You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasyf_aa.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b6 = -1.;
  485. static integer c__1 = 1;
  486. static doublereal c_b8 = 1.;
  487. static doublereal c_b22 = 0.;
  488. /* > \brief \b DLASYF_AA */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DLASYF_AA + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf_
  495. aa.f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf_
  498. aa.f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf_
  501. aa.f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
  507. /* H, LDH, WORK ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER J1, M, NB, LDA, LDH */
  510. /* INTEGER IPIV( * ) */
  511. /* DOUBLE PRECISION A( LDA, * ), H( LDH, * ), WORK( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > DLATRF_AA factorizes a panel of a real symmetric matrix A using */
  518. /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
  519. /* > when UPLO is U, or a set of NB columns when UPLO is L. */
  520. /* > */
  521. /* > In order to factorize the panel, the Aasen's algorithm requires the */
  522. /* > last row, or column, of the previous panel. The first row, or column, */
  523. /* > of A is set to be the first row, or column, of an identity matrix, */
  524. /* > which is used to factorize the first panel. */
  525. /* > */
  526. /* > The resulting J-th row of U, or J-th column of L, is stored in the */
  527. /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
  528. /* > the diagonal and subdiagonal of A are overwritten by those of T. */
  529. /* > */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] UPLO */
  534. /* > \verbatim */
  535. /* > UPLO is CHARACTER*1 */
  536. /* > = 'U': Upper triangle of A is stored; */
  537. /* > = 'L': Lower triangle of A is stored. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] J1 */
  541. /* > \verbatim */
  542. /* > J1 is INTEGER */
  543. /* > The location of the first row, or column, of the panel */
  544. /* > within the submatrix of A, passed to this routine, e.g., */
  545. /* > when called by DSYTRF_AA, for the first panel, J1 is 1, */
  546. /* > while for the remaining panels, J1 is 2. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] M */
  550. /* > \verbatim */
  551. /* > M is INTEGER */
  552. /* > The dimension of the submatrix. M >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] NB */
  556. /* > \verbatim */
  557. /* > NB is INTEGER */
  558. /* > The dimension of the panel to be facotorized. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in,out] A */
  562. /* > \verbatim */
  563. /* > A is DOUBLE PRECISION array, dimension (LDA,M) for */
  564. /* > the first panel, while dimension (LDA,M+1) for the */
  565. /* > remaining panels. */
  566. /* > */
  567. /* > On entry, A contains the last row, or column, of */
  568. /* > the previous panel, and the trailing submatrix of A */
  569. /* > to be factorized, except for the first panel, only */
  570. /* > the panel is passed. */
  571. /* > */
  572. /* > On exit, the leading panel is factorized. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] LDA */
  576. /* > \verbatim */
  577. /* > LDA is INTEGER */
  578. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] IPIV */
  582. /* > \verbatim */
  583. /* > IPIV is INTEGER array, dimension (M) */
  584. /* > Details of the row and column interchanges, */
  585. /* > the row and column k were interchanged with the row and */
  586. /* > column IPIV(k). */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in,out] H */
  590. /* > \verbatim */
  591. /* > H is DOUBLE PRECISION workspace, dimension (LDH,NB). */
  592. /* > */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDH */
  596. /* > \verbatim */
  597. /* > LDH is INTEGER */
  598. /* > The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] WORK */
  602. /* > \verbatim */
  603. /* > WORK is DOUBLE PRECISION workspace, dimension (M). */
  604. /* > \endverbatim */
  605. /* > */
  606. /* Authors: */
  607. /* ======== */
  608. /* > \author Univ. of Tennessee */
  609. /* > \author Univ. of California Berkeley */
  610. /* > \author Univ. of Colorado Denver */
  611. /* > \author NAG Ltd. */
  612. /* > \date November 2017 */
  613. /* > \ingroup doubleSYcomputational */
  614. /* ===================================================================== */
  615. /* Subroutine */ void dlasyf_aa_(char *uplo, integer *j1, integer *m, integer
  616. *nb, doublereal *a, integer *lda, integer *ipiv, doublereal *h__,
  617. integer *ldh, doublereal *work)
  618. {
  619. /* System generated locals */
  620. integer a_dim1, a_offset, h_dim1, h_offset, i__1;
  621. /* Local variables */
  622. integer j, k;
  623. doublereal alpha;
  624. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  625. integer *);
  626. extern logical lsame_(char *, char *);
  627. extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
  628. doublereal *, doublereal *, integer *, doublereal *, integer *,
  629. doublereal *, doublereal *, integer *), dcopy_(integer *,
  630. doublereal *, integer *, doublereal *, integer *), dswap_(integer
  631. *, doublereal *, integer *, doublereal *, integer *), daxpy_(
  632. integer *, doublereal *, doublereal *, integer *, doublereal *,
  633. integer *);
  634. integer i1, k1, i2, mj;
  635. extern integer idamax_(integer *, doublereal *, integer *);
  636. extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
  637. doublereal *, doublereal *, doublereal *, integer *);
  638. doublereal piv;
  639. /* -- LAPACK computational routine (version 3.8.0) -- */
  640. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  641. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  642. /* November 2017 */
  643. /* ===================================================================== */
  644. /* Parameter adjustments */
  645. a_dim1 = *lda;
  646. a_offset = 1 + a_dim1 * 1;
  647. a -= a_offset;
  648. --ipiv;
  649. h_dim1 = *ldh;
  650. h_offset = 1 + h_dim1 * 1;
  651. h__ -= h_offset;
  652. --work;
  653. /* Function Body */
  654. j = 1;
  655. /* K1 is the first column of the panel to be factorized */
  656. /* i.e., K1 is 2 for the first block column, and 1 for the rest of the blocks */
  657. k1 = 2 - *j1 + 1;
  658. if (lsame_(uplo, "U")) {
  659. /* ..................................................... */
  660. /* Factorize A as U**T*D*U using the upper triangle of A */
  661. /* ..................................................... */
  662. L10:
  663. if (j > f2cmin(*m,*nb)) {
  664. goto L20;
  665. }
  666. /* K is the column to be factorized */
  667. /* when being called from DSYTRF_AA, */
  668. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  669. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  670. k = *j1 + j - 1;
  671. if (j == *m) {
  672. /* Only need to compute T(J, J) */
  673. mj = 1;
  674. } else {
  675. mj = *m - j + 1;
  676. }
  677. /* H(J:M, J) := A(J, J:M) - H(J:M, 1:(J-1)) * L(J1:(J-1), J), */
  678. /* where H(J:M, J) has been initialized to be A(J, J:M) */
  679. if (k > 2) {
  680. /* K is the column to be factorized */
  681. /* > for the first block column, K is J, skipping the first two */
  682. /* columns */
  683. /* > for the rest of the columns, K is J+1, skipping only the */
  684. /* first column */
  685. i__1 = j - k1;
  686. dgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  687. ldh, &a[j * a_dim1 + 1], &c__1, &c_b8, &h__[j + j *
  688. h_dim1], &c__1);
  689. }
  690. /* Copy H(i:M, i) into WORK */
  691. dcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  692. if (j > k1) {
  693. /* Compute WORK := WORK - L(J-1, J:M) * T(J-1,J), */
  694. /* where A(J-1, J) stores T(J-1, J) and A(J-2, J:M) stores U(J-1, J:M) */
  695. alpha = -a[k - 1 + j * a_dim1];
  696. daxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
  697. }
  698. /* Set A(J, J) = T(J, J) */
  699. a[k + j * a_dim1] = work[1];
  700. if (j < *m) {
  701. /* Compute WORK(2:M) = T(J, J) L(J, (J+1):M) */
  702. /* where A(J, J) stores T(J, J) and A(J-1, (J+1):M) stores U(J, (J+1):M) */
  703. if (k > 1) {
  704. alpha = -a[k + j * a_dim1];
  705. i__1 = *m - j;
  706. daxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
  707. work[2], &c__1);
  708. }
  709. /* Find f2cmax(|WORK(2:M)|) */
  710. i__1 = *m - j;
  711. i2 = idamax_(&i__1, &work[2], &c__1) + 1;
  712. piv = work[i2];
  713. /* Apply symmetric pivot */
  714. if (i2 != 2 && piv != 0.) {
  715. /* Swap WORK(I1) and WORK(I2) */
  716. i1 = 2;
  717. work[i2] = work[i1];
  718. work[i1] = piv;
  719. /* Swap A(I1, I1+1:M) with A(I1+1:M, I2) */
  720. i1 = i1 + j - 1;
  721. i2 = i2 + j - 1;
  722. i__1 = i2 - i1 - 1;
  723. dswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
  724. j1 + i1 + i2 * a_dim1], &c__1);
  725. /* Swap A(I1, I2+1:M) with A(I2, I2+1:M) */
  726. if (i2 < *m) {
  727. i__1 = *m - i2;
  728. dswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
  729. a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
  730. }
  731. /* Swap A(I1, I1) with A(I2,I2) */
  732. piv = a[i1 + *j1 - 1 + i1 * a_dim1];
  733. a[*j1 + i1 - 1 + i1 * a_dim1] = a[*j1 + i2 - 1 + i2 * a_dim1];
  734. a[*j1 + i2 - 1 + i2 * a_dim1] = piv;
  735. /* Swap H(I1, 1:J1) with H(I2, 1:J1) */
  736. i__1 = i1 - 1;
  737. dswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  738. ipiv[i1] = i2;
  739. if (i1 > k1 - 1) {
  740. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  741. /* skipping the first column */
  742. i__1 = i1 - k1 + 1;
  743. dswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1
  744. + 1], &c__1);
  745. }
  746. } else {
  747. ipiv[j + 1] = j + 1;
  748. }
  749. /* Set A(J, J+1) = T(J, J+1) */
  750. a[k + (j + 1) * a_dim1] = work[2];
  751. if (j < *nb) {
  752. /* Copy A(J+1:M, J+1) into H(J:M, J), */
  753. i__1 = *m - j;
  754. dcopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 +
  755. (j + 1) * h_dim1], &c__1);
  756. }
  757. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  758. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  759. if (j < *m - 1) {
  760. if (a[k + (j + 1) * a_dim1] != 0.) {
  761. alpha = 1. / a[k + (j + 1) * a_dim1];
  762. i__1 = *m - j - 1;
  763. dcopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1],
  764. lda);
  765. i__1 = *m - j - 1;
  766. dscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
  767. } else {
  768. i__1 = *m - j - 1;
  769. dlaset_("Full", &c__1, &i__1, &c_b22, &c_b22, &a[k + (j +
  770. 2) * a_dim1], lda);
  771. }
  772. }
  773. }
  774. ++j;
  775. goto L10;
  776. L20:
  777. ;
  778. } else {
  779. /* ..................................................... */
  780. /* Factorize A as L*D*L**T using the lower triangle of A */
  781. /* ..................................................... */
  782. L30:
  783. if (j > f2cmin(*m,*nb)) {
  784. goto L40;
  785. }
  786. /* K is the column to be factorized */
  787. /* when being called from DSYTRF_AA, */
  788. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  789. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  790. k = *j1 + j - 1;
  791. if (j == *m) {
  792. /* Only need to compute T(J, J) */
  793. mj = 1;
  794. } else {
  795. mj = *m - j + 1;
  796. }
  797. /* H(J:M, J) := A(J:M, J) - H(J:M, 1:(J-1)) * L(J, J1:(J-1))^T, */
  798. /* where H(J:M, J) has been initialized to be A(J:M, J) */
  799. if (k > 2) {
  800. /* K is the column to be factorized */
  801. /* > for the first block column, K is J, skipping the first two */
  802. /* columns */
  803. /* > for the rest of the columns, K is J+1, skipping only the */
  804. /* first column */
  805. i__1 = j - k1;
  806. dgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  807. ldh, &a[j + a_dim1], lda, &c_b8, &h__[j + j * h_dim1], &
  808. c__1);
  809. }
  810. /* Copy H(J:M, J) into WORK */
  811. dcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  812. if (j > k1) {
  813. /* Compute WORK := WORK - L(J:M, J-1) * T(J-1,J), */
  814. /* where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
  815. alpha = -a[j + (k - 1) * a_dim1];
  816. daxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
  817. c__1);
  818. }
  819. /* Set A(J, J) = T(J, J) */
  820. a[j + k * a_dim1] = work[1];
  821. if (j < *m) {
  822. /* Compute WORK(2:M) = T(J, J) L((J+1):M, J) */
  823. /* where A(J, J) = T(J, J) and A((J+1):M, J-1) = L((J+1):M, J) */
  824. if (k > 1) {
  825. alpha = -a[j + k * a_dim1];
  826. i__1 = *m - j;
  827. daxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
  828. work[2], &c__1);
  829. }
  830. /* Find f2cmax(|WORK(2:M)|) */
  831. i__1 = *m - j;
  832. i2 = idamax_(&i__1, &work[2], &c__1) + 1;
  833. piv = work[i2];
  834. /* Apply symmetric pivot */
  835. if (i2 != 2 && piv != 0.) {
  836. /* Swap WORK(I1) and WORK(I2) */
  837. i1 = 2;
  838. work[i2] = work[i1];
  839. work[i1] = piv;
  840. /* Swap A(I1+1:M, I1) with A(I2, I1+1:M) */
  841. i1 = i1 + j - 1;
  842. i2 = i2 + j - 1;
  843. i__1 = i2 - i1 - 1;
  844. dswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
  845. i2 + (*j1 + i1) * a_dim1], lda);
  846. /* Swap A(I2+1:M, I1) with A(I2+1:M, I2) */
  847. if (i2 < *m) {
  848. i__1 = *m - i2;
  849. dswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
  850. &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
  851. }
  852. /* Swap A(I1, I1) with A(I2, I2) */
  853. piv = a[i1 + (*j1 + i1 - 1) * a_dim1];
  854. a[i1 + (*j1 + i1 - 1) * a_dim1] = a[i2 + (*j1 + i2 - 1) *
  855. a_dim1];
  856. a[i2 + (*j1 + i2 - 1) * a_dim1] = piv;
  857. /* Swap H(I1, I1:J1) with H(I2, I2:J1) */
  858. i__1 = i1 - 1;
  859. dswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  860. ipiv[i1] = i2;
  861. if (i1 > k1 - 1) {
  862. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  863. /* skipping the first column */
  864. i__1 = i1 - k1 + 1;
  865. dswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
  866. }
  867. } else {
  868. ipiv[j + 1] = j + 1;
  869. }
  870. /* Set A(J+1, J) = T(J+1, J) */
  871. a[j + 1 + k * a_dim1] = work[2];
  872. if (j < *nb) {
  873. /* Copy A(J+1:M, J+1) into H(J+1:M, J), */
  874. i__1 = *m - j;
  875. dcopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1
  876. + (j + 1) * h_dim1], &c__1);
  877. }
  878. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  879. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  880. if (j < *m - 1) {
  881. if (a[j + 1 + k * a_dim1] != 0.) {
  882. alpha = 1. / a[j + 1 + k * a_dim1];
  883. i__1 = *m - j - 1;
  884. dcopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
  885. c__1);
  886. i__1 = *m - j - 1;
  887. dscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
  888. } else {
  889. i__1 = *m - j - 1;
  890. dlaset_("Full", &i__1, &c__1, &c_b22, &c_b22, &a[j + 2 +
  891. k * a_dim1], lda);
  892. }
  893. }
  894. }
  895. ++j;
  896. goto L30;
  897. L40:
  898. ;
  899. }
  900. return;
  901. /* End of DLASYF_AA */
  902. } /* dlasyf_aa__ */