You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasd3.c 31 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static real c_b13 = 1.f;
  487. static real c_b26 = 0.f;
  488. /* > \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in
  489. D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SLASD3 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd3.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd3.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd3.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, */
  508. /* LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, */
  509. /* INFO ) */
  510. /* INTEGER INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, */
  511. /* $ SQRE */
  512. /* INTEGER CTOT( * ), IDXC( * ) */
  513. /* REAL D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), */
  514. /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
  515. /* $ Z( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > SLASD3 finds all the square roots of the roots of the secular */
  522. /* > equation, as defined by the values in D and Z. It makes the */
  523. /* > appropriate calls to SLASD4 and then updates the singular */
  524. /* > vectors by matrix multiplication. */
  525. /* > */
  526. /* > This code makes very mild assumptions about floating point */
  527. /* > arithmetic. It will work on machines with a guard digit in */
  528. /* > add/subtract, or on those binary machines without guard digits */
  529. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  530. /* > It could conceivably fail on hexadecimal or decimal machines */
  531. /* > without guard digits, but we know of none. */
  532. /* > */
  533. /* > SLASD3 is called from SLASD1. */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] NL */
  538. /* > \verbatim */
  539. /* > NL is INTEGER */
  540. /* > The row dimension of the upper block. NL >= 1. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] NR */
  544. /* > \verbatim */
  545. /* > NR is INTEGER */
  546. /* > The row dimension of the lower block. NR >= 1. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] SQRE */
  550. /* > \verbatim */
  551. /* > SQRE is INTEGER */
  552. /* > = 0: the lower block is an NR-by-NR square matrix. */
  553. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  554. /* > */
  555. /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
  556. /* > M = N + SQRE >= N columns. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] K */
  560. /* > \verbatim */
  561. /* > K is INTEGER */
  562. /* > The size of the secular equation, 1 =< K = < N. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] D */
  566. /* > \verbatim */
  567. /* > D is REAL array, dimension(K) */
  568. /* > On exit the square roots of the roots of the secular equation, */
  569. /* > in ascending order. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[out] Q */
  573. /* > \verbatim */
  574. /* > Q is REAL array, dimension (LDQ,K) */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDQ */
  578. /* > \verbatim */
  579. /* > LDQ is INTEGER */
  580. /* > The leading dimension of the array Q. LDQ >= K. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in,out] DSIGMA */
  584. /* > \verbatim */
  585. /* > DSIGMA is REAL array, dimension(K) */
  586. /* > The first K elements of this array contain the old roots */
  587. /* > of the deflated updating problem. These are the poles */
  588. /* > of the secular equation. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] U */
  592. /* > \verbatim */
  593. /* > U is REAL array, dimension (LDU, N) */
  594. /* > The last N - K columns of this matrix contain the deflated */
  595. /* > left singular vectors. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDU */
  599. /* > \verbatim */
  600. /* > LDU is INTEGER */
  601. /* > The leading dimension of the array U. LDU >= N. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] U2 */
  605. /* > \verbatim */
  606. /* > U2 is REAL array, dimension (LDU2, N) */
  607. /* > The first K columns of this matrix contain the non-deflated */
  608. /* > left singular vectors for the split problem. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDU2 */
  612. /* > \verbatim */
  613. /* > LDU2 is INTEGER */
  614. /* > The leading dimension of the array U2. LDU2 >= N. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] VT */
  618. /* > \verbatim */
  619. /* > VT is REAL array, dimension (LDVT, M) */
  620. /* > The last M - K columns of VT**T contain the deflated */
  621. /* > right singular vectors. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] LDVT */
  625. /* > \verbatim */
  626. /* > LDVT is INTEGER */
  627. /* > The leading dimension of the array VT. LDVT >= N. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in,out] VT2 */
  631. /* > \verbatim */
  632. /* > VT2 is REAL array, dimension (LDVT2, N) */
  633. /* > The first K columns of VT2**T contain the non-deflated */
  634. /* > right singular vectors for the split problem. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in] LDVT2 */
  638. /* > \verbatim */
  639. /* > LDVT2 is INTEGER */
  640. /* > The leading dimension of the array VT2. LDVT2 >= N. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] IDXC */
  644. /* > \verbatim */
  645. /* > IDXC is INTEGER array, dimension (N) */
  646. /* > The permutation used to arrange the columns of U (and rows of */
  647. /* > VT) into three groups: the first group contains non-zero */
  648. /* > entries only at and above (or before) NL +1; the second */
  649. /* > contains non-zero entries only at and below (or after) NL+2; */
  650. /* > and the third is dense. The first column of U and the row of */
  651. /* > VT are treated separately, however. */
  652. /* > */
  653. /* > The rows of the singular vectors found by SLASD4 */
  654. /* > must be likewise permuted before the matrix multiplies can */
  655. /* > take place. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[in] CTOT */
  659. /* > \verbatim */
  660. /* > CTOT is INTEGER array, dimension (4) */
  661. /* > A count of the total number of the various types of columns */
  662. /* > in U (or rows in VT), as described in IDXC. The fourth column */
  663. /* > type is any column which has been deflated. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[in,out] Z */
  667. /* > \verbatim */
  668. /* > Z is REAL array, dimension (K) */
  669. /* > The first K elements of this array contain the components */
  670. /* > of the deflation-adjusted updating row vector. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[out] INFO */
  674. /* > \verbatim */
  675. /* > INFO is INTEGER */
  676. /* > = 0: successful exit. */
  677. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  678. /* > > 0: if INFO = 1, a singular value did not converge */
  679. /* > \endverbatim */
  680. /* Authors: */
  681. /* ======== */
  682. /* > \author Univ. of Tennessee */
  683. /* > \author Univ. of California Berkeley */
  684. /* > \author Univ. of Colorado Denver */
  685. /* > \author NAG Ltd. */
  686. /* > \date June 2017 */
  687. /* > \ingroup OTHERauxiliary */
  688. /* > \par Contributors: */
  689. /* ================== */
  690. /* > */
  691. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  692. /* > California at Berkeley, USA */
  693. /* > */
  694. /* ===================================================================== */
  695. /* Subroutine */ void slasd3_(integer *nl, integer *nr, integer *sqre, integer
  696. *k, real *d__, real *q, integer *ldq, real *dsigma, real *u, integer *
  697. ldu, real *u2, integer *ldu2, real *vt, integer *ldvt, real *vt2,
  698. integer *ldvt2, integer *idxc, integer *ctot, real *z__, integer *
  699. info)
  700. {
  701. /* System generated locals */
  702. integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1,
  703. vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
  704. real r__1, r__2;
  705. /* Local variables */
  706. real temp;
  707. extern real snrm2_(integer *, real *, integer *);
  708. integer i__, j, m, n, ctemp;
  709. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  710. integer *, real *, real *, integer *, real *, integer *, real *,
  711. real *, integer *);
  712. integer ktemp;
  713. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  714. integer *);
  715. extern real slamc3_(real *, real *);
  716. extern /* Subroutine */ void slasd4_(integer *, integer *, real *, real *,
  717. real *, real *, real *, real *, integer *);
  718. integer jc;
  719. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  720. extern void slascl_(
  721. char *, integer *, integer *, real *, real *, integer *, integer *
  722. , real *, integer *, integer *), slacpy_(char *, integer *
  723. , integer *, real *, integer *, real *, integer *);
  724. real rho;
  725. integer nlp1, nlp2, nrp1;
  726. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  727. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  728. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  729. /* June 2017 */
  730. /* ===================================================================== */
  731. /* Test the input parameters. */
  732. /* Parameter adjustments */
  733. --d__;
  734. q_dim1 = *ldq;
  735. q_offset = 1 + q_dim1 * 1;
  736. q -= q_offset;
  737. --dsigma;
  738. u_dim1 = *ldu;
  739. u_offset = 1 + u_dim1 * 1;
  740. u -= u_offset;
  741. u2_dim1 = *ldu2;
  742. u2_offset = 1 + u2_dim1 * 1;
  743. u2 -= u2_offset;
  744. vt_dim1 = *ldvt;
  745. vt_offset = 1 + vt_dim1 * 1;
  746. vt -= vt_offset;
  747. vt2_dim1 = *ldvt2;
  748. vt2_offset = 1 + vt2_dim1 * 1;
  749. vt2 -= vt2_offset;
  750. --idxc;
  751. --ctot;
  752. --z__;
  753. /* Function Body */
  754. *info = 0;
  755. if (*nl < 1) {
  756. *info = -1;
  757. } else if (*nr < 1) {
  758. *info = -2;
  759. } else if (*sqre != 1 && *sqre != 0) {
  760. *info = -3;
  761. }
  762. n = *nl + *nr + 1;
  763. m = n + *sqre;
  764. nlp1 = *nl + 1;
  765. nlp2 = *nl + 2;
  766. if (*k < 1 || *k > n) {
  767. *info = -4;
  768. } else if (*ldq < *k) {
  769. *info = -7;
  770. } else if (*ldu < n) {
  771. *info = -10;
  772. } else if (*ldu2 < n) {
  773. *info = -12;
  774. } else if (*ldvt < m) {
  775. *info = -14;
  776. } else if (*ldvt2 < m) {
  777. *info = -16;
  778. }
  779. if (*info != 0) {
  780. i__1 = -(*info);
  781. xerbla_("SLASD3", &i__1, (ftnlen)6);
  782. return;
  783. }
  784. /* Quick return if possible */
  785. if (*k == 1) {
  786. d__[1] = abs(z__[1]);
  787. scopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
  788. if (z__[1] > 0.f) {
  789. scopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
  790. } else {
  791. i__1 = n;
  792. for (i__ = 1; i__ <= i__1; ++i__) {
  793. u[i__ + u_dim1] = -u2[i__ + u2_dim1];
  794. /* L10: */
  795. }
  796. }
  797. return;
  798. }
  799. /* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
  800. /* be computed with high relative accuracy (barring over/underflow). */
  801. /* This is a problem on machines without a guard digit in */
  802. /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
  803. /* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
  804. /* which on any of these machines zeros out the bottommost */
  805. /* bit of DSIGMA(I) if it is 1; this makes the subsequent */
  806. /* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
  807. /* occurs. On binary machines with a guard digit (almost all */
  808. /* machines) it does not change DSIGMA(I) at all. On hexadecimal */
  809. /* and decimal machines with a guard digit, it slightly */
  810. /* changes the bottommost bits of DSIGMA(I). It does not account */
  811. /* for hexadecimal or decimal machines without guard digits */
  812. /* (we know of none). We use a subroutine call to compute */
  813. /* 2*DSIGMA(I) to prevent optimizing compilers from eliminating */
  814. /* this code. */
  815. i__1 = *k;
  816. for (i__ = 1; i__ <= i__1; ++i__) {
  817. dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
  818. /* L20: */
  819. }
  820. /* Keep a copy of Z. */
  821. scopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
  822. /* Normalize Z. */
  823. rho = snrm2_(k, &z__[1], &c__1);
  824. slascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
  825. rho *= rho;
  826. /* Find the new singular values. */
  827. i__1 = *k;
  828. for (j = 1; j <= i__1; ++j) {
  829. slasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
  830. &vt[j * vt_dim1 + 1], info);
  831. /* If the zero finder fails, report the convergence failure. */
  832. if (*info != 0) {
  833. return;
  834. }
  835. /* L30: */
  836. }
  837. /* Compute updated Z. */
  838. i__1 = *k;
  839. for (i__ = 1; i__ <= i__1; ++i__) {
  840. z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
  841. i__2 = i__ - 1;
  842. for (j = 1; j <= i__2; ++j) {
  843. z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
  844. i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
  845. /* L40: */
  846. }
  847. i__2 = *k - 1;
  848. for (j = i__; j <= i__2; ++j) {
  849. z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
  850. i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
  851. /* L50: */
  852. }
  853. r__2 = sqrt((r__1 = z__[i__], abs(r__1)));
  854. z__[i__] = r_sign(&r__2, &q[i__ + q_dim1]);
  855. /* L60: */
  856. }
  857. /* Compute left singular vectors of the modified diagonal matrix, */
  858. /* and store related information for the right singular vectors. */
  859. i__1 = *k;
  860. for (i__ = 1; i__ <= i__1; ++i__) {
  861. vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ *
  862. vt_dim1 + 1];
  863. u[i__ * u_dim1 + 1] = -1.f;
  864. i__2 = *k;
  865. for (j = 2; j <= i__2; ++j) {
  866. vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__
  867. * vt_dim1];
  868. u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
  869. /* L70: */
  870. }
  871. temp = snrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
  872. q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
  873. i__2 = *k;
  874. for (j = 2; j <= i__2; ++j) {
  875. jc = idxc[j];
  876. q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
  877. /* L80: */
  878. }
  879. /* L90: */
  880. }
  881. /* Update the left singular vector matrix. */
  882. if (*k == 2) {
  883. sgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset],
  884. ldq, &c_b26, &u[u_offset], ldu);
  885. goto L100;
  886. }
  887. if (ctot[1] > 0) {
  888. sgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1],
  889. ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
  890. if (ctot[3] > 0) {
  891. ktemp = ctot[1] + 2 + ctot[2];
  892. sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
  893. , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1],
  894. ldu);
  895. }
  896. } else if (ctot[3] > 0) {
  897. ktemp = ctot[1] + 2 + ctot[2];
  898. sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1],
  899. ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
  900. } else {
  901. slacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
  902. }
  903. scopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
  904. ktemp = ctot[1] + 2;
  905. ctemp = ctot[2] + ctot[3];
  906. sgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2,
  907. &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);
  908. /* Generate the right singular vectors. */
  909. L100:
  910. i__1 = *k;
  911. for (i__ = 1; i__ <= i__1; ++i__) {
  912. temp = snrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
  913. q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
  914. i__2 = *k;
  915. for (j = 2; j <= i__2; ++j) {
  916. jc = idxc[j];
  917. q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
  918. /* L110: */
  919. }
  920. /* L120: */
  921. }
  922. /* Update the right singular vector matrix. */
  923. if (*k == 2) {
  924. sgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
  925. , ldvt2, &c_b26, &vt[vt_offset], ldvt);
  926. return;
  927. }
  928. ktemp = ctot[1] + 1;
  929. sgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
  930. vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
  931. ktemp = ctot[1] + 2 + ctot[2];
  932. if (ktemp <= *ldvt2) {
  933. sgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1],
  934. ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1],
  935. ldvt);
  936. }
  937. ktemp = ctot[1] + 1;
  938. nrp1 = *nr + *sqre;
  939. if (ktemp > 1) {
  940. i__1 = *k;
  941. for (i__ = 1; i__ <= i__1; ++i__) {
  942. q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
  943. /* L130: */
  944. }
  945. i__1 = m;
  946. for (i__ = nlp2; i__ <= i__1; ++i__) {
  947. vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
  948. /* L140: */
  949. }
  950. }
  951. ctemp = ctot[2] + 1 + ctot[3];
  952. sgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
  953. vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 +
  954. 1], ldvt);
  955. return;
  956. /* End of SLASD3 */
  957. } /* slasd3_ */