You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgtrfs.c 34 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static doublereal c_b18 = -1.;
  486. static doublereal c_b19 = 1.;
  487. static doublecomplex c_b26 = {1.,0.};
  488. /* > \brief \b ZGTRFS */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZGTRFS + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgtrfs.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgtrfs.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgtrfs.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2, */
  507. /* IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, */
  508. /* INFO ) */
  509. /* CHARACTER TRANS */
  510. /* INTEGER INFO, LDB, LDX, N, NRHS */
  511. /* INTEGER IPIV( * ) */
  512. /* DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ) */
  513. /* COMPLEX*16 B( LDB, * ), D( * ), DF( * ), DL( * ), */
  514. /* $ DLF( * ), DU( * ), DU2( * ), DUF( * ), */
  515. /* $ WORK( * ), X( LDX, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > ZGTRFS improves the computed solution to a system of linear */
  522. /* > equations when the coefficient matrix is tridiagonal, and provides */
  523. /* > error bounds and backward error estimates for the solution. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] TRANS */
  528. /* > \verbatim */
  529. /* > TRANS is CHARACTER*1 */
  530. /* > Specifies the form of the system of equations: */
  531. /* > = 'N': A * X = B (No transpose) */
  532. /* > = 'T': A**T * X = B (Transpose) */
  533. /* > = 'C': A**H * X = B (Conjugate transpose) */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The order of the matrix A. N >= 0. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] NRHS */
  543. /* > \verbatim */
  544. /* > NRHS is INTEGER */
  545. /* > The number of right hand sides, i.e., the number of columns */
  546. /* > of the matrix B. NRHS >= 0. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] DL */
  550. /* > \verbatim */
  551. /* > DL is COMPLEX*16 array, dimension (N-1) */
  552. /* > The (n-1) subdiagonal elements of A. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] D */
  556. /* > \verbatim */
  557. /* > D is COMPLEX*16 array, dimension (N) */
  558. /* > The diagonal elements of A. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] DU */
  562. /* > \verbatim */
  563. /* > DU is COMPLEX*16 array, dimension (N-1) */
  564. /* > The (n-1) superdiagonal elements of A. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] DLF */
  568. /* > \verbatim */
  569. /* > DLF is COMPLEX*16 array, dimension (N-1) */
  570. /* > The (n-1) multipliers that define the matrix L from the */
  571. /* > LU factorization of A as computed by ZGTTRF. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] DF */
  575. /* > \verbatim */
  576. /* > DF is COMPLEX*16 array, dimension (N) */
  577. /* > The n diagonal elements of the upper triangular matrix U from */
  578. /* > the LU factorization of A. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] DUF */
  582. /* > \verbatim */
  583. /* > DUF is COMPLEX*16 array, dimension (N-1) */
  584. /* > The (n-1) elements of the first superdiagonal of U. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] DU2 */
  588. /* > \verbatim */
  589. /* > DU2 is COMPLEX*16 array, dimension (N-2) */
  590. /* > The (n-2) elements of the second superdiagonal of U. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] IPIV */
  594. /* > \verbatim */
  595. /* > IPIV is INTEGER array, dimension (N) */
  596. /* > The pivot indices; for 1 <= i <= n, row i of the matrix was */
  597. /* > interchanged with row IPIV(i). IPIV(i) will always be either */
  598. /* > i or i+1; IPIV(i) = i indicates a row interchange was not */
  599. /* > required. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] B */
  603. /* > \verbatim */
  604. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  605. /* > The right hand side matrix B. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDB */
  609. /* > \verbatim */
  610. /* > LDB is INTEGER */
  611. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in,out] X */
  615. /* > \verbatim */
  616. /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
  617. /* > On entry, the solution matrix X, as computed by ZGTTRS. */
  618. /* > On exit, the improved solution matrix X. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] LDX */
  622. /* > \verbatim */
  623. /* > LDX is INTEGER */
  624. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] FERR */
  628. /* > \verbatim */
  629. /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
  630. /* > The estimated forward error bound for each solution vector */
  631. /* > X(j) (the j-th column of the solution matrix X). */
  632. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  633. /* > is an estimated upper bound for the magnitude of the largest */
  634. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  635. /* > largest element in X(j). The estimate is as reliable as */
  636. /* > the estimate for RCOND, and is almost always a slight */
  637. /* > overestimate of the true error. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] BERR */
  641. /* > \verbatim */
  642. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  643. /* > The componentwise relative backward error of each solution */
  644. /* > vector X(j) (i.e., the smallest relative change in */
  645. /* > any element of A or B that makes X(j) an exact solution). */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] WORK */
  649. /* > \verbatim */
  650. /* > WORK is COMPLEX*16 array, dimension (2*N) */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] RWORK */
  654. /* > \verbatim */
  655. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] INFO */
  659. /* > \verbatim */
  660. /* > INFO is INTEGER */
  661. /* > = 0: successful exit */
  662. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  663. /* > \endverbatim */
  664. /* > \par Internal Parameters: */
  665. /* ========================= */
  666. /* > */
  667. /* > \verbatim */
  668. /* > ITMAX is the maximum number of steps of iterative refinement. */
  669. /* > \endverbatim */
  670. /* Authors: */
  671. /* ======== */
  672. /* > \author Univ. of Tennessee */
  673. /* > \author Univ. of California Berkeley */
  674. /* > \author Univ. of Colorado Denver */
  675. /* > \author NAG Ltd. */
  676. /* > \date December 2016 */
  677. /* > \ingroup complex16GTcomputational */
  678. /* ===================================================================== */
  679. /* Subroutine */ void zgtrfs_(char *trans, integer *n, integer *nrhs,
  680. doublecomplex *dl, doublecomplex *d__, doublecomplex *du,
  681. doublecomplex *dlf, doublecomplex *df, doublecomplex *duf,
  682. doublecomplex *du2, integer *ipiv, doublecomplex *b, integer *ldb,
  683. doublecomplex *x, integer *ldx, doublereal *ferr, doublereal *berr,
  684. doublecomplex *work, doublereal *rwork, integer *info)
  685. {
  686. /* System generated locals */
  687. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5,
  688. i__6, i__7, i__8, i__9;
  689. doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8, d__9, d__10,
  690. d__11, d__12, d__13, d__14;
  691. doublecomplex z__1;
  692. /* Local variables */
  693. integer kase;
  694. doublereal safe1, safe2;
  695. integer i__, j;
  696. doublereal s;
  697. extern logical lsame_(char *, char *);
  698. integer isave[3], count;
  699. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  700. doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *,
  701. doublecomplex *, integer *, doublecomplex *, integer *), zlacn2_(
  702. integer *, doublecomplex *, doublecomplex *, doublereal *,
  703. integer *, integer *);
  704. extern doublereal dlamch_(char *);
  705. integer nz;
  706. doublereal safmin;
  707. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  708. extern void zlagtm_(
  709. char *, integer *, integer *, doublereal *, doublecomplex *,
  710. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  711. doublereal *, doublecomplex *, integer *);
  712. logical notran;
  713. char transn[1], transt[1];
  714. doublereal lstres;
  715. extern /* Subroutine */ void zgttrs_(char *, integer *, integer *,
  716. doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
  717. , integer *, doublecomplex *, integer *, integer *);
  718. doublereal eps;
  719. /* -- LAPACK computational routine (version 3.7.0) -- */
  720. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  721. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  722. /* December 2016 */
  723. /* ===================================================================== */
  724. /* Test the input parameters. */
  725. /* Parameter adjustments */
  726. --dl;
  727. --d__;
  728. --du;
  729. --dlf;
  730. --df;
  731. --duf;
  732. --du2;
  733. --ipiv;
  734. b_dim1 = *ldb;
  735. b_offset = 1 + b_dim1 * 1;
  736. b -= b_offset;
  737. x_dim1 = *ldx;
  738. x_offset = 1 + x_dim1 * 1;
  739. x -= x_offset;
  740. --ferr;
  741. --berr;
  742. --work;
  743. --rwork;
  744. /* Function Body */
  745. *info = 0;
  746. notran = lsame_(trans, "N");
  747. if (! notran && ! lsame_(trans, "T") && ! lsame_(
  748. trans, "C")) {
  749. *info = -1;
  750. } else if (*n < 0) {
  751. *info = -2;
  752. } else if (*nrhs < 0) {
  753. *info = -3;
  754. } else if (*ldb < f2cmax(1,*n)) {
  755. *info = -13;
  756. } else if (*ldx < f2cmax(1,*n)) {
  757. *info = -15;
  758. }
  759. if (*info != 0) {
  760. i__1 = -(*info);
  761. xerbla_("ZGTRFS", &i__1, (ftnlen)6);
  762. return;
  763. }
  764. /* Quick return if possible */
  765. if (*n == 0 || *nrhs == 0) {
  766. i__1 = *nrhs;
  767. for (j = 1; j <= i__1; ++j) {
  768. ferr[j] = 0.;
  769. berr[j] = 0.;
  770. /* L10: */
  771. }
  772. return;
  773. }
  774. if (notran) {
  775. *(unsigned char *)transn = 'N';
  776. *(unsigned char *)transt = 'C';
  777. } else {
  778. *(unsigned char *)transn = 'C';
  779. *(unsigned char *)transt = 'N';
  780. }
  781. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  782. nz = 4;
  783. eps = dlamch_("Epsilon");
  784. safmin = dlamch_("Safe minimum");
  785. safe1 = nz * safmin;
  786. safe2 = safe1 / eps;
  787. /* Do for each right hand side */
  788. i__1 = *nrhs;
  789. for (j = 1; j <= i__1; ++j) {
  790. count = 1;
  791. lstres = 3.;
  792. L20:
  793. /* Loop until stopping criterion is satisfied. */
  794. /* Compute residual R = B - op(A) * X, */
  795. /* where op(A) = A, A**T, or A**H, depending on TRANS. */
  796. zcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
  797. zlagtm_(trans, n, &c__1, &c_b18, &dl[1], &d__[1], &du[1], &x[j *
  798. x_dim1 + 1], ldx, &c_b19, &work[1], n);
  799. /* Compute abs(op(A))*abs(x) + abs(b) for use in the backward */
  800. /* error bound. */
  801. if (notran) {
  802. if (*n == 1) {
  803. i__2 = j * b_dim1 + 1;
  804. i__3 = j * x_dim1 + 1;
  805. rwork[1] = (d__1 = b[i__2].r, abs(d__1)) + (d__2 = d_imag(&b[
  806. j * b_dim1 + 1]), abs(d__2)) + ((d__3 = d__[1].r, abs(
  807. d__3)) + (d__4 = d_imag(&d__[1]), abs(d__4))) * ((
  808. d__5 = x[i__3].r, abs(d__5)) + (d__6 = d_imag(&x[j *
  809. x_dim1 + 1]), abs(d__6)));
  810. } else {
  811. i__2 = j * b_dim1 + 1;
  812. i__3 = j * x_dim1 + 1;
  813. i__4 = j * x_dim1 + 2;
  814. rwork[1] = (d__1 = b[i__2].r, abs(d__1)) + (d__2 = d_imag(&b[
  815. j * b_dim1 + 1]), abs(d__2)) + ((d__3 = d__[1].r, abs(
  816. d__3)) + (d__4 = d_imag(&d__[1]), abs(d__4))) * ((
  817. d__5 = x[i__3].r, abs(d__5)) + (d__6 = d_imag(&x[j *
  818. x_dim1 + 1]), abs(d__6))) + ((d__7 = du[1].r, abs(
  819. d__7)) + (d__8 = d_imag(&du[1]), abs(d__8))) * ((d__9
  820. = x[i__4].r, abs(d__9)) + (d__10 = d_imag(&x[j *
  821. x_dim1 + 2]), abs(d__10)));
  822. i__2 = *n - 1;
  823. for (i__ = 2; i__ <= i__2; ++i__) {
  824. i__3 = i__ + j * b_dim1;
  825. i__4 = i__ - 1;
  826. i__5 = i__ - 1 + j * x_dim1;
  827. i__6 = i__;
  828. i__7 = i__ + j * x_dim1;
  829. i__8 = i__;
  830. i__9 = i__ + 1 + j * x_dim1;
  831. rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 =
  832. d_imag(&b[i__ + j * b_dim1]), abs(d__2)) + ((d__3
  833. = dl[i__4].r, abs(d__3)) + (d__4 = d_imag(&dl[i__
  834. - 1]), abs(d__4))) * ((d__5 = x[i__5].r, abs(d__5)
  835. ) + (d__6 = d_imag(&x[i__ - 1 + j * x_dim1]), abs(
  836. d__6))) + ((d__7 = d__[i__6].r, abs(d__7)) + (
  837. d__8 = d_imag(&d__[i__]), abs(d__8))) * ((d__9 =
  838. x[i__7].r, abs(d__9)) + (d__10 = d_imag(&x[i__ +
  839. j * x_dim1]), abs(d__10))) + ((d__11 = du[i__8].r,
  840. abs(d__11)) + (d__12 = d_imag(&du[i__]), abs(
  841. d__12))) * ((d__13 = x[i__9].r, abs(d__13)) + (
  842. d__14 = d_imag(&x[i__ + 1 + j * x_dim1]), abs(
  843. d__14)));
  844. /* L30: */
  845. }
  846. i__2 = *n + j * b_dim1;
  847. i__3 = *n - 1;
  848. i__4 = *n - 1 + j * x_dim1;
  849. i__5 = *n;
  850. i__6 = *n + j * x_dim1;
  851. rwork[*n] = (d__1 = b[i__2].r, abs(d__1)) + (d__2 = d_imag(&b[
  852. *n + j * b_dim1]), abs(d__2)) + ((d__3 = dl[i__3].r,
  853. abs(d__3)) + (d__4 = d_imag(&dl[*n - 1]), abs(d__4)))
  854. * ((d__5 = x[i__4].r, abs(d__5)) + (d__6 = d_imag(&x[*
  855. n - 1 + j * x_dim1]), abs(d__6))) + ((d__7 = d__[i__5]
  856. .r, abs(d__7)) + (d__8 = d_imag(&d__[*n]), abs(d__8)))
  857. * ((d__9 = x[i__6].r, abs(d__9)) + (d__10 = d_imag(&
  858. x[*n + j * x_dim1]), abs(d__10)));
  859. }
  860. } else {
  861. if (*n == 1) {
  862. i__2 = j * b_dim1 + 1;
  863. i__3 = j * x_dim1 + 1;
  864. rwork[1] = (d__1 = b[i__2].r, abs(d__1)) + (d__2 = d_imag(&b[
  865. j * b_dim1 + 1]), abs(d__2)) + ((d__3 = d__[1].r, abs(
  866. d__3)) + (d__4 = d_imag(&d__[1]), abs(d__4))) * ((
  867. d__5 = x[i__3].r, abs(d__5)) + (d__6 = d_imag(&x[j *
  868. x_dim1 + 1]), abs(d__6)));
  869. } else {
  870. i__2 = j * b_dim1 + 1;
  871. i__3 = j * x_dim1 + 1;
  872. i__4 = j * x_dim1 + 2;
  873. rwork[1] = (d__1 = b[i__2].r, abs(d__1)) + (d__2 = d_imag(&b[
  874. j * b_dim1 + 1]), abs(d__2)) + ((d__3 = d__[1].r, abs(
  875. d__3)) + (d__4 = d_imag(&d__[1]), abs(d__4))) * ((
  876. d__5 = x[i__3].r, abs(d__5)) + (d__6 = d_imag(&x[j *
  877. x_dim1 + 1]), abs(d__6))) + ((d__7 = dl[1].r, abs(
  878. d__7)) + (d__8 = d_imag(&dl[1]), abs(d__8))) * ((d__9
  879. = x[i__4].r, abs(d__9)) + (d__10 = d_imag(&x[j *
  880. x_dim1 + 2]), abs(d__10)));
  881. i__2 = *n - 1;
  882. for (i__ = 2; i__ <= i__2; ++i__) {
  883. i__3 = i__ + j * b_dim1;
  884. i__4 = i__ - 1;
  885. i__5 = i__ - 1 + j * x_dim1;
  886. i__6 = i__;
  887. i__7 = i__ + j * x_dim1;
  888. i__8 = i__;
  889. i__9 = i__ + 1 + j * x_dim1;
  890. rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 =
  891. d_imag(&b[i__ + j * b_dim1]), abs(d__2)) + ((d__3
  892. = du[i__4].r, abs(d__3)) + (d__4 = d_imag(&du[i__
  893. - 1]), abs(d__4))) * ((d__5 = x[i__5].r, abs(d__5)
  894. ) + (d__6 = d_imag(&x[i__ - 1 + j * x_dim1]), abs(
  895. d__6))) + ((d__7 = d__[i__6].r, abs(d__7)) + (
  896. d__8 = d_imag(&d__[i__]), abs(d__8))) * ((d__9 =
  897. x[i__7].r, abs(d__9)) + (d__10 = d_imag(&x[i__ +
  898. j * x_dim1]), abs(d__10))) + ((d__11 = dl[i__8].r,
  899. abs(d__11)) + (d__12 = d_imag(&dl[i__]), abs(
  900. d__12))) * ((d__13 = x[i__9].r, abs(d__13)) + (
  901. d__14 = d_imag(&x[i__ + 1 + j * x_dim1]), abs(
  902. d__14)));
  903. /* L40: */
  904. }
  905. i__2 = *n + j * b_dim1;
  906. i__3 = *n - 1;
  907. i__4 = *n - 1 + j * x_dim1;
  908. i__5 = *n;
  909. i__6 = *n + j * x_dim1;
  910. rwork[*n] = (d__1 = b[i__2].r, abs(d__1)) + (d__2 = d_imag(&b[
  911. *n + j * b_dim1]), abs(d__2)) + ((d__3 = du[i__3].r,
  912. abs(d__3)) + (d__4 = d_imag(&du[*n - 1]), abs(d__4)))
  913. * ((d__5 = x[i__4].r, abs(d__5)) + (d__6 = d_imag(&x[*
  914. n - 1 + j * x_dim1]), abs(d__6))) + ((d__7 = d__[i__5]
  915. .r, abs(d__7)) + (d__8 = d_imag(&d__[*n]), abs(d__8)))
  916. * ((d__9 = x[i__6].r, abs(d__9)) + (d__10 = d_imag(&
  917. x[*n + j * x_dim1]), abs(d__10)));
  918. }
  919. }
  920. /* Compute componentwise relative backward error from formula */
  921. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
  922. /* where abs(Z) is the componentwise absolute value of the matrix */
  923. /* or vector Z. If the i-th component of the denominator is less */
  924. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  925. /* numerator and denominator before dividing. */
  926. s = 0.;
  927. i__2 = *n;
  928. for (i__ = 1; i__ <= i__2; ++i__) {
  929. if (rwork[i__] > safe2) {
  930. /* Computing MAX */
  931. i__3 = i__;
  932. d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 =
  933. d_imag(&work[i__]), abs(d__2))) / rwork[i__];
  934. s = f2cmax(d__3,d__4);
  935. } else {
  936. /* Computing MAX */
  937. i__3 = i__;
  938. d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 =
  939. d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__]
  940. + safe1);
  941. s = f2cmax(d__3,d__4);
  942. }
  943. /* L50: */
  944. }
  945. berr[j] = s;
  946. /* Test stopping criterion. Continue iterating if */
  947. /* 1) The residual BERR(J) is larger than machine epsilon, and */
  948. /* 2) BERR(J) decreased by at least a factor of 2 during the */
  949. /* last iteration, and */
  950. /* 3) At most ITMAX iterations tried. */
  951. if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
  952. /* Update solution and try again. */
  953. zgttrs_(trans, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[
  954. 1], &work[1], n, info);
  955. zaxpy_(n, &c_b26, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
  956. lstres = berr[j];
  957. ++count;
  958. goto L20;
  959. }
  960. /* Bound error from formula */
  961. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  962. /* norm( abs(inv(op(A)))* */
  963. /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
  964. /* where */
  965. /* norm(Z) is the magnitude of the largest component of Z */
  966. /* inv(op(A)) is the inverse of op(A) */
  967. /* abs(Z) is the componentwise absolute value of the matrix or */
  968. /* vector Z */
  969. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  970. /* EPS is machine epsilon */
  971. /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
  972. /* is incremented by SAFE1 if the i-th component of */
  973. /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
  974. /* Use ZLACN2 to estimate the infinity-norm of the matrix */
  975. /* inv(op(A)) * diag(W), */
  976. /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
  977. i__2 = *n;
  978. for (i__ = 1; i__ <= i__2; ++i__) {
  979. if (rwork[i__] > safe2) {
  980. i__3 = i__;
  981. rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 =
  982. d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
  983. ;
  984. } else {
  985. i__3 = i__;
  986. rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 =
  987. d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
  988. + safe1;
  989. }
  990. /* L60: */
  991. }
  992. kase = 0;
  993. L70:
  994. zlacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
  995. if (kase != 0) {
  996. if (kase == 1) {
  997. /* Multiply by diag(W)*inv(op(A)**H). */
  998. zgttrs_(transt, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &
  999. ipiv[1], &work[1], n, info);
  1000. i__2 = *n;
  1001. for (i__ = 1; i__ <= i__2; ++i__) {
  1002. i__3 = i__;
  1003. i__4 = i__;
  1004. i__5 = i__;
  1005. z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4]
  1006. * work[i__5].i;
  1007. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1008. /* L80: */
  1009. }
  1010. } else {
  1011. /* Multiply by inv(op(A))*diag(W). */
  1012. i__2 = *n;
  1013. for (i__ = 1; i__ <= i__2; ++i__) {
  1014. i__3 = i__;
  1015. i__4 = i__;
  1016. i__5 = i__;
  1017. z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4]
  1018. * work[i__5].i;
  1019. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1020. /* L90: */
  1021. }
  1022. zgttrs_(transn, n, &c__1, &dlf[1], &df[1], &duf[1], &du2[1], &
  1023. ipiv[1], &work[1], n, info);
  1024. }
  1025. goto L70;
  1026. }
  1027. /* Normalize error. */
  1028. lstres = 0.;
  1029. i__2 = *n;
  1030. for (i__ = 1; i__ <= i__2; ++i__) {
  1031. /* Computing MAX */
  1032. i__3 = i__ + j * x_dim1;
  1033. d__3 = lstres, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
  1034. d_imag(&x[i__ + j * x_dim1]), abs(d__2));
  1035. lstres = f2cmax(d__3,d__4);
  1036. /* L100: */
  1037. }
  1038. if (lstres != 0.) {
  1039. ferr[j] /= lstres;
  1040. }
  1041. /* L110: */
  1042. }
  1043. return;
  1044. /* End of ZGTRFS */
  1045. } /* zgtrfs_ */