You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaorhr_col_getrfnp2.c 24 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b3 = 1.;
  485. static integer c__1 = 1;
  486. static doublereal c_b19 = -1.;
  487. /* > \brief \b DLAORHR_COL_GETRFNP2 */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download DLAORHR_GETRF2NP + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaorhr
  494. _col_getrfnp2.f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaorhr
  497. _col_getrfnp2.f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaorhr
  500. _col_getrfnp2.f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO ) */
  506. /* INTEGER INFO, LDA, M, N */
  507. /* DOUBLE PRECISION A( LDA, * ), D( * ) */
  508. /* > \par Purpose: */
  509. /* ============= */
  510. /* > */
  511. /* > \verbatim */
  512. /* > */
  513. /* > DLAORHR_COL_GETRFNP2 computes the modified LU factorization without */
  514. /* > pivoting of a real general M-by-N matrix A. The factorization has */
  515. /* > the form: */
  516. /* > */
  517. /* > A - S = L * U, */
  518. /* > */
  519. /* > where: */
  520. /* > S is a m-by-n diagonal sign matrix with the diagonal D, so that */
  521. /* > D(i) = S(i,i), 1 <= i <= f2cmin(M,N). The diagonal D is constructed */
  522. /* > as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing */
  523. /* > i-1 steps of Gaussian elimination. This means that the diagonal */
  524. /* > element at each step of "modified" Gaussian elimination is at */
  525. /* > least one in absolute value (so that division-by-zero not */
  526. /* > possible during the division by the diagonal element); */
  527. /* > */
  528. /* > L is a M-by-N lower triangular matrix with unit diagonal elements */
  529. /* > (lower trapezoidal if M > N); */
  530. /* > */
  531. /* > and U is a M-by-N upper triangular matrix */
  532. /* > (upper trapezoidal if M < N). */
  533. /* > */
  534. /* > This routine is an auxiliary routine used in the Householder */
  535. /* > reconstruction routine DORHR_COL. In DORHR_COL, this routine is */
  536. /* > applied to an M-by-N matrix A with orthonormal columns, where each */
  537. /* > element is bounded by one in absolute value. With the choice of */
  538. /* > the matrix S above, one can show that the diagonal element at each */
  539. /* > step of Gaussian elimination is the largest (in absolute value) in */
  540. /* > the column on or below the diagonal, so that no pivoting is required */
  541. /* > for numerical stability [1]. */
  542. /* > */
  543. /* > For more details on the Householder reconstruction algorithm, */
  544. /* > including the modified LU factorization, see [1]. */
  545. /* > */
  546. /* > This is the recursive version of the LU factorization algorithm. */
  547. /* > Denote A - S by B. The algorithm divides the matrix B into four */
  548. /* > submatrices: */
  549. /* > */
  550. /* > [ B11 | B12 ] where B11 is n1 by n1, */
  551. /* > B = [ -----|----- ] B21 is (m-n1) by n1, */
  552. /* > [ B21 | B22 ] B12 is n1 by n2, */
  553. /* > B22 is (m-n1) by n2, */
  554. /* > with n1 = f2cmin(m,n)/2, n2 = n-n1. */
  555. /* > */
  556. /* > */
  557. /* > The subroutine calls itself to factor B11, solves for B21, */
  558. /* > solves for B12, updates B22, then calls itself to factor B22. */
  559. /* > */
  560. /* > For more details on the recursive LU algorithm, see [2]. */
  561. /* > */
  562. /* > DLAORHR_COL_GETRFNP2 is called to factorize a block by the blocked */
  563. /* > routine DLAORHR_COL_GETRFNP, which uses blocked code calling */
  564. /* . Level 3 BLAS to update the submatrix. However, DLAORHR_COL_GETRFNP2 */
  565. /* > is self-sufficient and can be used without DLAORHR_COL_GETRFNP. */
  566. /* > */
  567. /* > [1] "Reconstructing Householder vectors from tall-skinny QR", */
  568. /* > G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, */
  569. /* > E. Solomonik, J. Parallel Distrib. Comput., */
  570. /* > vol. 85, pp. 3-31, 2015. */
  571. /* > */
  572. /* > [2] "Recursion leads to automatic variable blocking for dense linear */
  573. /* > algebra algorithms", F. Gustavson, IBM J. of Res. and Dev., */
  574. /* > vol. 41, no. 6, pp. 737-755, 1997. */
  575. /* > \endverbatim */
  576. /* Arguments: */
  577. /* ========== */
  578. /* > \param[in] M */
  579. /* > \verbatim */
  580. /* > M is INTEGER */
  581. /* > The number of rows of the matrix A. M >= 0. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] N */
  585. /* > \verbatim */
  586. /* > N is INTEGER */
  587. /* > The number of columns of the matrix A. N >= 0. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] A */
  591. /* > \verbatim */
  592. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  593. /* > On entry, the M-by-N matrix to be factored. */
  594. /* > On exit, the factors L and U from the factorization */
  595. /* > A-S=L*U; the unit diagonal elements of L are not stored. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDA */
  599. /* > \verbatim */
  600. /* > LDA is INTEGER */
  601. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] D */
  605. /* > \verbatim */
  606. /* > D is DOUBLE PRECISION array, dimension f2cmin(M,N) */
  607. /* > The diagonal elements of the diagonal M-by-N sign matrix S, */
  608. /* > D(i) = S(i,i), where 1 <= i <= f2cmin(M,N). The elements can */
  609. /* > be only plus or minus one. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] INFO */
  613. /* > \verbatim */
  614. /* > INFO is INTEGER */
  615. /* > = 0: successful exit */
  616. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  617. /* > \endverbatim */
  618. /* > */
  619. /* Authors: */
  620. /* ======== */
  621. /* > \author Univ. of Tennessee */
  622. /* > \author Univ. of California Berkeley */
  623. /* > \author Univ. of Colorado Denver */
  624. /* > \author NAG Ltd. */
  625. /* > \date November 2019 */
  626. /* > \ingroup doubleGEcomputational */
  627. /* > \par Contributors: */
  628. /* ================== */
  629. /* > */
  630. /* > \verbatim */
  631. /* > */
  632. /* > November 2019, Igor Kozachenko, */
  633. /* > Computer Science Division, */
  634. /* > University of California, Berkeley */
  635. /* > */
  636. /* > \endverbatim */
  637. /* ===================================================================== */
  638. /* Subroutine */ void dlaorhr_col_getrfnp2_(integer *m, integer *n,
  639. doublereal *a, integer *lda, doublereal *d__, integer *info)
  640. {
  641. /* System generated locals */
  642. integer a_dim1, a_offset, i__1;
  643. doublereal d__1;
  644. /* Local variables */
  645. integer i__;
  646. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  647. integer *), dgemm_(char *, char *, integer *, integer *, integer *
  648. , doublereal *, doublereal *, integer *, doublereal *, integer *,
  649. doublereal *, doublereal *, integer *);
  650. integer iinfo;
  651. doublereal sfmin;
  652. extern /* Subroutine */ void dtrsm_(char *, char *, char *, char *,
  653. integer *, integer *, doublereal *, doublereal *, integer *,
  654. doublereal *, integer *);
  655. integer n1, n2;
  656. extern doublereal dlamch_(char *);
  657. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  658. /* -- LAPACK computational routine (version 3.9.0) -- */
  659. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  660. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  661. /* November 2019 */
  662. /* ===================================================================== */
  663. /* Test the input parameters */
  664. /* Parameter adjustments */
  665. a_dim1 = *lda;
  666. a_offset = 1 + a_dim1 * 1;
  667. a -= a_offset;
  668. --d__;
  669. /* Function Body */
  670. *info = 0;
  671. if (*m < 0) {
  672. *info = -1;
  673. } else if (*n < 0) {
  674. *info = -2;
  675. } else if (*lda < f2cmax(1,*m)) {
  676. *info = -4;
  677. }
  678. if (*info != 0) {
  679. i__1 = -(*info);
  680. xerbla_("DLAORHR_COL_GETRFNP2", &i__1, (ftnlen)20);
  681. return;
  682. }
  683. /* Quick return if possible */
  684. if (f2cmin(*m,*n) == 0) {
  685. return;
  686. }
  687. if (*m == 1) {
  688. /* One row case, (also recursion termination case), */
  689. /* use unblocked code */
  690. /* Transfer the sign */
  691. d__[1] = -d_sign(&c_b3, &a[a_dim1 + 1]);
  692. /* Construct the row of U */
  693. a[a_dim1 + 1] -= d__[1];
  694. } else if (*n == 1) {
  695. /* One column case, (also recursion termination case), */
  696. /* use unblocked code */
  697. /* Transfer the sign */
  698. d__[1] = -d_sign(&c_b3, &a[a_dim1 + 1]);
  699. /* Construct the row of U */
  700. a[a_dim1 + 1] -= d__[1];
  701. /* Scale the elements 2:M of the column */
  702. /* Determine machine safe minimum */
  703. sfmin = dlamch_("S");
  704. /* Construct the subdiagonal elements of L */
  705. if ((d__1 = a[a_dim1 + 1], abs(d__1)) >= sfmin) {
  706. i__1 = *m - 1;
  707. d__1 = 1. / a[a_dim1 + 1];
  708. dscal_(&i__1, &d__1, &a[a_dim1 + 2], &c__1);
  709. } else {
  710. i__1 = *m;
  711. for (i__ = 2; i__ <= i__1; ++i__) {
  712. a[i__ + a_dim1] /= a[a_dim1 + 1];
  713. }
  714. }
  715. } else {
  716. /* Divide the matrix B into four submatrices */
  717. n1 = f2cmin(*m,*n) / 2;
  718. n2 = *n - n1;
  719. /* Factor B11, recursive call */
  720. dlaorhr_col_getrfnp2_(&n1, &n1, &a[a_offset], lda, &d__[1], &iinfo);
  721. /* Solve for B21 */
  722. i__1 = *m - n1;
  723. dtrsm_("R", "U", "N", "N", &i__1, &n1, &c_b3, &a[a_offset], lda, &a[
  724. n1 + 1 + a_dim1], lda);
  725. /* Solve for B12 */
  726. dtrsm_("L", "L", "N", "U", &n1, &n2, &c_b3, &a[a_offset], lda, &a[(n1
  727. + 1) * a_dim1 + 1], lda);
  728. /* Update B22, i.e. compute the Schur complement */
  729. /* B22 := B22 - B21*B12 */
  730. i__1 = *m - n1;
  731. dgemm_("N", "N", &i__1, &n2, &n1, &c_b19, &a[n1 + 1 + a_dim1], lda, &
  732. a[(n1 + 1) * a_dim1 + 1], lda, &c_b3, &a[n1 + 1 + (n1 + 1) *
  733. a_dim1], lda);
  734. /* Factor B22, recursive call */
  735. i__1 = *m - n1;
  736. dlaorhr_col_getrfnp2_(&i__1, &n2, &a[n1 + 1 + (n1 + 1) * a_dim1],
  737. lda, &d__[n1 + 1], &iinfo);
  738. }
  739. return;
  740. /* End of DLAORHR_COL_GETRFNP2 */
  741. } /* dlaorhr_col_getrfnp2__ */