3.i = q__4.i;
  1155. if ((r__1 = q__1.r, abs(r__1)) + (r__2 = r_imag(&q__1),
  1156. abs(r__2)) < (r__3 = q__3.r, abs(r__3)) + (r__4 =
  1157. r_imag(&q__3), abs(r__4))) {
  1158. i__2 = kbot - 1;
  1159. i__3 = kbot;
  1160. w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
  1161. } else {
  1162. i__2 = kbot;
  1163. i__3 = kbot - 1;
  1164. w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
  1165. }
  1166. }
  1167. /* ==== Use up to NS of the the smallest magnitude */
  1168. /* . shifts. If there aren't NS shifts available, */
  1169. /* . then use them all, possibly dropping one to */
  1170. /* . make the number of shifts even. ==== */
  1171. /* Computing MIN */
  1172. i__2 = ns, i__3 = kbot - ks + 1;
  1173. ns = f2cmin(i__2,i__3);
  1174. ns -= ns % 2;
  1175. ks = kbot - ns + 1;
  1176. /* ==== Small-bulge multi-shift QR sweep: */
  1177. /* . split workspace under the subdiagonal into */
  1178. /* . - a KDU-by-KDU work array U in the lower */
  1179. /* . left-hand-corner, */
  1180. /* . - a KDU-by-at-least-KDU-but-more-is-better */
  1181. /* . (KDU-by-NHo) horizontal work array WH along */
  1182. /* . the bottom edge, */
  1183. /* . - and an at-least-KDU-but-more-is-better-by-KDU */
  1184. /* . (NVE-by-KDU) vertical work WV arrow along */
  1185. /* . the left-hand-edge. ==== */
  1186. kdu = ns << 1;
  1187. ku = *n - kdu + 1;
  1188. kwh = kdu + 1;
  1189. nho = *n - kdu - 3 - (kdu + 1) + 1;
  1190. kwv = kdu + 4;
  1191. nve = *n - kdu - kwv + 1;
  1192. /* ==== Small-bulge multi-shift QR sweep ==== */
  1193. claqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &w[ks], &
  1194. h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &
  1195. work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[
  1196. kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1],
  1197. ldh);
  1198. }
  1199. /* ==== Note progress (or the lack of it). ==== */
  1200. if (ld > 0) {
  1201. ndfl = 1;
  1202. } else {
  1203. ++ndfl;
  1204. }
  1205. /* ==== End of main loop ==== */
  1206. /* L70: */
  1207. }
  1208. /* ==== Iteration limit exceeded. Set INFO to show where */
  1209. /* . the problem occurred and exit. ==== */
  1210. *info = kbot;
  1211. L80:
  1212. ;
  1213. }
  1214. /* ==== Return the optimal value of LWORK. ==== */
  1215. r__1 = (real) lwkopt;
  1216. q__1.r = r__1, q__1.i = 0.f;
  1217. work[1].r = q__1.r, work[1].i = q__1.i;
  1218. /* ==== End of CLAQR4 ==== */
  1219. return;
  1220. } /* claqr4_ */