You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgebal.c 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  217. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  218. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  219. #define sig_die(s, kill) { exit(1); }
  220. #define s_stop(s, n) {exit(0);}
  221. #define z_abs(z) (cabs(Cd(z)))
  222. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  223. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  224. #define myexit_() break;
  225. #define mycycle() continue;
  226. #define myceiling(w) {ceil(w)}
  227. #define myhuge(w) {HUGE_VAL}
  228. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  229. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  230. /* -- translated by f2c (version 20000121).
  231. You must link the resulting object file with the libraries:
  232. -lf2c -lm (in that order)
  233. */
  234. /* Table of constant values */
  235. static integer c__1 = 1;
  236. /* > \brief \b SGEBAL */
  237. /* =========== DOCUMENTATION =========== */
  238. /* Online html documentation available at */
  239. /* http://www.netlib.org/lapack/explore-html/ */
  240. /* > \htmlonly */
  241. /* > Download SGEBAL + dependencies */
  242. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgebal.
  243. f"> */
  244. /* > [TGZ]</a> */
  245. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgebal.
  246. f"> */
  247. /* > [ZIP]</a> */
  248. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgebal.
  249. f"> */
  250. /* > [TXT]</a> */
  251. /* > \endhtmlonly */
  252. /* Definition: */
  253. /* =========== */
  254. /* SUBROUTINE SGEBAL( JOB, N, A, LDA, ILO, IHI, SCALE, INFO ) */
  255. /* CHARACTER JOB */
  256. /* INTEGER IHI, ILO, INFO, LDA, N */
  257. /* REAL A( LDA, * ), SCALE( * ) */
  258. /* > \par Purpose: */
  259. /* ============= */
  260. /* > */
  261. /* > \verbatim */
  262. /* > */
  263. /* > SGEBAL balances a general real matrix A. This involves, first, */
  264. /* > permuting A by a similarity transformation to isolate eigenvalues */
  265. /* > in the first 1 to ILO-1 and last IHI+1 to N elements on the */
  266. /* > diagonal; and second, applying a diagonal similarity transformation */
  267. /* > to rows and columns ILO to IHI to make the rows and columns as */
  268. /* > close in norm as possible. Both steps are optional. */
  269. /* > */
  270. /* > Balancing may reduce the 1-norm of the matrix, and improve the */
  271. /* > accuracy of the computed eigenvalues and/or eigenvectors. */
  272. /* > \endverbatim */
  273. /* Arguments: */
  274. /* ========== */
  275. /* > \param[in] JOB */
  276. /* > \verbatim */
  277. /* > JOB is CHARACTER*1 */
  278. /* > Specifies the operations to be performed on A: */
  279. /* > = 'N': none: simply set ILO = 1, IHI = N, SCALE(I) = 1.0 */
  280. /* > for i = 1,...,N; */
  281. /* > = 'P': permute only; */
  282. /* > = 'S': scale only; */
  283. /* > = 'B': both permute and scale. */
  284. /* > \endverbatim */
  285. /* > */
  286. /* > \param[in] N */
  287. /* > \verbatim */
  288. /* > N is INTEGER */
  289. /* > The order of the matrix A. N >= 0. */
  290. /* > \endverbatim */
  291. /* > */
  292. /* > \param[in,out] A */
  293. /* > \verbatim */
  294. /* > A is REAL array, dimension (LDA,N) */
  295. /* > On entry, the input matrix A. */
  296. /* > On exit, A is overwritten by the balanced matrix. */
  297. /* > If JOB = 'N', A is not referenced. */
  298. /* > See Further Details. */
  299. /* > \endverbatim */
  300. /* > */
  301. /* > \param[in] LDA */
  302. /* > \verbatim */
  303. /* > LDA is INTEGER */
  304. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  305. /* > \endverbatim */
  306. /* > */
  307. /* > \param[out] ILO */
  308. /* > \verbatim */
  309. /* > ILO is INTEGER */
  310. /* > \endverbatim */
  311. /* > \param[out] IHI */
  312. /* > \verbatim */
  313. /* > IHI is INTEGER */
  314. /* > ILO and IHI are set to integers such that on exit */
  315. /* > A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. */
  316. /* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
  317. /* > \endverbatim */
  318. /* > */
  319. /* > \param[out] SCALE */
  320. /* > \verbatim */
  321. /* > SCALE is REAL array, dimension (N) */
  322. /* > Details of the permutations and scaling factors applied to */
  323. /* > A. If P(j) is the index of the row and column interchanged */
  324. /* > with row and column j and D(j) is the scaling factor */
  325. /* > applied to row and column j, then */
  326. /* > SCALE(j) = P(j) for j = 1,...,ILO-1 */
  327. /* > = D(j) for j = ILO,...,IHI */
  328. /* > = P(j) for j = IHI+1,...,N. */
  329. /* > The order in which the interchanges are made is N to IHI+1, */
  330. /* > then 1 to ILO-1. */
  331. /* > \endverbatim */
  332. /* > */
  333. /* > \param[out] INFO */
  334. /* > \verbatim */
  335. /* > INFO is INTEGER */
  336. /* > = 0: successful exit. */
  337. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  338. /* > \endverbatim */
  339. /* Authors: */
  340. /* ======== */
  341. /* > \author Univ. of Tennessee */
  342. /* > \author Univ. of California Berkeley */
  343. /* > \author Univ. of Colorado Denver */
  344. /* > \author NAG Ltd. */
  345. /* > \date December 2016 */
  346. /* > \ingroup realGEcomputational */
  347. /* > \par Further Details: */
  348. /* ===================== */
  349. /* > */
  350. /* > \verbatim */
  351. /* > */
  352. /* > The permutations consist of row and column interchanges which put */
  353. /* > the matrix in the form */
  354. /* > */
  355. /* > ( T1 X Y ) */
  356. /* > P A P = ( 0 B Z ) */
  357. /* > ( 0 0 T2 ) */
  358. /* > */
  359. /* > where T1 and T2 are upper triangular matrices whose eigenvalues lie */
  360. /* > along the diagonal. The column indices ILO and IHI mark the starting */
  361. /* > and ending columns of the submatrix B. Balancing consists of applying */
  362. /* > a diagonal similarity transformation inv(D) * B * D to make the */
  363. /* > 1-norms of each row of B and its corresponding column nearly equal. */
  364. /* > The output matrix is */
  365. /* > */
  366. /* > ( T1 X*D Y ) */
  367. /* > ( 0 inv(D)*B*D inv(D)*Z ). */
  368. /* > ( 0 0 T2 ) */
  369. /* > */
  370. /* > Information about the permutations P and the diagonal matrix D is */
  371. /* > returned in the vector SCALE. */
  372. /* > */
  373. /* > This subroutine is based on the EISPACK routine BALANC. */
  374. /* > */
  375. /* > Modified by Tzu-Yi Chen, Computer Science Division, University of */
  376. /* > California at Berkeley, USA */
  377. /* > \endverbatim */
  378. /* > */
  379. /* ===================================================================== */
  380. /* Subroutine */ void sgebal_(char *job, integer *n, real *a, integer *lda,
  381. integer *ilo, integer *ihi, real *scale, integer *info)
  382. {
  383. /* System generated locals */
  384. integer a_dim1, a_offset, i__1, i__2;
  385. real r__1, r__2;
  386. /* Local variables */
  387. integer iexc;
  388. extern real snrm2_(integer *, real *, integer *);
  389. real c__, f, g;
  390. integer i__, j, k, l, m;
  391. real r__, s;
  392. extern logical lsame_(char *, char *);
  393. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
  394. sswap_(integer *, real *, integer *, real *, integer *);
  395. real sfmin1, sfmin2, sfmax1, sfmax2, ca, ra;
  396. extern real slamch_(char *);
  397. extern /* Subroutine */ int xerbla_(char *, integer *,ftnlen);
  398. extern integer isamax_(integer *, real *, integer *);
  399. extern logical sisnan_(real *);
  400. logical noconv;
  401. integer ica, ira;
  402. /* -- LAPACK computational routine (version 3.7.0) -- */
  403. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  404. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  405. /* December 2016 */
  406. /* ===================================================================== */
  407. /* Test the input parameters */
  408. /* Parameter adjustments */
  409. a_dim1 = *lda;
  410. a_offset = 1 + a_dim1 * 1;
  411. a -= a_offset;
  412. --scale;
  413. /* Function Body */
  414. *info = 0;
  415. if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
  416. && ! lsame_(job, "B")) {
  417. *info = -1;
  418. } else if (*n < 0) {
  419. *info = -2;
  420. } else if (*lda < f2cmax(1,*n)) {
  421. *info = -4;
  422. }
  423. if (*info != 0) {
  424. i__1 = -(*info);
  425. xerbla_("SGEBAL", &i__1,(ftnlen)6);
  426. return;
  427. }
  428. k = 1;
  429. l = *n;
  430. if (*n == 0) {
  431. goto L210;
  432. }
  433. if (lsame_(job, "N")) {
  434. i__1 = *n;
  435. for (i__ = 1; i__ <= i__1; ++i__) {
  436. scale[i__] = 1.f;
  437. /* L10: */
  438. }
  439. goto L210;
  440. }
  441. if (lsame_(job, "S")) {
  442. goto L120;
  443. }
  444. /* Permutation to isolate eigenvalues if possible */
  445. goto L50;
  446. /* Row and column exchange. */
  447. L20:
  448. scale[m] = (real) j;
  449. if (j == m) {
  450. goto L30;
  451. }
  452. sswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
  453. i__1 = *n - k + 1;
  454. sswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
  455. L30:
  456. switch (iexc) {
  457. case 1: goto L40;
  458. case 2: goto L80;
  459. }
  460. /* Search for rows isolating an eigenvalue and push them down. */
  461. L40:
  462. if (l == 1) {
  463. goto L210;
  464. }
  465. --l;
  466. L50:
  467. for (j = l; j >= 1; --j) {
  468. i__1 = l;
  469. for (i__ = 1; i__ <= i__1; ++i__) {
  470. if (i__ == j) {
  471. goto L60;
  472. }
  473. if (a[j + i__ * a_dim1] != 0.f) {
  474. goto L70;
  475. }
  476. L60:
  477. ;
  478. }
  479. m = l;
  480. iexc = 1;
  481. goto L20;
  482. L70:
  483. ;
  484. }
  485. goto L90;
  486. /* Search for columns isolating an eigenvalue and push them left. */
  487. L80:
  488. ++k;
  489. L90:
  490. i__1 = l;
  491. for (j = k; j <= i__1; ++j) {
  492. i__2 = l;
  493. for (i__ = k; i__ <= i__2; ++i__) {
  494. if (i__ == j) {
  495. goto L100;
  496. }
  497. if (a[i__ + j * a_dim1] != 0.f) {
  498. goto L110;
  499. }
  500. L100:
  501. ;
  502. }
  503. m = k;
  504. iexc = 2;
  505. goto L20;
  506. L110:
  507. ;
  508. }
  509. L120:
  510. i__1 = l;
  511. for (i__ = k; i__ <= i__1; ++i__) {
  512. scale[i__] = 1.f;
  513. /* L130: */
  514. }
  515. if (lsame_(job, "P")) {
  516. goto L210;
  517. }
  518. /* Balance the submatrix in rows K to L. */
  519. /* Iterative loop for norm reduction */
  520. sfmin1 = slamch_("S") / slamch_("P");
  521. sfmax1 = 1.f / sfmin1;
  522. sfmin2 = sfmin1 * 2.f;
  523. sfmax2 = 1.f / sfmin2;
  524. L140:
  525. noconv = FALSE_;
  526. i__1 = l;
  527. for (i__ = k; i__ <= i__1; ++i__) {
  528. i__2 = l - k + 1;
  529. c__ = snrm2_(&i__2, &a[k + i__ * a_dim1], &c__1);
  530. i__2 = l - k + 1;
  531. r__ = snrm2_(&i__2, &a[i__ + k * a_dim1], lda);
  532. ica = isamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
  533. ca = (r__1 = a[ica + i__ * a_dim1], abs(r__1));
  534. i__2 = *n - k + 1;
  535. ira = isamax_(&i__2, &a[i__ + k * a_dim1], lda);
  536. ra = (r__1 = a[i__ + (ira + k - 1) * a_dim1], abs(r__1));
  537. /* Guard against zero C or R due to underflow. */
  538. if (c__ == 0.f || r__ == 0.f) {
  539. goto L200;
  540. }
  541. g = r__ / 2.f;
  542. f = 1.f;
  543. s = c__ + r__;
  544. L160:
  545. /* Computing MAX */
  546. r__1 = f2cmax(f,c__);
  547. /* Computing MIN */
  548. r__2 = f2cmin(r__,g);
  549. if (c__ >= g || f2cmax(r__1,ca) >= sfmax2 || f2cmin(r__2,ra) <= sfmin2) {
  550. goto L170;
  551. }
  552. f *= 2.f;
  553. c__ *= 2.f;
  554. ca *= 2.f;
  555. r__ /= 2.f;
  556. g /= 2.f;
  557. ra /= 2.f;
  558. goto L160;
  559. L170:
  560. g = c__ / 2.f;
  561. L180:
  562. /* Computing MIN */
  563. r__1 = f2cmin(f,c__), r__1 = f2cmin(r__1,g);
  564. if (g < r__ || f2cmax(r__,ra) >= sfmax2 || f2cmin(r__1,ca) <= sfmin2) {
  565. goto L190;
  566. }
  567. r__1 = c__ + f + ca + r__ + g + ra;
  568. if (sisnan_(&r__1)) {
  569. /* Exit if NaN to avoid infinite loop */
  570. *info = -3;
  571. i__2 = -(*info);
  572. xerbla_("SGEBAL", &i__2, (ftnlen)6);
  573. return;
  574. }
  575. f /= 2.f;
  576. c__ /= 2.f;
  577. g /= 2.f;
  578. ca /= 2.f;
  579. r__ *= 2.f;
  580. ra *= 2.f;
  581. goto L180;
  582. /* Now balance. */
  583. L190:
  584. if (c__ + r__ >= s * .95f) {
  585. goto L200;
  586. }
  587. if (f < 1.f && scale[i__] < 1.f) {
  588. if (f * scale[i__] <= sfmin1) {
  589. goto L200;
  590. }
  591. }
  592. if (f > 1.f && scale[i__] > 1.f) {
  593. if (scale[i__] >= sfmax1 / f) {
  594. goto L200;
  595. }
  596. }
  597. g = 1.f / f;
  598. scale[i__] *= f;
  599. noconv = TRUE_;
  600. i__2 = *n - k + 1;
  601. sscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
  602. sscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
  603. L200:
  604. ;
  605. }
  606. if (noconv) {
  607. goto L140;
  608. }
  609. L210:
  610. *ilo = k;
  611. *ihi = l;
  612. return;
  613. /* End of SGEBAL */
  614. } /* sgebal_ */