You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgbsvxx.c 49 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief <b> DGBSVXX computes the solution to system of linear equations A * X = B for GB matrices</b> */
  484. /* =========== DOCUMENTATION =========== */
  485. /* Online html documentation available at */
  486. /* http://www.netlib.org/lapack/explore-html/ */
  487. /* > \htmlonly */
  488. /* > Download DGBSVXX + dependencies */
  489. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbsvxx
  490. .f"> */
  491. /* > [TGZ]</a> */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbsvxx
  493. .f"> */
  494. /* > [ZIP]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbsvxx
  496. .f"> */
  497. /* > [TXT]</a> */
  498. /* > \endhtmlonly */
  499. /* Definition: */
  500. /* =========== */
  501. /* SUBROUTINE DGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, */
  502. /* LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, */
  503. /* RCOND, RPVGRW, BERR, N_ERR_BNDS, */
  504. /* ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, */
  505. /* WORK, IWORK, INFO ) */
  506. /* CHARACTER EQUED, FACT, TRANS */
  507. /* INTEGER INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS, */
  508. /* $ N_ERR_BNDS, KL, KU */
  509. /* DOUBLE PRECISION RCOND, RPVGRW */
  510. /* INTEGER IPIV( * ), IWORK( * ) */
  511. /* DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), */
  512. /* $ X( LDX , * ),WORK( * ) */
  513. /* DOUBLE PRECISION R( * ), C( * ), PARAMS( * ), BERR( * ), */
  514. /* $ ERR_BNDS_NORM( NRHS, * ), */
  515. /* $ ERR_BNDS_COMP( NRHS, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > DGBSVXX uses the LU factorization to compute the solution to a */
  522. /* > double precision system of linear equations A * X = B, where A is an */
  523. /* > N-by-N matrix and X and B are N-by-NRHS matrices. */
  524. /* > */
  525. /* > If requested, both normwise and maximum componentwise error bounds */
  526. /* > are returned. DGBSVXX will return a solution with a tiny */
  527. /* > guaranteed error (O(eps) where eps is the working machine */
  528. /* > precision) unless the matrix is very ill-conditioned, in which */
  529. /* > case a warning is returned. Relevant condition numbers also are */
  530. /* > calculated and returned. */
  531. /* > */
  532. /* > DGBSVXX accepts user-provided factorizations and equilibration */
  533. /* > factors; see the definitions of the FACT and EQUED options. */
  534. /* > Solving with refinement and using a factorization from a previous */
  535. /* > DGBSVXX call will also produce a solution with either O(eps) */
  536. /* > errors or warnings, but we cannot make that claim for general */
  537. /* > user-provided factorizations and equilibration factors if they */
  538. /* > differ from what DGBSVXX would itself produce. */
  539. /* > \endverbatim */
  540. /* > \par Description: */
  541. /* ================= */
  542. /* > */
  543. /* > \verbatim */
  544. /* > */
  545. /* > The following steps are performed: */
  546. /* > */
  547. /* > 1. If FACT = 'E', double precision scaling factors are computed to equilibrate */
  548. /* > the system: */
  549. /* > */
  550. /* > TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
  551. /* > TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
  552. /* > TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
  553. /* > */
  554. /* > Whether or not the system will be equilibrated depends on the */
  555. /* > scaling of the matrix A, but if equilibration is used, A is */
  556. /* > overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
  557. /* > or diag(C)*B (if TRANS = 'T' or 'C'). */
  558. /* > */
  559. /* > 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */
  560. /* > the matrix A (after equilibration if FACT = 'E') as */
  561. /* > */
  562. /* > A = P * L * U, */
  563. /* > */
  564. /* > where P is a permutation matrix, L is a unit lower triangular */
  565. /* > matrix, and U is upper triangular. */
  566. /* > */
  567. /* > 3. If some U(i,i)=0, so that U is exactly singular, then the */
  568. /* > routine returns with INFO = i. Otherwise, the factored form of A */
  569. /* > is used to estimate the condition number of the matrix A (see */
  570. /* > argument RCOND). If the reciprocal of the condition number is less */
  571. /* > than machine precision, the routine still goes on to solve for X */
  572. /* > and compute error bounds as described below. */
  573. /* > */
  574. /* > 4. The system of equations is solved for X using the factored form */
  575. /* > of A. */
  576. /* > */
  577. /* > 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
  578. /* > the routine will use iterative refinement to try to get a small */
  579. /* > error and error bounds. Refinement calculates the residual to at */
  580. /* > least twice the working precision. */
  581. /* > */
  582. /* > 6. If equilibration was used, the matrix X is premultiplied by */
  583. /* > diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
  584. /* > that it solves the original system before equilibration. */
  585. /* > \endverbatim */
  586. /* Arguments: */
  587. /* ========== */
  588. /* > \verbatim */
  589. /* > Some optional parameters are bundled in the PARAMS array. These */
  590. /* > settings determine how refinement is performed, but often the */
  591. /* > defaults are acceptable. If the defaults are acceptable, users */
  592. /* > can pass NPARAMS = 0 which prevents the source code from accessing */
  593. /* > the PARAMS argument. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] FACT */
  597. /* > \verbatim */
  598. /* > FACT is CHARACTER*1 */
  599. /* > Specifies whether or not the factored form of the matrix A is */
  600. /* > supplied on entry, and if not, whether the matrix A should be */
  601. /* > equilibrated before it is factored. */
  602. /* > = 'F': On entry, AF and IPIV contain the factored form of A. */
  603. /* > If EQUED is not 'N', the matrix A has been */
  604. /* > equilibrated with scaling factors given by R and C. */
  605. /* > A, AF, and IPIV are not modified. */
  606. /* > = 'N': The matrix A will be copied to AF and factored. */
  607. /* > = 'E': The matrix A will be equilibrated if necessary, then */
  608. /* > copied to AF and factored. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] TRANS */
  612. /* > \verbatim */
  613. /* > TRANS is CHARACTER*1 */
  614. /* > Specifies the form of the system of equations: */
  615. /* > = 'N': A * X = B (No transpose) */
  616. /* > = 'T': A**T * X = B (Transpose) */
  617. /* > = 'C': A**H * X = B (Conjugate Transpose = Transpose) */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] N */
  621. /* > \verbatim */
  622. /* > N is INTEGER */
  623. /* > The number of linear equations, i.e., the order of the */
  624. /* > matrix A. N >= 0. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] KL */
  628. /* > \verbatim */
  629. /* > KL is INTEGER */
  630. /* > The number of subdiagonals within the band of A. KL >= 0. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] KU */
  634. /* > \verbatim */
  635. /* > KU is INTEGER */
  636. /* > The number of superdiagonals within the band of A. KU >= 0. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in] NRHS */
  640. /* > \verbatim */
  641. /* > NRHS is INTEGER */
  642. /* > The number of right hand sides, i.e., the number of columns */
  643. /* > of the matrices B and X. NRHS >= 0. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[in,out] AB */
  647. /* > \verbatim */
  648. /* > AB is DOUBLE PRECISION array, dimension (LDAB,N) */
  649. /* > On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
  650. /* > The j-th column of A is stored in the j-th column of the */
  651. /* > array AB as follows: */
  652. /* > AB(KU+1+i-j,j) = A(i,j) for f2cmax(1,j-KU)<=i<=f2cmin(N,j+kl) */
  653. /* > */
  654. /* > If FACT = 'F' and EQUED is not 'N', then AB must have been */
  655. /* > equilibrated by the scaling factors in R and/or C. AB is not */
  656. /* > modified if FACT = 'F' or 'N', or if FACT = 'E' and */
  657. /* > EQUED = 'N' on exit. */
  658. /* > */
  659. /* > On exit, if EQUED .ne. 'N', A is scaled as follows: */
  660. /* > EQUED = 'R': A := diag(R) * A */
  661. /* > EQUED = 'C': A := A * diag(C) */
  662. /* > EQUED = 'B': A := diag(R) * A * diag(C). */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[in] LDAB */
  666. /* > \verbatim */
  667. /* > LDAB is INTEGER */
  668. /* > The leading dimension of the array AB. LDAB >= KL+KU+1. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in,out] AFB */
  672. /* > \verbatim */
  673. /* > AFB is DOUBLE PRECISION array, dimension (LDAFB,N) */
  674. /* > If FACT = 'F', then AFB is an input argument and on entry */
  675. /* > contains details of the LU factorization of the band matrix */
  676. /* > A, as computed by DGBTRF. U is stored as an upper triangular */
  677. /* > band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
  678. /* > and the multipliers used during the factorization are stored */
  679. /* > in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */
  680. /* > the factored form of the equilibrated matrix A. */
  681. /* > */
  682. /* > If FACT = 'N', then AF is an output argument and on exit */
  683. /* > returns the factors L and U from the factorization A = P*L*U */
  684. /* > of the original matrix A. */
  685. /* > */
  686. /* > If FACT = 'E', then AF is an output argument and on exit */
  687. /* > returns the factors L and U from the factorization A = P*L*U */
  688. /* > of the equilibrated matrix A (see the description of A for */
  689. /* > the form of the equilibrated matrix). */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[in] LDAFB */
  693. /* > \verbatim */
  694. /* > LDAFB is INTEGER */
  695. /* > The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[in,out] IPIV */
  699. /* > \verbatim */
  700. /* > IPIV is INTEGER array, dimension (N) */
  701. /* > If FACT = 'F', then IPIV is an input argument and on entry */
  702. /* > contains the pivot indices from the factorization A = P*L*U */
  703. /* > as computed by DGETRF; row i of the matrix was interchanged */
  704. /* > with row IPIV(i). */
  705. /* > */
  706. /* > If FACT = 'N', then IPIV is an output argument and on exit */
  707. /* > contains the pivot indices from the factorization A = P*L*U */
  708. /* > of the original matrix A. */
  709. /* > */
  710. /* > If FACT = 'E', then IPIV is an output argument and on exit */
  711. /* > contains the pivot indices from the factorization A = P*L*U */
  712. /* > of the equilibrated matrix A. */
  713. /* > \endverbatim */
  714. /* > */
  715. /* > \param[in,out] EQUED */
  716. /* > \verbatim */
  717. /* > EQUED is CHARACTER*1 */
  718. /* > Specifies the form of equilibration that was done. */
  719. /* > = 'N': No equilibration (always true if FACT = 'N'). */
  720. /* > = 'R': Row equilibration, i.e., A has been premultiplied by */
  721. /* > diag(R). */
  722. /* > = 'C': Column equilibration, i.e., A has been postmultiplied */
  723. /* > by diag(C). */
  724. /* > = 'B': Both row and column equilibration, i.e., A has been */
  725. /* > replaced by diag(R) * A * diag(C). */
  726. /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
  727. /* > output argument. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[in,out] R */
  731. /* > \verbatim */
  732. /* > R is DOUBLE PRECISION array, dimension (N) */
  733. /* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
  734. /* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
  735. /* > is not accessed. R is an input argument if FACT = 'F'; */
  736. /* > otherwise, R is an output argument. If FACT = 'F' and */
  737. /* > EQUED = 'R' or 'B', each element of R must be positive. */
  738. /* > If R is output, each element of R is a power of the radix. */
  739. /* > If R is input, each element of R should be a power of the radix */
  740. /* > to ensure a reliable solution and error estimates. Scaling by */
  741. /* > powers of the radix does not cause rounding errors unless the */
  742. /* > result underflows or overflows. Rounding errors during scaling */
  743. /* > lead to refining with a matrix that is not equivalent to the */
  744. /* > input matrix, producing error estimates that may not be */
  745. /* > reliable. */
  746. /* > \endverbatim */
  747. /* > */
  748. /* > \param[in,out] C */
  749. /* > \verbatim */
  750. /* > C is DOUBLE PRECISION array, dimension (N) */
  751. /* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
  752. /* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
  753. /* > is not accessed. C is an input argument if FACT = 'F'; */
  754. /* > otherwise, C is an output argument. If FACT = 'F' and */
  755. /* > EQUED = 'C' or 'B', each element of C must be positive. */
  756. /* > If C is output, each element of C is a power of the radix. */
  757. /* > If C is input, each element of C should be a power of the radix */
  758. /* > to ensure a reliable solution and error estimates. Scaling by */
  759. /* > powers of the radix does not cause rounding errors unless the */
  760. /* > result underflows or overflows. Rounding errors during scaling */
  761. /* > lead to refining with a matrix that is not equivalent to the */
  762. /* > input matrix, producing error estimates that may not be */
  763. /* > reliable. */
  764. /* > \endverbatim */
  765. /* > */
  766. /* > \param[in,out] B */
  767. /* > \verbatim */
  768. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  769. /* > On entry, the N-by-NRHS right hand side matrix B. */
  770. /* > On exit, */
  771. /* > if EQUED = 'N', B is not modified; */
  772. /* > if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
  773. /* > diag(R)*B; */
  774. /* > if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
  775. /* > overwritten by diag(C)*B. */
  776. /* > \endverbatim */
  777. /* > */
  778. /* > \param[in] LDB */
  779. /* > \verbatim */
  780. /* > LDB is INTEGER */
  781. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  782. /* > \endverbatim */
  783. /* > */
  784. /* > \param[out] X */
  785. /* > \verbatim */
  786. /* > X is DOUBLE PRECISION array, dimension (LDX,NRHS) */
  787. /* > If INFO = 0, the N-by-NRHS solution matrix X to the original */
  788. /* > system of equations. Note that A and B are modified on exit */
  789. /* > if EQUED .ne. 'N', and the solution to the equilibrated system is */
  790. /* > inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */
  791. /* > inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */
  792. /* > \endverbatim */
  793. /* > */
  794. /* > \param[in] LDX */
  795. /* > \verbatim */
  796. /* > LDX is INTEGER */
  797. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  798. /* > \endverbatim */
  799. /* > */
  800. /* > \param[out] RCOND */
  801. /* > \verbatim */
  802. /* > RCOND is DOUBLE PRECISION */
  803. /* > Reciprocal scaled condition number. This is an estimate of the */
  804. /* > reciprocal Skeel condition number of the matrix A after */
  805. /* > equilibration (if done). If this is less than the machine */
  806. /* > precision (in particular, if it is zero), the matrix is singular */
  807. /* > to working precision. Note that the error may still be small even */
  808. /* > if this number is very small and the matrix appears ill- */
  809. /* > conditioned. */
  810. /* > \endverbatim */
  811. /* > */
  812. /* > \param[out] RPVGRW */
  813. /* > \verbatim */
  814. /* > RPVGRW is DOUBLE PRECISION */
  815. /* > Reciprocal pivot growth. On exit, this contains the reciprocal */
  816. /* > pivot growth factor norm(A)/norm(U). The "f2cmax absolute element" */
  817. /* > norm is used. If this is much less than 1, then the stability of */
  818. /* > the LU factorization of the (equilibrated) matrix A could be poor. */
  819. /* > This also means that the solution X, estimated condition numbers, */
  820. /* > and error bounds could be unreliable. If factorization fails with */
  821. /* > 0<INFO<=N, then this contains the reciprocal pivot growth factor */
  822. /* > for the leading INFO columns of A. In DGESVX, this quantity is */
  823. /* > returned in WORK(1). */
  824. /* > \endverbatim */
  825. /* > */
  826. /* > \param[out] BERR */
  827. /* > \verbatim */
  828. /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
  829. /* > Componentwise relative backward error. This is the */
  830. /* > componentwise relative backward error of each solution vector X(j) */
  831. /* > (i.e., the smallest relative change in any element of A or B that */
  832. /* > makes X(j) an exact solution). */
  833. /* > \endverbatim */
  834. /* > */
  835. /* > \param[in] N_ERR_BNDS */
  836. /* > \verbatim */
  837. /* > N_ERR_BNDS is INTEGER */
  838. /* > Number of error bounds to return for each right hand side */
  839. /* > and each type (normwise or componentwise). See ERR_BNDS_NORM and */
  840. /* > ERR_BNDS_COMP below. */
  841. /* > \endverbatim */
  842. /* > */
  843. /* > \param[out] ERR_BNDS_NORM */
  844. /* > \verbatim */
  845. /* > ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
  846. /* > For each right-hand side, this array contains information about */
  847. /* > various error bounds and condition numbers corresponding to the */
  848. /* > normwise relative error, which is defined as follows: */
  849. /* > */
  850. /* > Normwise relative error in the ith solution vector: */
  851. /* > max_j (abs(XTRUE(j,i) - X(j,i))) */
  852. /* > ------------------------------ */
  853. /* > max_j abs(X(j,i)) */
  854. /* > */
  855. /* > The array is indexed by the type of error information as described */
  856. /* > below. There currently are up to three pieces of information */
  857. /* > returned. */
  858. /* > */
  859. /* > The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
  860. /* > right-hand side. */
  861. /* > */
  862. /* > The second index in ERR_BNDS_NORM(:,err) contains the following */
  863. /* > three fields: */
  864. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  865. /* > reciprocal condition number is less than the threshold */
  866. /* > sqrt(n) * dlamch('Epsilon'). */
  867. /* > */
  868. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  869. /* > almost certainly within a factor of 10 of the true error */
  870. /* > so long as the next entry is greater than the threshold */
  871. /* > sqrt(n) * dlamch('Epsilon'). This error bound should only */
  872. /* > be trusted if the previous boolean is true. */
  873. /* > */
  874. /* > err = 3 Reciprocal condition number: Estimated normwise */
  875. /* > reciprocal condition number. Compared with the threshold */
  876. /* > sqrt(n) * dlamch('Epsilon') to determine if the error */
  877. /* > estimate is "guaranteed". These reciprocal condition */
  878. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  879. /* > appropriately scaled matrix Z. */
  880. /* > Let Z = S*A, where S scales each row by a power of the */
  881. /* > radix so all absolute row sums of Z are approximately 1. */
  882. /* > */
  883. /* > See Lapack Working Note 165 for further details and extra */
  884. /* > cautions. */
  885. /* > \endverbatim */
  886. /* > */
  887. /* > \param[out] ERR_BNDS_COMP */
  888. /* > \verbatim */
  889. /* > ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
  890. /* > For each right-hand side, this array contains information about */
  891. /* > various error bounds and condition numbers corresponding to the */
  892. /* > componentwise relative error, which is defined as follows: */
  893. /* > */
  894. /* > Componentwise relative error in the ith solution vector: */
  895. /* > abs(XTRUE(j,i) - X(j,i)) */
  896. /* > max_j ---------------------- */
  897. /* > abs(X(j,i)) */
  898. /* > */
  899. /* > The array is indexed by the right-hand side i (on which the */
  900. /* > componentwise relative error depends), and the type of error */
  901. /* > information as described below. There currently are up to three */
  902. /* > pieces of information returned for each right-hand side. If */
  903. /* > componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
  904. /* > ERR_BNDS_COMP is not accessed. If N_ERR_BNDS < 3, then at most */
  905. /* > the first (:,N_ERR_BNDS) entries are returned. */
  906. /* > */
  907. /* > The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
  908. /* > right-hand side. */
  909. /* > */
  910. /* > The second index in ERR_BNDS_COMP(:,err) contains the following */
  911. /* > three fields: */
  912. /* > err = 1 "Trust/don't trust" boolean. Trust the answer if the */
  913. /* > reciprocal condition number is less than the threshold */
  914. /* > sqrt(n) * dlamch('Epsilon'). */
  915. /* > */
  916. /* > err = 2 "Guaranteed" error bound: The estimated forward error, */
  917. /* > almost certainly within a factor of 10 of the true error */
  918. /* > so long as the next entry is greater than the threshold */
  919. /* > sqrt(n) * dlamch('Epsilon'). This error bound should only */
  920. /* > be trusted if the previous boolean is true. */
  921. /* > */
  922. /* > err = 3 Reciprocal condition number: Estimated componentwise */
  923. /* > reciprocal condition number. Compared with the threshold */
  924. /* > sqrt(n) * dlamch('Epsilon') to determine if the error */
  925. /* > estimate is "guaranteed". These reciprocal condition */
  926. /* > numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
  927. /* > appropriately scaled matrix Z. */
  928. /* > Let Z = S*(A*diag(x)), where x is the solution for the */
  929. /* > current right-hand side and S scales each row of */
  930. /* > A*diag(x) by a power of the radix so all absolute row */
  931. /* > sums of Z are approximately 1. */
  932. /* > */
  933. /* > See Lapack Working Note 165 for further details and extra */
  934. /* > cautions. */
  935. /* > \endverbatim */
  936. /* > */
  937. /* > \param[in] NPARAMS */
  938. /* > \verbatim */
  939. /* > NPARAMS is INTEGER */
  940. /* > Specifies the number of parameters set in PARAMS. If <= 0, the */
  941. /* > PARAMS array is never referenced and default values are used. */
  942. /* > \endverbatim */
  943. /* > */
  944. /* > \param[in,out] PARAMS */
  945. /* > \verbatim */
  946. /* > PARAMS is DOUBLE PRECISION array, dimension (NPARAMS) */
  947. /* > Specifies algorithm parameters. If an entry is < 0.0, then */
  948. /* > that entry will be filled with default value used for that */
  949. /* > parameter. Only positions up to NPARAMS are accessed; defaults */
  950. /* > are used for higher-numbered parameters. */
  951. /* > */
  952. /* > PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
  953. /* > refinement or not. */
  954. /* > Default: 1.0D+0 */
  955. /* > = 0.0: No refinement is performed, and no error bounds are */
  956. /* > computed. */
  957. /* > = 1.0: Use the extra-precise refinement algorithm. */
  958. /* > (other values are reserved for future use) */
  959. /* > */
  960. /* > PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
  961. /* > computations allowed for refinement. */
  962. /* > Default: 10 */
  963. /* > Aggressive: Set to 100 to permit convergence using approximate */
  964. /* > factorizations or factorizations other than LU. If */
  965. /* > the factorization uses a technique other than */
  966. /* > Gaussian elimination, the guarantees in */
  967. /* > err_bnds_norm and err_bnds_comp may no longer be */
  968. /* > trustworthy. */
  969. /* > */
  970. /* > PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
  971. /* > will attempt to find a solution with small componentwise */
  972. /* > relative error in the double-precision algorithm. Positive */
  973. /* > is true, 0.0 is false. */
  974. /* > Default: 1.0 (attempt componentwise convergence) */
  975. /* > \endverbatim */
  976. /* > */
  977. /* > \param[out] WORK */
  978. /* > \verbatim */
  979. /* > WORK is DOUBLE PRECISION array, dimension (4*N) */
  980. /* > \endverbatim */
  981. /* > */
  982. /* > \param[out] IWORK */
  983. /* > \verbatim */
  984. /* > IWORK is INTEGER array, dimension (N) */
  985. /* > \endverbatim */
  986. /* > */
  987. /* > \param[out] INFO */
  988. /* > \verbatim */
  989. /* > INFO is INTEGER */
  990. /* > = 0: Successful exit. The solution to every right-hand side is */
  991. /* > guaranteed. */
  992. /* > < 0: If INFO = -i, the i-th argument had an illegal value */
  993. /* > > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
  994. /* > has been completed, but the factor U is exactly singular, so */
  995. /* > the solution and error bounds could not be computed. RCOND = 0 */
  996. /* > is returned. */
  997. /* > = N+J: The solution corresponding to the Jth right-hand side is */
  998. /* > not guaranteed. The solutions corresponding to other right- */
  999. /* > hand sides K with K > J may not be guaranteed as well, but */
  1000. /* > only the first such right-hand side is reported. If a small */
  1001. /* > componentwise error is not requested (PARAMS(3) = 0.0) then */
  1002. /* > the Jth right-hand side is the first with a normwise error */
  1003. /* > bound that is not guaranteed (the smallest J such */
  1004. /* > that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
  1005. /* > the Jth right-hand side is the first with either a normwise or */
  1006. /* > componentwise error bound that is not guaranteed (the smallest */
  1007. /* > J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
  1008. /* > ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
  1009. /* > ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
  1010. /* > about all of the right-hand sides check ERR_BNDS_NORM or */
  1011. /* > ERR_BNDS_COMP. */
  1012. /* > \endverbatim */
  1013. /* Authors: */
  1014. /* ======== */
  1015. /* > \author Univ. of Tennessee */
  1016. /* > \author Univ. of California Berkeley */
  1017. /* > \author Univ. of Colorado Denver */
  1018. /* > \author NAG Ltd. */
  1019. /* > \date April 2012 */
  1020. /* > \ingroup doubleGBsolve */
  1021. /* ===================================================================== */
  1022. /* Subroutine */ void dgbsvxx_(char *fact, char *trans, integer *n, integer *
  1023. kl, integer *ku, integer *nrhs, doublereal *ab, integer *ldab,
  1024. doublereal *afb, integer *ldafb, integer *ipiv, char *equed,
  1025. doublereal *r__, doublereal *c__, doublereal *b, integer *ldb,
  1026. doublereal *x, integer *ldx, doublereal *rcond, doublereal *rpvgrw,
  1027. doublereal *berr, integer *n_err_bnds__, doublereal *err_bnds_norm__,
  1028. doublereal *err_bnds_comp__, integer *nparams, doublereal *params,
  1029. doublereal *work, integer *iwork, integer *info)
  1030. {
  1031. /* System generated locals */
  1032. integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
  1033. x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
  1034. err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2;
  1035. doublereal d__1, d__2;
  1036. /* Local variables */
  1037. doublereal amax;
  1038. extern doublereal dla_gbrpvgrw_(integer *, integer *, integer *, integer
  1039. *, doublereal *, integer *, doublereal *, integer *);
  1040. integer i__, j;
  1041. extern logical lsame_(char *, char *);
  1042. doublereal rcmin, rcmax;
  1043. logical equil;
  1044. extern doublereal dlamch_(char *);
  1045. extern /* Subroutine */ void dlaqgb_(integer *, integer *, integer *,
  1046. integer *, doublereal *, integer *, doublereal *, doublereal *,
  1047. doublereal *, doublereal *, doublereal *, char *);
  1048. doublereal colcnd;
  1049. extern /* Subroutine */ void dgbtrf_(integer *, integer *, integer *,
  1050. integer *, doublereal *, integer *, integer *, integer *);
  1051. logical nofact;
  1052. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  1053. doublereal *, integer *, doublereal *, integer *);
  1054. extern int xerbla_(char *, integer *, ftnlen);
  1055. doublereal bignum;
  1056. extern /* Subroutine */ void dgbtrs_(char *, integer *, integer *, integer
  1057. *, integer *, doublereal *, integer *, integer *, doublereal *,
  1058. integer *, integer *);
  1059. integer infequ;
  1060. logical colequ;
  1061. doublereal rowcnd;
  1062. logical notran;
  1063. doublereal smlnum;
  1064. logical rowequ;
  1065. extern /* Subroutine */ void dlascl2_(integer *, integer *, doublereal *,
  1066. doublereal *, integer *), dgbequb_(integer *, integer *, integer *
  1067. , integer *, doublereal *, integer *, doublereal *, doublereal *,
  1068. doublereal *, doublereal *, doublereal *, integer *), dgbrfsx_(
  1069. char *, char *, integer *, integer *, integer *, integer *,
  1070. doublereal *, integer *, doublereal *, integer *, integer *,
  1071. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  1072. integer *, doublereal *, doublereal *, integer *, doublereal *,
  1073. doublereal *, integer *, doublereal *, doublereal *, integer *,
  1074. integer *);
  1075. /* -- LAPACK driver routine (version 3.7.0) -- */
  1076. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  1077. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  1078. /* April 2012 */
  1079. /* ================================================================== */
  1080. /* Parameter adjustments */
  1081. err_bnds_comp_dim1 = *nrhs;
  1082. err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
  1083. err_bnds_comp__ -= err_bnds_comp_offset;
  1084. err_bnds_norm_dim1 = *nrhs;
  1085. err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
  1086. err_bnds_norm__ -= err_bnds_norm_offset;
  1087. ab_dim1 = *ldab;
  1088. ab_offset = 1 + ab_dim1 * 1;
  1089. ab -= ab_offset;
  1090. afb_dim1 = *ldafb;
  1091. afb_offset = 1 + afb_dim1 * 1;
  1092. afb -= afb_offset;
  1093. --ipiv;
  1094. --r__;
  1095. --c__;
  1096. b_dim1 = *ldb;
  1097. b_offset = 1 + b_dim1 * 1;
  1098. b -= b_offset;
  1099. x_dim1 = *ldx;
  1100. x_offset = 1 + x_dim1 * 1;
  1101. x -= x_offset;
  1102. --berr;
  1103. --params;
  1104. --work;
  1105. --iwork;
  1106. /* Function Body */
  1107. *info = 0;
  1108. nofact = lsame_(fact, "N");
  1109. equil = lsame_(fact, "E");
  1110. notran = lsame_(trans, "N");
  1111. smlnum = dlamch_("Safe minimum");
  1112. bignum = 1. / smlnum;
  1113. if (nofact || equil) {
  1114. *(unsigned char *)equed = 'N';
  1115. rowequ = FALSE_;
  1116. colequ = FALSE_;
  1117. } else {
  1118. rowequ = lsame_(equed, "R") || lsame_(equed,
  1119. "B");
  1120. colequ = lsame_(equed, "C") || lsame_(equed,
  1121. "B");
  1122. }
  1123. /* Default is failure. If an input parameter is wrong or */
  1124. /* factorization fails, make everything look horrible. Only the */
  1125. /* pivot growth is set here, the rest is initialized in DGBRFSX. */
  1126. *rpvgrw = 0.;
  1127. /* Test the input parameters. PARAMS is not tested until DGBRFSX. */
  1128. if (! nofact && ! equil && ! lsame_(fact, "F")) {
  1129. *info = -1;
  1130. } else if (! notran && ! lsame_(trans, "T") && !
  1131. lsame_(trans, "C")) {
  1132. *info = -2;
  1133. } else if (*n < 0) {
  1134. *info = -3;
  1135. } else if (*kl < 0) {
  1136. *info = -4;
  1137. } else if (*ku < 0) {
  1138. *info = -5;
  1139. } else if (*nrhs < 0) {
  1140. *info = -6;
  1141. } else if (*ldab < *kl + *ku + 1) {
  1142. *info = -8;
  1143. } else if (*ldafb < (*kl << 1) + *ku + 1) {
  1144. *info = -10;
  1145. } else if (lsame_(fact, "F") && ! (rowequ || colequ
  1146. || lsame_(equed, "N"))) {
  1147. *info = -12;
  1148. } else {
  1149. if (rowequ) {
  1150. rcmin = bignum;
  1151. rcmax = 0.;
  1152. i__1 = *n;
  1153. for (j = 1; j <= i__1; ++j) {
  1154. /* Computing MIN */
  1155. d__1 = rcmin, d__2 = r__[j];
  1156. rcmin = f2cmin(d__1,d__2);
  1157. /* Computing MAX */
  1158. d__1 = rcmax, d__2 = r__[j];
  1159. rcmax = f2cmax(d__1,d__2);
  1160. /* L10: */
  1161. }
  1162. if (rcmin <= 0.) {
  1163. *info = -13;
  1164. } else if (*n > 0) {
  1165. rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  1166. } else {
  1167. rowcnd = 1.;
  1168. }
  1169. }
  1170. if (colequ && *info == 0) {
  1171. rcmin = bignum;
  1172. rcmax = 0.;
  1173. i__1 = *n;
  1174. for (j = 1; j <= i__1; ++j) {
  1175. /* Computing MIN */
  1176. d__1 = rcmin, d__2 = c__[j];
  1177. rcmin = f2cmin(d__1,d__2);
  1178. /* Computing MAX */
  1179. d__1 = rcmax, d__2 = c__[j];
  1180. rcmax = f2cmax(d__1,d__2);
  1181. /* L20: */
  1182. }
  1183. if (rcmin <= 0.) {
  1184. *info = -14;
  1185. } else if (*n > 0) {
  1186. colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  1187. } else {
  1188. colcnd = 1.;
  1189. }
  1190. }
  1191. if (*info == 0) {
  1192. if (*ldb < f2cmax(1,*n)) {
  1193. *info = -15;
  1194. } else if (*ldx < f2cmax(1,*n)) {
  1195. *info = -16;
  1196. }
  1197. }
  1198. }
  1199. if (*info != 0) {
  1200. i__1 = -(*info);
  1201. xerbla_("DGBSVXX", &i__1, (ftnlen)7);
  1202. return;
  1203. }
  1204. if (equil) {
  1205. /* Compute row and column scalings to equilibrate the matrix A. */
  1206. dgbequb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
  1207. rowcnd, &colcnd, &amax, &infequ);
  1208. if (infequ == 0) {
  1209. /* Equilibrate the matrix. */
  1210. dlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
  1211. rowcnd, &colcnd, &amax, equed);
  1212. rowequ = lsame_(equed, "R") || lsame_(equed,
  1213. "B");
  1214. colequ = lsame_(equed, "C") || lsame_(equed,
  1215. "B");
  1216. }
  1217. /* If the scaling factors are not applied, set them to 1.0. */
  1218. if (! rowequ) {
  1219. i__1 = *n;
  1220. for (j = 1; j <= i__1; ++j) {
  1221. r__[j] = 1.;
  1222. }
  1223. }
  1224. if (! colequ) {
  1225. i__1 = *n;
  1226. for (j = 1; j <= i__1; ++j) {
  1227. c__[j] = 1.;
  1228. }
  1229. }
  1230. }
  1231. /* Scale the right hand side. */
  1232. if (notran) {
  1233. if (rowequ) {
  1234. dlascl2_(n, nrhs, &r__[1], &b[b_offset], ldb);
  1235. }
  1236. } else {
  1237. if (colequ) {
  1238. dlascl2_(n, nrhs, &c__[1], &b[b_offset], ldb);
  1239. }
  1240. }
  1241. if (nofact || equil) {
  1242. /* Compute the LU factorization of A. */
  1243. i__1 = *n;
  1244. for (j = 1; j <= i__1; ++j) {
  1245. i__2 = (*kl << 1) + *ku + 1;
  1246. for (i__ = *kl + 1; i__ <= i__2; ++i__) {
  1247. afb[i__ + j * afb_dim1] = ab[i__ - *kl + j * ab_dim1];
  1248. /* L30: */
  1249. }
  1250. /* L40: */
  1251. }
  1252. dgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info);
  1253. /* Return if INFO is non-zero. */
  1254. if (*info > 0) {
  1255. /* Pivot in column INFO is exactly 0 */
  1256. /* Compute the reciprocal pivot growth factor of the */
  1257. /* leading rank-deficient INFO columns of A. */
  1258. *rpvgrw = dla_gbrpvgrw_(n, kl, ku, info, &ab[ab_offset], ldab, &
  1259. afb[afb_offset], ldafb);
  1260. return;
  1261. }
  1262. }
  1263. /* Compute the reciprocal pivot growth factor RPVGRW. */
  1264. *rpvgrw = dla_gbrpvgrw_(n, kl, ku, n, &ab[ab_offset], ldab, &afb[
  1265. afb_offset], ldafb);
  1266. /* Compute the solution matrix X. */
  1267. dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  1268. dgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[
  1269. x_offset], ldx, info);
  1270. /* Use iterative refinement to improve the computed solution and */
  1271. /* compute error bounds and backward error estimates for it. */
  1272. dgbrfsx_(trans, equed, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[
  1273. afb_offset], ldafb, &ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb,
  1274. &x[x_offset], ldx, rcond, &berr[1], n_err_bnds__, &
  1275. err_bnds_norm__[err_bnds_norm_offset], &err_bnds_comp__[
  1276. err_bnds_comp_offset], nparams, &params[1], &work[1], &iwork[1],
  1277. info);
  1278. /* Scale solutions. */
  1279. if (colequ && notran) {
  1280. dlascl2_(n, nrhs, &c__[1], &x[x_offset], ldx);
  1281. } else if (rowequ && ! notran) {
  1282. dlascl2_(n, nrhs, &r__[1], &x[x_offset], ldx);
  1283. }
  1284. return;
  1285. /* End of DGBSVXX */
  1286. } /* dgbsvxx_ */