You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dstemr.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static doublereal c_b18 = .001;
  486. /* > \brief \b DSTEMR */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download DSTEMR + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstemr.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstemr.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstemr.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* SUBROUTINE DSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, */
  505. /* M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK, */
  506. /* IWORK, LIWORK, INFO ) */
  507. /* CHARACTER JOBZ, RANGE */
  508. /* LOGICAL TRYRAC */
  509. /* INTEGER IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N */
  510. /* DOUBLE PRECISION VL, VU */
  511. /* INTEGER ISUPPZ( * ), IWORK( * ) */
  512. /* DOUBLE PRECISION D( * ), E( * ), W( * ), WORK( * ) */
  513. /* DOUBLE PRECISION Z( LDZ, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DSTEMR computes selected eigenvalues and, optionally, eigenvectors */
  520. /* > of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
  521. /* > a well defined set of pairwise different real eigenvalues, the corresponding */
  522. /* > real eigenvectors are pairwise orthogonal. */
  523. /* > */
  524. /* > The spectrum may be computed either completely or partially by specifying */
  525. /* > either an interval (VL,VU] or a range of indices IL:IU for the desired */
  526. /* > eigenvalues. */
  527. /* > */
  528. /* > Depending on the number of desired eigenvalues, these are computed either */
  529. /* > by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
  530. /* > computed by the use of various suitable L D L^T factorizations near clusters */
  531. /* > of close eigenvalues (referred to as RRRs, Relatively Robust */
  532. /* > Representations). An informal sketch of the algorithm follows. */
  533. /* > */
  534. /* > For each unreduced block (submatrix) of T, */
  535. /* > (a) Compute T - sigma I = L D L^T, so that L and D */
  536. /* > define all the wanted eigenvalues to high relative accuracy. */
  537. /* > This means that small relative changes in the entries of D and L */
  538. /* > cause only small relative changes in the eigenvalues and */
  539. /* > eigenvectors. The standard (unfactored) representation of the */
  540. /* > tridiagonal matrix T does not have this property in general. */
  541. /* > (b) Compute the eigenvalues to suitable accuracy. */
  542. /* > If the eigenvectors are desired, the algorithm attains full */
  543. /* > accuracy of the computed eigenvalues only right before */
  544. /* > the corresponding vectors have to be computed, see steps c) and d). */
  545. /* > (c) For each cluster of close eigenvalues, select a new */
  546. /* > shift close to the cluster, find a new factorization, and refine */
  547. /* > the shifted eigenvalues to suitable accuracy. */
  548. /* > (d) For each eigenvalue with a large enough relative separation compute */
  549. /* > the corresponding eigenvector by forming a rank revealing twisted */
  550. /* > factorization. Go back to (c) for any clusters that remain. */
  551. /* > */
  552. /* > For more details, see: */
  553. /* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
  554. /* > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
  555. /* > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
  556. /* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
  557. /* > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
  558. /* > 2004. Also LAPACK Working Note 154. */
  559. /* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
  560. /* > tridiagonal eigenvalue/eigenvector problem", */
  561. /* > Computer Science Division Technical Report No. UCB/CSD-97-971, */
  562. /* > UC Berkeley, May 1997. */
  563. /* > */
  564. /* > Further Details */
  565. /* > 1.DSTEMR works only on machines which follow IEEE-754 */
  566. /* > floating-point standard in their handling of infinities and NaNs. */
  567. /* > This permits the use of efficient inner loops avoiding a check for */
  568. /* > zero divisors. */
  569. /* > \endverbatim */
  570. /* Arguments: */
  571. /* ========== */
  572. /* > \param[in] JOBZ */
  573. /* > \verbatim */
  574. /* > JOBZ is CHARACTER*1 */
  575. /* > = 'N': Compute eigenvalues only; */
  576. /* > = 'V': Compute eigenvalues and eigenvectors. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] RANGE */
  580. /* > \verbatim */
  581. /* > RANGE is CHARACTER*1 */
  582. /* > = 'A': all eigenvalues will be found. */
  583. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  584. /* > will be found. */
  585. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] N */
  589. /* > \verbatim */
  590. /* > N is INTEGER */
  591. /* > The order of the matrix. N >= 0. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in,out] D */
  595. /* > \verbatim */
  596. /* > D is DOUBLE PRECISION array, dimension (N) */
  597. /* > On entry, the N diagonal elements of the tridiagonal matrix */
  598. /* > T. On exit, D is overwritten. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] E */
  602. /* > \verbatim */
  603. /* > E is DOUBLE PRECISION array, dimension (N) */
  604. /* > On entry, the (N-1) subdiagonal elements of the tridiagonal */
  605. /* > matrix T in elements 1 to N-1 of E. E(N) need not be set on */
  606. /* > input, but is used internally as workspace. */
  607. /* > On exit, E is overwritten. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] VL */
  611. /* > \verbatim */
  612. /* > VL is DOUBLE PRECISION */
  613. /* > */
  614. /* > If RANGE='V', the lower bound of the interval to */
  615. /* > be searched for eigenvalues. VL < VU. */
  616. /* > Not referenced if RANGE = 'A' or 'I'. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] VU */
  620. /* > \verbatim */
  621. /* > VU is DOUBLE PRECISION */
  622. /* > */
  623. /* > If RANGE='V', the upper bound of the interval to */
  624. /* > be searched for eigenvalues. VL < VU. */
  625. /* > Not referenced if RANGE = 'A' or 'I'. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] IL */
  629. /* > \verbatim */
  630. /* > IL is INTEGER */
  631. /* > */
  632. /* > If RANGE='I', the index of the */
  633. /* > smallest eigenvalue to be returned. */
  634. /* > 1 <= IL <= IU <= N, if N > 0. */
  635. /* > Not referenced if RANGE = 'A' or 'V'. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[in] IU */
  639. /* > \verbatim */
  640. /* > IU is INTEGER */
  641. /* > */
  642. /* > If RANGE='I', the index of the */
  643. /* > largest eigenvalue to be returned. */
  644. /* > 1 <= IL <= IU <= N, if N > 0. */
  645. /* > Not referenced if RANGE = 'A' or 'V'. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] M */
  649. /* > \verbatim */
  650. /* > M is INTEGER */
  651. /* > The total number of eigenvalues found. 0 <= M <= N. */
  652. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] W */
  656. /* > \verbatim */
  657. /* > W is DOUBLE PRECISION array, dimension (N) */
  658. /* > The first M elements contain the selected eigenvalues in */
  659. /* > ascending order. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] Z */
  663. /* > \verbatim */
  664. /* > Z is DOUBLE PRECISION array, dimension (LDZ, f2cmax(1,M) ) */
  665. /* > If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
  666. /* > contain the orthonormal eigenvectors of the matrix T */
  667. /* > corresponding to the selected eigenvalues, with the i-th */
  668. /* > column of Z holding the eigenvector associated with W(i). */
  669. /* > If JOBZ = 'N', then Z is not referenced. */
  670. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  671. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  672. /* > is not known in advance and can be computed with a workspace */
  673. /* > query by setting NZC = -1, see below. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[in] LDZ */
  677. /* > \verbatim */
  678. /* > LDZ is INTEGER */
  679. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  680. /* > JOBZ = 'V', then LDZ >= f2cmax(1,N). */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[in] NZC */
  684. /* > \verbatim */
  685. /* > NZC is INTEGER */
  686. /* > The number of eigenvectors to be held in the array Z. */
  687. /* > If RANGE = 'A', then NZC >= f2cmax(1,N). */
  688. /* > If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
  689. /* > If RANGE = 'I', then NZC >= IU-IL+1. */
  690. /* > If NZC = -1, then a workspace query is assumed; the */
  691. /* > routine calculates the number of columns of the array Z that */
  692. /* > are needed to hold the eigenvectors. */
  693. /* > This value is returned as the first entry of the Z array, and */
  694. /* > no error message related to NZC is issued by XERBLA. */
  695. /* > \endverbatim */
  696. /* > */
  697. /* > \param[out] ISUPPZ */
  698. /* > \verbatim */
  699. /* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
  700. /* > The support of the eigenvectors in Z, i.e., the indices */
  701. /* > indicating the nonzero elements in Z. The i-th computed eigenvector */
  702. /* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
  703. /* > ISUPPZ( 2*i ). This is relevant in the case when the matrix */
  704. /* > is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[in,out] TRYRAC */
  708. /* > \verbatim */
  709. /* > TRYRAC is LOGICAL */
  710. /* > If TRYRAC = .TRUE., indicates that the code should check whether */
  711. /* > the tridiagonal matrix defines its eigenvalues to high relative */
  712. /* > accuracy. If so, the code uses relative-accuracy preserving */
  713. /* > algorithms that might be (a bit) slower depending on the matrix. */
  714. /* > If the matrix does not define its eigenvalues to high relative */
  715. /* > accuracy, the code can uses possibly faster algorithms. */
  716. /* > If TRYRAC = .FALSE., the code is not required to guarantee */
  717. /* > relatively accurate eigenvalues and can use the fastest possible */
  718. /* > techniques. */
  719. /* > On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
  720. /* > does not define its eigenvalues to high relative accuracy. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[out] WORK */
  724. /* > \verbatim */
  725. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  726. /* > On exit, if INFO = 0, WORK(1) returns the optimal */
  727. /* > (and minimal) LWORK. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[in] LWORK */
  731. /* > \verbatim */
  732. /* > LWORK is INTEGER */
  733. /* > The dimension of the array WORK. LWORK >= f2cmax(1,18*N) */
  734. /* > if JOBZ = 'V', and LWORK >= f2cmax(1,12*N) if JOBZ = 'N'. */
  735. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  736. /* > only calculates the optimal size of the WORK array, returns */
  737. /* > this value as the first entry of the WORK array, and no error */
  738. /* > message related to LWORK is issued by XERBLA. */
  739. /* > \endverbatim */
  740. /* > */
  741. /* > \param[out] IWORK */
  742. /* > \verbatim */
  743. /* > IWORK is INTEGER array, dimension (LIWORK) */
  744. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
  745. /* > \endverbatim */
  746. /* > */
  747. /* > \param[in] LIWORK */
  748. /* > \verbatim */
  749. /* > LIWORK is INTEGER */
  750. /* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N) */
  751. /* > if the eigenvectors are desired, and LIWORK >= f2cmax(1,8*N) */
  752. /* > if only the eigenvalues are to be computed. */
  753. /* > If LIWORK = -1, then a workspace query is assumed; the */
  754. /* > routine only calculates the optimal size of the IWORK array, */
  755. /* > returns this value as the first entry of the IWORK array, and */
  756. /* > no error message related to LIWORK is issued by XERBLA. */
  757. /* > \endverbatim */
  758. /* > */
  759. /* > \param[out] INFO */
  760. /* > \verbatim */
  761. /* > INFO is INTEGER */
  762. /* > On exit, INFO */
  763. /* > = 0: successful exit */
  764. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  765. /* > > 0: if INFO = 1X, internal error in DLARRE, */
  766. /* > if INFO = 2X, internal error in DLARRV. */
  767. /* > Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
  768. /* > the nonzero error code returned by DLARRE or */
  769. /* > DLARRV, respectively. */
  770. /* > \endverbatim */
  771. /* Authors: */
  772. /* ======== */
  773. /* > \author Univ. of Tennessee */
  774. /* > \author Univ. of California Berkeley */
  775. /* > \author Univ. of Colorado Denver */
  776. /* > \author NAG Ltd. */
  777. /* > \date June 2016 */
  778. /* > \ingroup doubleOTHERcomputational */
  779. /* > \par Contributors: */
  780. /* ================== */
  781. /* > */
  782. /* > Beresford Parlett, University of California, Berkeley, USA \n */
  783. /* > Jim Demmel, University of California, Berkeley, USA \n */
  784. /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
  785. /* > Osni Marques, LBNL/NERSC, USA \n */
  786. /* > Christof Voemel, University of California, Berkeley, USA */
  787. /* ===================================================================== */
  788. /* Subroutine */ void dstemr_(char *jobz, char *range, integer *n, doublereal *
  789. d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il,
  790. integer *iu, integer *m, doublereal *w, doublereal *z__, integer *ldz,
  791. integer *nzc, integer *isuppz, logical *tryrac, doublereal *work,
  792. integer *lwork, integer *iwork, integer *liwork, integer *info)
  793. {
  794. /* System generated locals */
  795. integer z_dim1, z_offset, i__1, i__2;
  796. doublereal d__1, d__2;
  797. /* Local variables */
  798. integer indd, iend, jblk, wend;
  799. doublereal rmin, rmax;
  800. integer itmp;
  801. doublereal tnrm;
  802. extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal
  803. *, doublereal *, doublereal *);
  804. integer inde2, itmp2;
  805. doublereal rtol1, rtol2;
  806. integer i__, j;
  807. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  808. integer *);
  809. doublereal scale;
  810. integer indgp;
  811. extern logical lsame_(char *, char *);
  812. integer iinfo, iindw, ilast;
  813. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  814. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  815. *, doublereal *, integer *);
  816. integer lwmin;
  817. logical wantz;
  818. doublereal r1, r2;
  819. extern /* Subroutine */ void dlaev2_(doublereal *, doublereal *,
  820. doublereal *, doublereal *, doublereal *, doublereal *,
  821. doublereal *);
  822. integer jj;
  823. doublereal cs;
  824. integer in;
  825. extern doublereal dlamch_(char *);
  826. logical alleig, indeig;
  827. integer ibegin, iindbl;
  828. doublereal sn, wl;
  829. logical valeig;
  830. extern /* Subroutine */ void dlarrc_(char *, integer *, doublereal *,
  831. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  832. integer *, integer *, integer *), dlarre_(char *,
  833. integer *, doublereal *, doublereal *, integer *, integer *,
  834. doublereal *, doublereal *, doublereal *, doublereal *,
  835. doublereal *, doublereal *, integer *, integer *, integer *,
  836. doublereal *, doublereal *, doublereal *, integer *, integer *,
  837. doublereal *, doublereal *, doublereal *, integer *, integer *);
  838. integer wbegin;
  839. doublereal safmin, wu;
  840. extern /* Subroutine */ void dlarrj_(integer *, doublereal *, doublereal *,
  841. integer *, integer *, doublereal *, integer *, doublereal *,
  842. doublereal *, doublereal *, integer *, doublereal *, doublereal *,
  843. integer *);
  844. extern int xerbla_(char *, integer *, ftnlen);
  845. doublereal bignum;
  846. integer inderr, iindwk, indgrs, offset;
  847. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  848. extern /* Subroutine */ void dlarrr_(integer *, doublereal *, doublereal *,
  849. integer *), dlarrv_(integer *, doublereal *, doublereal *,
  850. doublereal *, doublereal *, doublereal *, integer *, integer *,
  851. integer *, integer *, doublereal *, doublereal *, doublereal *,
  852. doublereal *, doublereal *, doublereal *, integer *, integer *,
  853. doublereal *, doublereal *, integer *, integer *, doublereal *,
  854. integer *, integer *), dlasrt_(char *, integer *, doublereal *,
  855. integer *);
  856. doublereal thresh;
  857. integer iinspl, ifirst, indwrk, liwmin, nzcmin;
  858. doublereal pivmin;
  859. integer nsplit;
  860. doublereal smlnum;
  861. logical lquery, zquery;
  862. integer iil, iiu;
  863. doublereal eps, tmp;
  864. /* -- LAPACK computational routine (version 3.7.1) -- */
  865. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  866. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  867. /* June 2016 */
  868. /* ===================================================================== */
  869. /* Test the input parameters. */
  870. /* Parameter adjustments */
  871. --d__;
  872. --e;
  873. --w;
  874. z_dim1 = *ldz;
  875. z_offset = 1 + z_dim1 * 1;
  876. z__ -= z_offset;
  877. --isuppz;
  878. --work;
  879. --iwork;
  880. /* Function Body */
  881. wantz = lsame_(jobz, "V");
  882. alleig = lsame_(range, "A");
  883. valeig = lsame_(range, "V");
  884. indeig = lsame_(range, "I");
  885. lquery = *lwork == -1 || *liwork == -1;
  886. zquery = *nzc == -1;
  887. /* DSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
  888. /* In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. */
  889. /* Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N. */
  890. if (wantz) {
  891. lwmin = *n * 18;
  892. liwmin = *n * 10;
  893. } else {
  894. /* need less workspace if only the eigenvalues are wanted */
  895. lwmin = *n * 12;
  896. liwmin = *n << 3;
  897. }
  898. wl = 0.;
  899. wu = 0.;
  900. iil = 0;
  901. iiu = 0;
  902. nsplit = 0;
  903. if (valeig) {
  904. /* We do not reference VL, VU in the cases RANGE = 'I','A' */
  905. /* The interval (WL, WU] contains all the wanted eigenvalues. */
  906. /* It is either given by the user or computed in DLARRE. */
  907. wl = *vl;
  908. wu = *vu;
  909. } else if (indeig) {
  910. /* We do not reference IL, IU in the cases RANGE = 'V','A' */
  911. iil = *il;
  912. iiu = *iu;
  913. }
  914. *info = 0;
  915. if (! (wantz || lsame_(jobz, "N"))) {
  916. *info = -1;
  917. } else if (! (alleig || valeig || indeig)) {
  918. *info = -2;
  919. } else if (*n < 0) {
  920. *info = -3;
  921. } else if (valeig && *n > 0 && wu <= wl) {
  922. *info = -7;
  923. } else if (indeig && (iil < 1 || iil > *n)) {
  924. *info = -8;
  925. } else if (indeig && (iiu < iil || iiu > *n)) {
  926. *info = -9;
  927. } else if (*ldz < 1 || wantz && *ldz < *n) {
  928. *info = -13;
  929. } else if (*lwork < lwmin && ! lquery) {
  930. *info = -17;
  931. } else if (*liwork < liwmin && ! lquery) {
  932. *info = -19;
  933. }
  934. /* Get machine constants. */
  935. safmin = dlamch_("Safe minimum");
  936. eps = dlamch_("Precision");
  937. smlnum = safmin / eps;
  938. bignum = 1. / smlnum;
  939. rmin = sqrt(smlnum);
  940. /* Computing MIN */
  941. d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
  942. rmax = f2cmin(d__1,d__2);
  943. if (*info == 0) {
  944. work[1] = (doublereal) lwmin;
  945. iwork[1] = liwmin;
  946. if (wantz && alleig) {
  947. nzcmin = *n;
  948. } else if (wantz && valeig) {
  949. dlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
  950. itmp2, info);
  951. } else if (wantz && indeig) {
  952. nzcmin = iiu - iil + 1;
  953. } else {
  954. /* WANTZ .EQ. FALSE. */
  955. nzcmin = 0;
  956. }
  957. if (zquery && *info == 0) {
  958. z__[z_dim1 + 1] = (doublereal) nzcmin;
  959. } else if (*nzc < nzcmin && ! zquery) {
  960. *info = -14;
  961. }
  962. }
  963. if (*info != 0) {
  964. i__1 = -(*info);
  965. xerbla_("DSTEMR", &i__1, (ftnlen)6);
  966. return;
  967. } else if (lquery || zquery) {
  968. return;
  969. }
  970. /* Handle N = 0, 1, and 2 cases immediately */
  971. *m = 0;
  972. if (*n == 0) {
  973. return;
  974. }
  975. if (*n == 1) {
  976. if (alleig || indeig) {
  977. *m = 1;
  978. w[1] = d__[1];
  979. } else {
  980. if (wl < d__[1] && wu >= d__[1]) {
  981. *m = 1;
  982. w[1] = d__[1];
  983. }
  984. }
  985. if (wantz && ! zquery) {
  986. z__[z_dim1 + 1] = 1.;
  987. isuppz[1] = 1;
  988. isuppz[2] = 1;
  989. }
  990. return;
  991. }
  992. if (*n == 2) {
  993. if (! wantz) {
  994. dlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
  995. } else if (wantz && ! zquery) {
  996. dlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
  997. }
  998. if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
  999. ++(*m);
  1000. w[*m] = r2;
  1001. if (wantz && ! zquery) {
  1002. z__[*m * z_dim1 + 1] = -sn;
  1003. z__[*m * z_dim1 + 2] = cs;
  1004. /* Note: At most one of SN and CS can be zero. */
  1005. if (sn != 0.) {
  1006. if (cs != 0.) {
  1007. isuppz[(*m << 1) - 1] = 1;
  1008. isuppz[*m * 2] = 2;
  1009. } else {
  1010. isuppz[(*m << 1) - 1] = 1;
  1011. isuppz[*m * 2] = 1;
  1012. }
  1013. } else {
  1014. isuppz[(*m << 1) - 1] = 2;
  1015. isuppz[*m * 2] = 2;
  1016. }
  1017. }
  1018. }
  1019. if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
  1020. ++(*m);
  1021. w[*m] = r1;
  1022. if (wantz && ! zquery) {
  1023. z__[*m * z_dim1 + 1] = cs;
  1024. z__[*m * z_dim1 + 2] = sn;
  1025. /* Note: At most one of SN and CS can be zero. */
  1026. if (sn != 0.) {
  1027. if (cs != 0.) {
  1028. isuppz[(*m << 1) - 1] = 1;
  1029. isuppz[*m * 2] = 2;
  1030. } else {
  1031. isuppz[(*m << 1) - 1] = 1;
  1032. isuppz[*m * 2] = 1;
  1033. }
  1034. } else {
  1035. isuppz[(*m << 1) - 1] = 2;
  1036. isuppz[*m * 2] = 2;
  1037. }
  1038. }
  1039. }
  1040. } else {
  1041. /* Continue with general N */
  1042. indgrs = 1;
  1043. inderr = (*n << 1) + 1;
  1044. indgp = *n * 3 + 1;
  1045. indd = (*n << 2) + 1;
  1046. inde2 = *n * 5 + 1;
  1047. indwrk = *n * 6 + 1;
  1048. iinspl = 1;
  1049. iindbl = *n + 1;
  1050. iindw = (*n << 1) + 1;
  1051. iindwk = *n * 3 + 1;
  1052. /* Scale matrix to allowable range, if necessary. */
  1053. /* The allowable range is related to the PIVMIN parameter; see the */
  1054. /* comments in DLARRD. The preference for scaling small values */
  1055. /* up is heuristic; we expect users' matrices not to be close to the */
  1056. /* RMAX threshold. */
  1057. scale = 1.;
  1058. tnrm = dlanst_("M", n, &d__[1], &e[1]);
  1059. if (tnrm > 0. && tnrm < rmin) {
  1060. scale = rmin / tnrm;
  1061. } else if (tnrm > rmax) {
  1062. scale = rmax / tnrm;
  1063. }
  1064. if (scale != 1.) {
  1065. dscal_(n, &scale, &d__[1], &c__1);
  1066. i__1 = *n - 1;
  1067. dscal_(&i__1, &scale, &e[1], &c__1);
  1068. tnrm *= scale;
  1069. if (valeig) {
  1070. /* If eigenvalues in interval have to be found, */
  1071. /* scale (WL, WU] accordingly */
  1072. wl *= scale;
  1073. wu *= scale;
  1074. }
  1075. }
  1076. /* Compute the desired eigenvalues of the tridiagonal after splitting */
  1077. /* into smaller subblocks if the corresponding off-diagonal elements */
  1078. /* are small */
  1079. /* THRESH is the splitting parameter for DLARRE */
  1080. /* A negative THRESH forces the old splitting criterion based on the */
  1081. /* size of the off-diagonal. A positive THRESH switches to splitting */
  1082. /* which preserves relative accuracy. */
  1083. if (*tryrac) {
  1084. /* Test whether the matrix warrants the more expensive relative approach. */
  1085. dlarrr_(n, &d__[1], &e[1], &iinfo);
  1086. } else {
  1087. /* The user does not care about relative accurately eigenvalues */
  1088. iinfo = -1;
  1089. }
  1090. /* Set the splitting criterion */
  1091. if (iinfo == 0) {
  1092. thresh = eps;
  1093. } else {
  1094. thresh = -eps;
  1095. /* relative accuracy is desired but T does not guarantee it */
  1096. *tryrac = FALSE_;
  1097. }
  1098. if (*tryrac) {
  1099. /* Copy original diagonal, needed to guarantee relative accuracy */
  1100. dcopy_(n, &d__[1], &c__1, &work[indd], &c__1);
  1101. }
  1102. /* Store the squares of the offdiagonal values of T */
  1103. i__1 = *n - 1;
  1104. for (j = 1; j <= i__1; ++j) {
  1105. /* Computing 2nd power */
  1106. d__1 = e[j];
  1107. work[inde2 + j - 1] = d__1 * d__1;
  1108. /* L5: */
  1109. }
  1110. /* Set the tolerance parameters for bisection */
  1111. if (! wantz) {
  1112. /* DLARRE computes the eigenvalues to full precision. */
  1113. rtol1 = eps * 4.;
  1114. rtol2 = eps * 4.;
  1115. } else {
  1116. /* DLARRE computes the eigenvalues to less than full precision. */
  1117. /* DLARRV will refine the eigenvalue approximations, and we can */
  1118. /* need less accurate initial bisection in DLARRE. */
  1119. /* Note: these settings do only affect the subset case and DLARRE */
  1120. rtol1 = sqrt(eps);
  1121. /* Computing MAX */
  1122. d__1 = sqrt(eps) * .005, d__2 = eps * 4.;
  1123. rtol2 = f2cmax(d__1,d__2);
  1124. }
  1125. dlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2],
  1126. &rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &
  1127. work[inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &
  1128. work[indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
  1129. if (iinfo != 0) {
  1130. *info = abs(iinfo) + 10;
  1131. return;
  1132. }
  1133. /* Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired */
  1134. /* part of the spectrum. All desired eigenvalues are contained in */
  1135. /* (WL,WU] */
  1136. if (wantz) {
  1137. /* Compute the desired eigenvectors corresponding to the computed */
  1138. /* eigenvalues */
  1139. dlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
  1140. c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &
  1141. work[indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs],
  1142. &z__[z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[
  1143. iindwk], &iinfo);
  1144. if (iinfo != 0) {
  1145. *info = abs(iinfo) + 20;
  1146. return;
  1147. }
  1148. } else {
  1149. /* DLARRE computes eigenvalues of the (shifted) root representation */
  1150. /* DLARRV returns the eigenvalues of the unshifted matrix. */
  1151. /* However, if the eigenvectors are not desired by the user, we need */
  1152. /* to apply the corresponding shifts from DLARRE to obtain the */
  1153. /* eigenvalues of the original matrix. */
  1154. i__1 = *m;
  1155. for (j = 1; j <= i__1; ++j) {
  1156. itmp = iwork[iindbl + j - 1];
  1157. w[j] += e[iwork[iinspl + itmp - 1]];
  1158. /* L20: */
  1159. }
  1160. }
  1161. if (*tryrac) {
  1162. /* Refine computed eigenvalues so that they are relatively accurate */
  1163. /* with respect to the original matrix T. */
  1164. ibegin = 1;
  1165. wbegin = 1;
  1166. i__1 = iwork[iindbl + *m - 1];
  1167. for (jblk = 1; jblk <= i__1; ++jblk) {
  1168. iend = iwork[iinspl + jblk - 1];
  1169. in = iend - ibegin + 1;
  1170. wend = wbegin - 1;
  1171. /* check if any eigenvalues have to be refined in this block */
  1172. L36:
  1173. if (wend < *m) {
  1174. if (iwork[iindbl + wend] == jblk) {
  1175. ++wend;
  1176. goto L36;
  1177. }
  1178. }
  1179. if (wend < wbegin) {
  1180. ibegin = iend + 1;
  1181. goto L39;
  1182. }
  1183. offset = iwork[iindw + wbegin - 1] - 1;
  1184. ifirst = iwork[iindw + wbegin - 1];
  1185. ilast = iwork[iindw + wend - 1];
  1186. rtol2 = eps * 4.;
  1187. dlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin -
  1188. 1], &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &
  1189. work[inderr + wbegin - 1], &work[indwrk], &iwork[
  1190. iindwk], &pivmin, &tnrm, &iinfo);
  1191. ibegin = iend + 1;
  1192. wbegin = wend + 1;
  1193. L39:
  1194. ;
  1195. }
  1196. }
  1197. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1198. if (scale != 1.) {
  1199. d__1 = 1. / scale;
  1200. dscal_(m, &d__1, &w[1], &c__1);
  1201. }
  1202. }
  1203. /* If eigenvalues are not in increasing order, then sort them, */
  1204. /* possibly along with eigenvectors. */
  1205. if (nsplit > 1 || *n == 2) {
  1206. if (! wantz) {
  1207. dlasrt_("I", m, &w[1], &iinfo);
  1208. if (iinfo != 0) {
  1209. *info = 3;
  1210. return;
  1211. }
  1212. } else {
  1213. i__1 = *m - 1;
  1214. for (j = 1; j <= i__1; ++j) {
  1215. i__ = 0;
  1216. tmp = w[j];
  1217. i__2 = *m;
  1218. for (jj = j + 1; jj <= i__2; ++jj) {
  1219. if (w[jj] < tmp) {
  1220. i__ = jj;
  1221. tmp = w[jj];
  1222. }
  1223. /* L50: */
  1224. }
  1225. if (i__ != 0) {
  1226. w[i__] = w[j];
  1227. w[j] = tmp;
  1228. if (wantz) {
  1229. dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j *
  1230. z_dim1 + 1], &c__1);
  1231. itmp = isuppz[(i__ << 1) - 1];
  1232. isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
  1233. isuppz[(j << 1) - 1] = itmp;
  1234. itmp = isuppz[i__ * 2];
  1235. isuppz[i__ * 2] = isuppz[j * 2];
  1236. isuppz[j * 2] = itmp;
  1237. }
  1238. }
  1239. /* L60: */
  1240. }
  1241. }
  1242. }
  1243. work[1] = (doublereal) lwmin;
  1244. iwork[1] = liwmin;
  1245. return;
  1246. /* End of DSTEMR */
  1247. } /* dstemr_ */