You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytf2_rook.c 44 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {1.,0.};
  485. static integer c__1 = 1;
  486. /* > \brief \b ZSYTF2_ROOK computes the factorization of a complex symmetric indefinite matrix using the bound
  487. ed Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm). */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download ZSYTF2_ROOK + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2_
  494. rook.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2_
  497. rook.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2_
  500. rook.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE ZSYTF2_ROOK( UPLO, N, A, LDA, IPIV, INFO ) */
  506. /* CHARACTER UPLO */
  507. /* INTEGER INFO, LDA, N */
  508. /* INTEGER IPIV( * ) */
  509. /* COMPLEX*16 A( LDA, * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > ZSYTF2_ROOK computes the factorization of a complex symmetric matrix A */
  516. /* > using the bounded Bunch-Kaufman ("rook") diagonal pivoting method: */
  517. /* > */
  518. /* > A = U*D*U**T or A = L*D*L**T */
  519. /* > */
  520. /* > where U (or L) is a product of permutation and unit upper (lower) */
  521. /* > triangular matrices, U**T is the transpose of U, and D is symmetric and */
  522. /* > block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  523. /* > */
  524. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] UPLO */
  529. /* > \verbatim */
  530. /* > UPLO is CHARACTER*1 */
  531. /* > Specifies whether the upper or lower triangular part of the */
  532. /* > symmetric matrix A is stored: */
  533. /* > = 'U': Upper triangular */
  534. /* > = 'L': Lower triangular */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix A. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in,out] A */
  544. /* > \verbatim */
  545. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  546. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  547. /* > n-by-n upper triangular part of A contains the upper */
  548. /* > triangular part of the matrix A, and the strictly lower */
  549. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  550. /* > leading n-by-n lower triangular part of A contains the lower */
  551. /* > triangular part of the matrix A, and the strictly upper */
  552. /* > triangular part of A is not referenced. */
  553. /* > */
  554. /* > On exit, the block diagonal matrix D and the multipliers used */
  555. /* > to obtain the factor U or L (see below for further details). */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] LDA */
  559. /* > \verbatim */
  560. /* > LDA is INTEGER */
  561. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[out] IPIV */
  565. /* > \verbatim */
  566. /* > IPIV is INTEGER array, dimension (N) */
  567. /* > Details of the interchanges and the block structure of D. */
  568. /* > */
  569. /* > If UPLO = 'U': */
  570. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  571. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  572. /* > */
  573. /* > If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
  574. /* > columns k and -IPIV(k) were interchanged and rows and */
  575. /* > columns k-1 and -IPIV(k-1) were inerchaged, */
  576. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  577. /* > */
  578. /* > If UPLO = 'L': */
  579. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  580. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  581. /* > */
  582. /* > If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
  583. /* > columns k and -IPIV(k) were interchanged and rows and */
  584. /* > columns k+1 and -IPIV(k+1) were inerchaged, */
  585. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[out] INFO */
  589. /* > \verbatim */
  590. /* > INFO is INTEGER */
  591. /* > = 0: successful exit */
  592. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  593. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  594. /* > has been completed, but the block diagonal matrix D is */
  595. /* > exactly singular, and division by zero will occur if it */
  596. /* > is used to solve a system of equations. */
  597. /* > \endverbatim */
  598. /* Authors: */
  599. /* ======== */
  600. /* > \author Univ. of Tennessee */
  601. /* > \author Univ. of California Berkeley */
  602. /* > \author Univ. of Colorado Denver */
  603. /* > \author NAG Ltd. */
  604. /* > \date November 2013 */
  605. /* > \ingroup complex16SYcomputational */
  606. /* > \par Further Details: */
  607. /* ===================== */
  608. /* > */
  609. /* > \verbatim */
  610. /* > */
  611. /* > If UPLO = 'U', then A = U*D*U**T, where */
  612. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  613. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  614. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  615. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  616. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  617. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  618. /* > */
  619. /* > ( I v 0 ) k-s */
  620. /* > U(k) = ( 0 I 0 ) s */
  621. /* > ( 0 0 I ) n-k */
  622. /* > k-s s n-k */
  623. /* > */
  624. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  625. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  626. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  627. /* > */
  628. /* > If UPLO = 'L', then A = L*D*L**T, where */
  629. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  630. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  631. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  632. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  633. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  634. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  635. /* > */
  636. /* > ( I 0 0 ) k-1 */
  637. /* > L(k) = ( 0 I 0 ) s */
  638. /* > ( 0 v I ) n-k-s+1 */
  639. /* > k-1 s n-k-s+1 */
  640. /* > */
  641. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  642. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  643. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  644. /* > \endverbatim */
  645. /* > \par Contributors: */
  646. /* ================== */
  647. /* > */
  648. /* > \verbatim */
  649. /* > */
  650. /* > November 2013, Igor Kozachenko, */
  651. /* > Computer Science Division, */
  652. /* > University of California, Berkeley */
  653. /* > */
  654. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  655. /* > School of Mathematics, */
  656. /* > University of Manchester */
  657. /* > */
  658. /* > 01-01-96 - Based on modifications by */
  659. /* > J. Lewis, Boeing Computer Services Company */
  660. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville abd , USA */
  661. /* > \endverbatim */
  662. /* ===================================================================== */
  663. /* Subroutine */ void zsytf2_rook_(char *uplo, integer *n, doublecomplex *a,
  664. integer *lda, integer *ipiv, integer *info)
  665. {
  666. /* System generated locals */
  667. integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
  668. doublereal d__1, d__2;
  669. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
  670. /* Local variables */
  671. logical done;
  672. integer imax, jmax;
  673. extern /* Subroutine */ void zsyr_(char *, integer *, doublecomplex *,
  674. doublecomplex *, integer *, doublecomplex *, integer *);
  675. integer i__, j, k, p;
  676. doublecomplex t;
  677. doublereal alpha;
  678. extern logical lsame_(char *, char *);
  679. doublereal dtemp, sfmin;
  680. extern /* Subroutine */ void zscal_(integer *, doublecomplex *,
  681. doublecomplex *, integer *);
  682. integer itemp, kstep;
  683. logical upper;
  684. extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *,
  685. doublecomplex *, integer *);
  686. doublecomplex d11, d12, d21, d22;
  687. integer ii, kk;
  688. extern doublereal dlamch_(char *);
  689. integer kp;
  690. doublereal absakk;
  691. doublecomplex wk;
  692. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  693. doublereal colmax;
  694. extern integer izamax_(integer *, doublecomplex *, integer *);
  695. doublereal rowmax;
  696. doublecomplex wkm1, wkp1;
  697. /* -- LAPACK computational routine (version 3.5.0) -- */
  698. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  699. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  700. /* November 2013 */
  701. /* ===================================================================== */
  702. /* Test the input parameters. */
  703. /* Parameter adjustments */
  704. a_dim1 = *lda;
  705. a_offset = 1 + a_dim1 * 1;
  706. a -= a_offset;
  707. --ipiv;
  708. /* Function Body */
  709. *info = 0;
  710. upper = lsame_(uplo, "U");
  711. if (! upper && ! lsame_(uplo, "L")) {
  712. *info = -1;
  713. } else if (*n < 0) {
  714. *info = -2;
  715. } else if (*lda < f2cmax(1,*n)) {
  716. *info = -4;
  717. }
  718. if (*info != 0) {
  719. i__1 = -(*info);
  720. xerbla_("ZSYTF2_ROOK", &i__1, (ftnlen)11);
  721. return;
  722. }
  723. /* Initialize ALPHA for use in choosing pivot block size. */
  724. alpha = (sqrt(17.) + 1.) / 8.;
  725. /* Compute machine safe minimum */
  726. sfmin = dlamch_("S");
  727. if (upper) {
  728. /* Factorize A as U*D*U**T using the upper triangle of A */
  729. /* K is the main loop index, decreasing from N to 1 in steps of */
  730. /* 1 or 2 */
  731. k = *n;
  732. L10:
  733. /* If K < 1, exit from loop */
  734. if (k < 1) {
  735. goto L70;
  736. }
  737. kstep = 1;
  738. p = k;
  739. /* Determine rows and columns to be interchanged and whether */
  740. /* a 1-by-1 or 2-by-2 pivot block will be used */
  741. i__1 = k + k * a_dim1;
  742. absakk = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k *
  743. a_dim1]), abs(d__2));
  744. /* IMAX is the row-index of the largest off-diagonal element in */
  745. /* column K, and COLMAX is its absolute value. */
  746. /* Determine both COLMAX and IMAX. */
  747. if (k > 1) {
  748. i__1 = k - 1;
  749. imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  750. i__1 = imax + k * a_dim1;
  751. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  752. k * a_dim1]), abs(d__2));
  753. } else {
  754. colmax = 0.;
  755. }
  756. if (f2cmax(absakk,colmax) == 0.) {
  757. /* Column K is zero or underflow: set INFO and continue */
  758. if (*info == 0) {
  759. *info = k;
  760. }
  761. kp = k;
  762. } else {
  763. /* Test for interchange */
  764. /* Equivalent to testing for (used to handle NaN and Inf) */
  765. /* ABSAKK.GE.ALPHA*COLMAX */
  766. if (! (absakk < alpha * colmax)) {
  767. /* no interchange, */
  768. /* use 1-by-1 pivot block */
  769. kp = k;
  770. } else {
  771. done = FALSE_;
  772. /* Loop until pivot found */
  773. L12:
  774. /* Begin pivot search loop body */
  775. /* JMAX is the column-index of the largest off-diagonal */
  776. /* element in row IMAX, and ROWMAX is its absolute value. */
  777. /* Determine both ROWMAX and JMAX. */
  778. if (imax != k) {
  779. i__1 = k - imax;
  780. jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) *
  781. a_dim1], lda);
  782. i__1 = imax + jmax * a_dim1;
  783. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  784. a[imax + jmax * a_dim1]), abs(d__2));
  785. } else {
  786. rowmax = 0.;
  787. }
  788. if (imax > 1) {
  789. i__1 = imax - 1;
  790. itemp = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  791. i__1 = itemp + imax * a_dim1;
  792. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  793. itemp + imax * a_dim1]), abs(d__2));
  794. if (dtemp > rowmax) {
  795. rowmax = dtemp;
  796. jmax = itemp;
  797. }
  798. }
  799. /* Equivalent to testing for (used to handle NaN and Inf) */
  800. /* CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
  801. i__1 = imax + imax * a_dim1;
  802. if (! ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax
  803. + imax * a_dim1]), abs(d__2)) < alpha * rowmax)) {
  804. /* interchange rows and columns K and IMAX, */
  805. /* use 1-by-1 pivot block */
  806. kp = imax;
  807. done = TRUE_;
  808. /* Equivalent to testing for ROWMAX .EQ. COLMAX, */
  809. /* used to handle NaN and Inf */
  810. } else if (p == jmax || rowmax <= colmax) {
  811. /* interchange rows and columns K+1 and IMAX, */
  812. /* use 2-by-2 pivot block */
  813. kp = imax;
  814. kstep = 2;
  815. done = TRUE_;
  816. } else {
  817. /* Pivot NOT found, set variables and repeat */
  818. p = imax;
  819. colmax = rowmax;
  820. imax = jmax;
  821. }
  822. /* End pivot search loop body */
  823. if (! done) {
  824. goto L12;
  825. }
  826. }
  827. /* Swap TWO rows and TWO columns */
  828. /* First swap */
  829. if (kstep == 2 && p != k) {
  830. /* Interchange rows and column K and P in the leading */
  831. /* submatrix A(1:k,1:k) if we have a 2-by-2 pivot */
  832. if (p > 1) {
  833. i__1 = p - 1;
  834. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  835. 1], &c__1);
  836. }
  837. if (p < k - 1) {
  838. i__1 = k - p - 1;
  839. zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p +
  840. 1) * a_dim1], lda);
  841. }
  842. i__1 = k + k * a_dim1;
  843. t.r = a[i__1].r, t.i = a[i__1].i;
  844. i__1 = k + k * a_dim1;
  845. i__2 = p + p * a_dim1;
  846. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  847. i__1 = p + p * a_dim1;
  848. a[i__1].r = t.r, a[i__1].i = t.i;
  849. }
  850. /* Second swap */
  851. kk = k - kstep + 1;
  852. if (kp != kk) {
  853. /* Interchange rows and columns KK and KP in the leading */
  854. /* submatrix A(1:k,1:k) */
  855. if (kp > 1) {
  856. i__1 = kp - 1;
  857. zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  858. + 1], &c__1);
  859. }
  860. if (kk > 1 && kp < kk - 1) {
  861. i__1 = kk - kp - 1;
  862. zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (
  863. kp + 1) * a_dim1], lda);
  864. }
  865. i__1 = kk + kk * a_dim1;
  866. t.r = a[i__1].r, t.i = a[i__1].i;
  867. i__1 = kk + kk * a_dim1;
  868. i__2 = kp + kp * a_dim1;
  869. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  870. i__1 = kp + kp * a_dim1;
  871. a[i__1].r = t.r, a[i__1].i = t.i;
  872. if (kstep == 2) {
  873. i__1 = k - 1 + k * a_dim1;
  874. t.r = a[i__1].r, t.i = a[i__1].i;
  875. i__1 = k - 1 + k * a_dim1;
  876. i__2 = kp + k * a_dim1;
  877. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  878. i__1 = kp + k * a_dim1;
  879. a[i__1].r = t.r, a[i__1].i = t.i;
  880. }
  881. }
  882. /* Update the leading submatrix */
  883. if (kstep == 1) {
  884. /* 1-by-1 pivot block D(k): column k now holds */
  885. /* W(k) = U(k)*D(k) */
  886. /* where U(k) is the k-th column of U */
  887. if (k > 1) {
  888. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  889. /* store U(k) in column k */
  890. i__1 = k + k * a_dim1;
  891. if ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k +
  892. k * a_dim1]), abs(d__2)) >= sfmin) {
  893. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  894. /* A := A - U(k)*D(k)*U(k)**T */
  895. /* = A - W(k)*1/D(k)*W(k)**T */
  896. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  897. d11.r = z__1.r, d11.i = z__1.i;
  898. i__1 = k - 1;
  899. z__1.r = -d11.r, z__1.i = -d11.i;
  900. zsyr_(uplo, &i__1, &z__1, &a[k * a_dim1 + 1], &c__1, &
  901. a[a_offset], lda);
  902. /* Store U(k) in column k */
  903. i__1 = k - 1;
  904. zscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  905. } else {
  906. /* Store L(k) in column K */
  907. i__1 = k + k * a_dim1;
  908. d11.r = a[i__1].r, d11.i = a[i__1].i;
  909. i__1 = k - 1;
  910. for (ii = 1; ii <= i__1; ++ii) {
  911. i__2 = ii + k * a_dim1;
  912. z_div(&z__1, &a[ii + k * a_dim1], &d11);
  913. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  914. /* L16: */
  915. }
  916. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  917. /* A := A - U(k)*D(k)*U(k)**T */
  918. /* = A - W(k)*(1/D(k))*W(k)**T */
  919. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  920. i__1 = k - 1;
  921. z__1.r = -d11.r, z__1.i = -d11.i;
  922. zsyr_(uplo, &i__1, &z__1, &a[k * a_dim1 + 1], &c__1, &
  923. a[a_offset], lda);
  924. }
  925. }
  926. } else {
  927. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  928. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  929. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  930. /* of U */
  931. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  932. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  933. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  934. /* and store L(k) and L(k+1) in columns k and k+1 */
  935. if (k > 2) {
  936. i__1 = k - 1 + k * a_dim1;
  937. d12.r = a[i__1].r, d12.i = a[i__1].i;
  938. z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &d12);
  939. d22.r = z__1.r, d22.i = z__1.i;
  940. z_div(&z__1, &a[k + k * a_dim1], &d12);
  941. d11.r = z__1.r, d11.i = z__1.i;
  942. z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r *
  943. d22.i + d11.i * d22.r;
  944. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  945. z_div(&z__1, &c_b1, &z__2);
  946. t.r = z__1.r, t.i = z__1.i;
  947. for (j = k - 2; j >= 1; --j) {
  948. i__1 = j + (k - 1) * a_dim1;
  949. z__3.r = d11.r * a[i__1].r - d11.i * a[i__1].i,
  950. z__3.i = d11.r * a[i__1].i + d11.i * a[i__1]
  951. .r;
  952. i__2 = j + k * a_dim1;
  953. z__2.r = z__3.r - a[i__2].r, z__2.i = z__3.i - a[i__2]
  954. .i;
  955. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r *
  956. z__2.i + t.i * z__2.r;
  957. wkm1.r = z__1.r, wkm1.i = z__1.i;
  958. i__1 = j + k * a_dim1;
  959. z__3.r = d22.r * a[i__1].r - d22.i * a[i__1].i,
  960. z__3.i = d22.r * a[i__1].i + d22.i * a[i__1]
  961. .r;
  962. i__2 = j + (k - 1) * a_dim1;
  963. z__2.r = z__3.r - a[i__2].r, z__2.i = z__3.i - a[i__2]
  964. .i;
  965. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r *
  966. z__2.i + t.i * z__2.r;
  967. wk.r = z__1.r, wk.i = z__1.i;
  968. for (i__ = j; i__ >= 1; --i__) {
  969. i__1 = i__ + j * a_dim1;
  970. i__2 = i__ + j * a_dim1;
  971. z_div(&z__4, &a[i__ + k * a_dim1], &d12);
  972. z__3.r = z__4.r * wk.r - z__4.i * wk.i, z__3.i =
  973. z__4.r * wk.i + z__4.i * wk.r;
  974. z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i -
  975. z__3.i;
  976. z_div(&z__6, &a[i__ + (k - 1) * a_dim1], &d12);
  977. z__5.r = z__6.r * wkm1.r - z__6.i * wkm1.i,
  978. z__5.i = z__6.r * wkm1.i + z__6.i *
  979. wkm1.r;
  980. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  981. z__5.i;
  982. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  983. /* L20: */
  984. }
  985. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  986. i__1 = j + k * a_dim1;
  987. z_div(&z__1, &wk, &d12);
  988. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  989. i__1 = j + (k - 1) * a_dim1;
  990. z_div(&z__1, &wkm1, &d12);
  991. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  992. /* L30: */
  993. }
  994. }
  995. }
  996. }
  997. /* Store details of the interchanges in IPIV */
  998. if (kstep == 1) {
  999. ipiv[k] = kp;
  1000. } else {
  1001. ipiv[k] = -p;
  1002. ipiv[k - 1] = -kp;
  1003. }
  1004. /* Decrease K and return to the start of the main loop */
  1005. k -= kstep;
  1006. goto L10;
  1007. } else {
  1008. /* Factorize A as L*D*L**T using the lower triangle of A */
  1009. /* K is the main loop index, increasing from 1 to N in steps of */
  1010. /* 1 or 2 */
  1011. k = 1;
  1012. L40:
  1013. /* If K > N, exit from loop */
  1014. if (k > *n) {
  1015. goto L70;
  1016. }
  1017. kstep = 1;
  1018. p = k;
  1019. /* Determine rows and columns to be interchanged and whether */
  1020. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1021. i__1 = k + k * a_dim1;
  1022. absakk = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k *
  1023. a_dim1]), abs(d__2));
  1024. /* IMAX is the row-index of the largest off-diagonal element in */
  1025. /* column K, and COLMAX is its absolute value. */
  1026. /* Determine both COLMAX and IMAX. */
  1027. if (k < *n) {
  1028. i__1 = *n - k;
  1029. imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1030. i__1 = imax + k * a_dim1;
  1031. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  1032. k * a_dim1]), abs(d__2));
  1033. } else {
  1034. colmax = 0.;
  1035. }
  1036. if (f2cmax(absakk,colmax) == 0.) {
  1037. /* Column K is zero or underflow: set INFO and continue */
  1038. if (*info == 0) {
  1039. *info = k;
  1040. }
  1041. kp = k;
  1042. } else {
  1043. /* Test for interchange */
  1044. /* Equivalent to testing for (used to handle NaN and Inf) */
  1045. /* ABSAKK.GE.ALPHA*COLMAX */
  1046. if (! (absakk < alpha * colmax)) {
  1047. /* no interchange, use 1-by-1 pivot block */
  1048. kp = k;
  1049. } else {
  1050. done = FALSE_;
  1051. /* Loop until pivot found */
  1052. L42:
  1053. /* Begin pivot search loop body */
  1054. /* JMAX is the column-index of the largest off-diagonal */
  1055. /* element in row IMAX, and ROWMAX is its absolute value. */
  1056. /* Determine both ROWMAX and JMAX. */
  1057. if (imax != k) {
  1058. i__1 = imax - k;
  1059. jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda);
  1060. i__1 = imax + jmax * a_dim1;
  1061. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  1062. a[imax + jmax * a_dim1]), abs(d__2));
  1063. } else {
  1064. rowmax = 0.;
  1065. }
  1066. if (imax < *n) {
  1067. i__1 = *n - imax;
  1068. itemp = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1069. , &c__1);
  1070. i__1 = itemp + imax * a_dim1;
  1071. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  1072. itemp + imax * a_dim1]), abs(d__2));
  1073. if (dtemp > rowmax) {
  1074. rowmax = dtemp;
  1075. jmax = itemp;
  1076. }
  1077. }
  1078. /* Equivalent to testing for (used to handle NaN and Inf) */
  1079. /* CABS1( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX */
  1080. i__1 = imax + imax * a_dim1;
  1081. if (! ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax
  1082. + imax * a_dim1]), abs(d__2)) < alpha * rowmax)) {
  1083. /* interchange rows and columns K and IMAX, */
  1084. /* use 1-by-1 pivot block */
  1085. kp = imax;
  1086. done = TRUE_;
  1087. /* Equivalent to testing for ROWMAX .EQ. COLMAX, */
  1088. /* used to handle NaN and Inf */
  1089. } else if (p == jmax || rowmax <= colmax) {
  1090. /* interchange rows and columns K+1 and IMAX, */
  1091. /* use 2-by-2 pivot block */
  1092. kp = imax;
  1093. kstep = 2;
  1094. done = TRUE_;
  1095. } else {
  1096. /* Pivot NOT found, set variables and repeat */
  1097. p = imax;
  1098. colmax = rowmax;
  1099. imax = jmax;
  1100. }
  1101. /* End pivot search loop body */
  1102. if (! done) {
  1103. goto L42;
  1104. }
  1105. }
  1106. /* Swap TWO rows and TWO columns */
  1107. /* First swap */
  1108. if (kstep == 2 && p != k) {
  1109. /* Interchange rows and column K and P in the trailing */
  1110. /* submatrix A(k:n,k:n) if we have a 2-by-2 pivot */
  1111. if (p < *n) {
  1112. i__1 = *n - p;
  1113. zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1114. * a_dim1], &c__1);
  1115. }
  1116. if (p > k + 1) {
  1117. i__1 = p - k - 1;
  1118. zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[p + (k +
  1119. 1) * a_dim1], lda);
  1120. }
  1121. i__1 = k + k * a_dim1;
  1122. t.r = a[i__1].r, t.i = a[i__1].i;
  1123. i__1 = k + k * a_dim1;
  1124. i__2 = p + p * a_dim1;
  1125. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1126. i__1 = p + p * a_dim1;
  1127. a[i__1].r = t.r, a[i__1].i = t.i;
  1128. }
  1129. /* Second swap */
  1130. kk = k + kstep - 1;
  1131. if (kp != kk) {
  1132. /* Interchange rows and columns KK and KP in the trailing */
  1133. /* submatrix A(k:n,k:n) */
  1134. if (kp < *n) {
  1135. i__1 = *n - kp;
  1136. zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1137. + kp * a_dim1], &c__1);
  1138. }
  1139. if (kk < *n && kp > kk + 1) {
  1140. i__1 = kp - kk - 1;
  1141. zswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (
  1142. kk + 1) * a_dim1], lda);
  1143. }
  1144. i__1 = kk + kk * a_dim1;
  1145. t.r = a[i__1].r, t.i = a[i__1].i;
  1146. i__1 = kk + kk * a_dim1;
  1147. i__2 = kp + kp * a_dim1;
  1148. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1149. i__1 = kp + kp * a_dim1;
  1150. a[i__1].r = t.r, a[i__1].i = t.i;
  1151. if (kstep == 2) {
  1152. i__1 = k + 1 + k * a_dim1;
  1153. t.r = a[i__1].r, t.i = a[i__1].i;
  1154. i__1 = k + 1 + k * a_dim1;
  1155. i__2 = kp + k * a_dim1;
  1156. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1157. i__1 = kp + k * a_dim1;
  1158. a[i__1].r = t.r, a[i__1].i = t.i;
  1159. }
  1160. }
  1161. /* Update the trailing submatrix */
  1162. if (kstep == 1) {
  1163. /* 1-by-1 pivot block D(k): column k now holds */
  1164. /* W(k) = L(k)*D(k) */
  1165. /* where L(k) is the k-th column of L */
  1166. if (k < *n) {
  1167. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1168. /* store L(k) in column k */
  1169. i__1 = k + k * a_dim1;
  1170. if ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k +
  1171. k * a_dim1]), abs(d__2)) >= sfmin) {
  1172. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1173. /* A := A - L(k)*D(k)*L(k)**T */
  1174. /* = A - W(k)*(1/D(k))*W(k)**T */
  1175. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  1176. d11.r = z__1.r, d11.i = z__1.i;
  1177. i__1 = *n - k;
  1178. z__1.r = -d11.r, z__1.i = -d11.i;
  1179. zsyr_(uplo, &i__1, &z__1, &a[k + 1 + k * a_dim1], &
  1180. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1181. /* Store L(k) in column k */
  1182. i__1 = *n - k;
  1183. zscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1184. } else {
  1185. /* Store L(k) in column k */
  1186. i__1 = k + k * a_dim1;
  1187. d11.r = a[i__1].r, d11.i = a[i__1].i;
  1188. i__1 = *n;
  1189. for (ii = k + 1; ii <= i__1; ++ii) {
  1190. i__2 = ii + k * a_dim1;
  1191. z_div(&z__1, &a[ii + k * a_dim1], &d11);
  1192. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1193. /* L46: */
  1194. }
  1195. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1196. /* A := A - L(k)*D(k)*L(k)**T */
  1197. /* = A - W(k)*(1/D(k))*W(k)**T */
  1198. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1199. i__1 = *n - k;
  1200. z__1.r = -d11.r, z__1.i = -d11.i;
  1201. zsyr_(uplo, &i__1, &z__1, &a[k + 1 + k * a_dim1], &
  1202. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1203. }
  1204. }
  1205. } else {
  1206. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1207. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1208. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1209. /* of L */
  1210. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1211. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1212. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1213. /* and store L(k) and L(k+1) in columns k and k+1 */
  1214. if (k < *n - 1) {
  1215. i__1 = k + 1 + k * a_dim1;
  1216. d21.r = a[i__1].r, d21.i = a[i__1].i;
  1217. z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &d21);
  1218. d11.r = z__1.r, d11.i = z__1.i;
  1219. z_div(&z__1, &a[k + k * a_dim1], &d21);
  1220. d22.r = z__1.r, d22.i = z__1.i;
  1221. z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r *
  1222. d22.i + d11.i * d22.r;
  1223. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  1224. z_div(&z__1, &c_b1, &z__2);
  1225. t.r = z__1.r, t.i = z__1.i;
  1226. i__1 = *n;
  1227. for (j = k + 2; j <= i__1; ++j) {
  1228. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1229. i__2 = j + k * a_dim1;
  1230. z__3.r = d11.r * a[i__2].r - d11.i * a[i__2].i,
  1231. z__3.i = d11.r * a[i__2].i + d11.i * a[i__2]
  1232. .r;
  1233. i__3 = j + (k + 1) * a_dim1;
  1234. z__2.r = z__3.r - a[i__3].r, z__2.i = z__3.i - a[i__3]
  1235. .i;
  1236. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r *
  1237. z__2.i + t.i * z__2.r;
  1238. wk.r = z__1.r, wk.i = z__1.i;
  1239. i__2 = j + (k + 1) * a_dim1;
  1240. z__3.r = d22.r * a[i__2].r - d22.i * a[i__2].i,
  1241. z__3.i = d22.r * a[i__2].i + d22.i * a[i__2]
  1242. .r;
  1243. i__3 = j + k * a_dim1;
  1244. z__2.r = z__3.r - a[i__3].r, z__2.i = z__3.i - a[i__3]
  1245. .i;
  1246. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r *
  1247. z__2.i + t.i * z__2.r;
  1248. wkp1.r = z__1.r, wkp1.i = z__1.i;
  1249. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1250. i__2 = *n;
  1251. for (i__ = j; i__ <= i__2; ++i__) {
  1252. i__3 = i__ + j * a_dim1;
  1253. i__4 = i__ + j * a_dim1;
  1254. z_div(&z__4, &a[i__ + k * a_dim1], &d21);
  1255. z__3.r = z__4.r * wk.r - z__4.i * wk.i, z__3.i =
  1256. z__4.r * wk.i + z__4.i * wk.r;
  1257. z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i -
  1258. z__3.i;
  1259. z_div(&z__6, &a[i__ + (k + 1) * a_dim1], &d21);
  1260. z__5.r = z__6.r * wkp1.r - z__6.i * wkp1.i,
  1261. z__5.i = z__6.r * wkp1.i + z__6.i *
  1262. wkp1.r;
  1263. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  1264. z__5.i;
  1265. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  1266. /* L50: */
  1267. }
  1268. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1269. i__2 = j + k * a_dim1;
  1270. z_div(&z__1, &wk, &d21);
  1271. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1272. i__2 = j + (k + 1) * a_dim1;
  1273. z_div(&z__1, &wkp1, &d21);
  1274. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1275. /* L60: */
  1276. }
  1277. }
  1278. }
  1279. }
  1280. /* Store details of the interchanges in IPIV */
  1281. if (kstep == 1) {
  1282. ipiv[k] = kp;
  1283. } else {
  1284. ipiv[k] = -p;
  1285. ipiv[k + 1] = -kp;
  1286. }
  1287. /* Increase K and return to the start of the main loop */
  1288. k += kstep;
  1289. goto L40;
  1290. }
  1291. L70:
  1292. return;
  1293. /* End of ZSYTF2_ROOK */
  1294. } /* zsytf2_rook__ */