|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef blasint logical;
-
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
-
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
-
- /* Table of constant values */
-
- static complex c_b1 = {0.f,0.f};
- static complex c_b2 = {1.f,0.f};
- static integer c__2 = 2;
- static integer c__1 = 1;
- static integer c__3 = 3;
-
- /* > \brief \b CLAQR5 performs a single small-bulge multi-shift QR sweep. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download CLAQR5 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr5.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr5.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr5.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S, */
- /* H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, */
- /* WV, LDWV, NH, WH, LDWH ) */
-
- /* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, */
- /* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV */
- /* LOGICAL WANTT, WANTZ */
- /* COMPLEX H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ), */
- /* $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > CLAQR5 called by CLAQR0 performs a */
- /* > single small-bulge multi-shift QR sweep. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] WANTT */
- /* > \verbatim */
- /* > WANTT is LOGICAL */
- /* > WANTT = .true. if the triangular Schur factor */
- /* > is being computed. WANTT is set to .false. otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] WANTZ */
- /* > \verbatim */
- /* > WANTZ is LOGICAL */
- /* > WANTZ = .true. if the unitary Schur factor is being */
- /* > computed. WANTZ is set to .false. otherwise. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KACC22 */
- /* > \verbatim */
- /* > KACC22 is INTEGER with value 0, 1, or 2. */
- /* > Specifies the computation mode of far-from-diagonal */
- /* > orthogonal updates. */
- /* > = 0: CLAQR5 does not accumulate reflections and does not */
- /* > use matrix-matrix multiply to update far-from-diagonal */
- /* > matrix entries. */
- /* > = 1: CLAQR5 accumulates reflections and uses matrix-matrix */
- /* > multiply to update the far-from-diagonal matrix entries. */
- /* > = 2: Same as KACC22 = 1. This option used to enable exploiting */
- /* > the 2-by-2 structure during matrix multiplications, but */
- /* > this is no longer supported. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > N is the order of the Hessenberg matrix H upon which this */
- /* > subroutine operates. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KTOP */
- /* > \verbatim */
- /* > KTOP is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] KBOT */
- /* > \verbatim */
- /* > KBOT is INTEGER */
- /* > These are the first and last rows and columns of an */
- /* > isolated diagonal block upon which the QR sweep is to be */
- /* > applied. It is assumed without a check that */
- /* > either KTOP = 1 or H(KTOP,KTOP-1) = 0 */
- /* > and */
- /* > either KBOT = N or H(KBOT+1,KBOT) = 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NSHFTS */
- /* > \verbatim */
- /* > NSHFTS is INTEGER */
- /* > NSHFTS gives the number of simultaneous shifts. NSHFTS */
- /* > must be positive and even. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] S */
- /* > \verbatim */
- /* > S is COMPLEX array, dimension (NSHFTS) */
- /* > S contains the shifts of origin that define the multi- */
- /* > shift QR sweep. On output S may be reordered. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] H */
- /* > \verbatim */
- /* > H is COMPLEX array, dimension (LDH,N) */
- /* > On input H contains a Hessenberg matrix. On output a */
- /* > multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
- /* > to the isolated diagonal block in rows and columns KTOP */
- /* > through KBOT. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDH */
- /* > \verbatim */
- /* > LDH is INTEGER */
- /* > LDH is the leading dimension of H just as declared in the */
- /* > calling procedure. LDH >= MAX(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ILOZ */
- /* > \verbatim */
- /* > ILOZ is INTEGER */
- /* > \endverbatim */
- /* > */
- /* > \param[in] IHIZ */
- /* > \verbatim */
- /* > IHIZ is INTEGER */
- /* > Specify the rows of Z to which transformations must be */
- /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] Z */
- /* > \verbatim */
- /* > Z is COMPLEX array, dimension (LDZ,IHIZ) */
- /* > If WANTZ = .TRUE., then the QR Sweep unitary */
- /* > similarity transformation is accumulated into */
- /* > Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
- /* > If WANTZ = .FALSE., then Z is unreferenced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDZ */
- /* > \verbatim */
- /* > LDZ is INTEGER */
- /* > LDA is the leading dimension of Z just as declared in */
- /* > the calling procedure. LDZ >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] V */
- /* > \verbatim */
- /* > V is COMPLEX array, dimension (LDV,NSHFTS/2) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDV */
- /* > \verbatim */
- /* > LDV is INTEGER */
- /* > LDV is the leading dimension of V as declared in the */
- /* > calling procedure. LDV >= 3. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U */
- /* > \verbatim */
- /* > U is COMPLEX array, dimension (LDU,2*NSHFTS) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > LDU is the leading dimension of U just as declared in the */
- /* > in the calling subroutine. LDU >= 2*NSHFTS. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NV */
- /* > \verbatim */
- /* > NV is INTEGER */
- /* > NV is the number of rows in WV agailable for workspace. */
- /* > NV >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WV */
- /* > \verbatim */
- /* > WV is COMPLEX array, dimension (LDWV,2*NSHFTS) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDWV */
- /* > \verbatim */
- /* > LDWV is INTEGER */
- /* > LDWV is the leading dimension of WV as declared in the */
- /* > in the calling subroutine. LDWV >= NV. */
- /* > \endverbatim */
-
- /* > \param[in] NH */
- /* > \verbatim */
- /* > NH is INTEGER */
- /* > NH is the number of columns in array WH available for */
- /* > workspace. NH >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WH */
- /* > \verbatim */
- /* > WH is COMPLEX array, dimension (LDWH,NH) */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDWH */
- /* > \verbatim */
- /* > LDWH is INTEGER */
- /* > Leading dimension of WH just as declared in the */
- /* > calling procedure. LDWH >= 2*NSHFTS. */
- /* > \endverbatim */
- /* > */
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date January 2021 */
-
- /* > \ingroup complexOTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Karen Braman and Ralph Byers, Department of Mathematics, */
- /* > University of Kansas, USA */
- /* > */
- /* > Lars Karlsson, Daniel Kressner, and Bruno Lang */
- /* > */
- /* > Thijs Steel, Department of Computer science, */
- /* > KU Leuven, Belgium */
-
- /* > \par References: */
- /* ================ */
- /* > */
- /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
- /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
- /* > 929--947, 2002. */
- /* > */
- /* > Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed */
- /* > chains of bulges in multishift QR algorithms. */
- /* > ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void claqr5_(logical *wantt, logical *wantz, integer *kacc22,
- integer *n, integer *ktop, integer *kbot, integer *nshfts, complex *s,
- complex *h__, integer *ldh, integer *iloz, integer *ihiz, complex *
- z__, integer *ldz, complex *v, integer *ldv, complex *u, integer *ldu,
- integer *nv, complex *wv, integer *ldwv, integer *nh, complex *wh,
- integer *ldwh)
- {
- /* System generated locals */
- integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1,
- wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
- i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11;
- real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
- complex q__1, q__2, q__3, q__4, q__5, q__6, q__7, q__8;
-
- /* Local variables */
- complex beta;
- logical bmp22;
- integer jcol, jlen, jbot, mbot, jtop, jrow, mtop, j, k, m;
- complex alpha;
- logical accum;
- extern /* Subroutine */ void cgemm_(char *, char *, integer *, integer *,
- integer *, complex *, complex *, integer *, complex *, integer *,
- complex *, complex *, integer *);
- integer ndcol, incol, krcol, nbmps, i2, k1, i4;
- extern /* Subroutine */ void claqr1_(integer *, complex *, integer *,
- complex *, complex *, complex *);
- real h11, h12, h21, h22;
- integer m22;
- extern /* Subroutine */ void slabad_(real *, real *), clarfg_(integer *,
- complex *, complex *, integer *, complex *);
- integer ns, nu;
- extern real slamch_(char *);
- complex vt[3];
- extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
- *, integer *, complex *, integer *), claset_(char *,
- integer *, integer *, complex *, complex *, complex *, integer *);
- real safmin, safmax;
- complex refsum;
- real smlnum, scl;
- integer kdu, kms;
- real ulp;
- real tst1, tst2;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ================================================================ */
-
-
- /* ==== If there are no shifts, then there is nothing to do. ==== */
-
- /* Parameter adjustments */
- --s;
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1 * 1;
- h__ -= h_offset;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1 * 1;
- z__ -= z_offset;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1 * 1;
- v -= v_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- wv_dim1 = *ldwv;
- wv_offset = 1 + wv_dim1 * 1;
- wv -= wv_offset;
- wh_dim1 = *ldwh;
- wh_offset = 1 + wh_dim1 * 1;
- wh -= wh_offset;
-
- /* Function Body */
- if (*nshfts < 2) {
- return;
- }
-
- /* ==== If the active block is empty or 1-by-1, then there */
- /* . is nothing to do. ==== */
-
- if (*ktop >= *kbot) {
- return;
- }
-
- /* ==== NSHFTS is supposed to be even, but if it is odd, */
- /* . then simply reduce it by one. ==== */
-
- ns = *nshfts - *nshfts % 2;
-
- /* ==== Machine constants for deflation ==== */
-
- safmin = slamch_("SAFE MINIMUM");
- safmax = 1.f / safmin;
- slabad_(&safmin, &safmax);
- ulp = slamch_("PRECISION");
- smlnum = safmin * ((real) (*n) / ulp);
-
- /* ==== Use accumulated reflections to update far-from-diagonal */
- /* . entries ? ==== */
-
- accum = *kacc22 == 1 || *kacc22 == 2;
-
- /* ==== clear trash ==== */
-
- if (*ktop + 2 <= *kbot) {
- i__1 = *ktop + 2 + *ktop * h_dim1;
- h__[i__1].r = 0.f, h__[i__1].i = 0.f;
- }
-
- /* ==== NBMPS = number of 2-shift bulges in the chain ==== */
-
- nbmps = ns / 2;
-
- /* ==== KDU = width of slab ==== */
-
- kdu = nbmps << 2;
-
- /* ==== Create and chase chains of NBMPS bulges ==== */
-
- i__1 = *kbot - 2;
- i__2 = nbmps << 1;
- for (incol = *ktop - (nbmps << 1) + 1; i__2 < 0 ? incol >= i__1 : incol <=
- i__1; incol += i__2) {
-
- /* JTOP = Index from which updates from the right start. */
-
- if (accum) {
- jtop = f2cmax(*ktop,incol);
- } else if (*wantt) {
- jtop = 1;
- } else {
- jtop = *ktop;
- }
-
- ndcol = incol + kdu;
- if (accum) {
- claset_("ALL", &kdu, &kdu, &c_b1, &c_b2, &u[u_offset], ldu);
- }
-
- /* ==== Near-the-diagonal bulge chase. The following loop */
- /* . performs the near-the-diagonal part of a small bulge */
- /* . multi-shift QR sweep. Each 4*NBMPS column diagonal */
- /* . chunk extends from column INCOL to column NDCOL */
- /* . (including both column INCOL and column NDCOL). The */
- /* . following loop chases a 2*NBMPS+1 column long chain of */
- /* . NBMPS bulges 2*NBMPS columns to the right. (INCOL */
- /* . may be less than KTOP and and NDCOL may be greater than */
- /* . KBOT indicating phantom columns from which to chase */
- /* . bulges before they are actually introduced or to which */
- /* . to chase bulges beyond column KBOT.) ==== */
-
- /* Computing MIN */
- i__4 = incol + (nbmps << 1) - 1, i__5 = *kbot - 2;
- i__3 = f2cmin(i__4,i__5);
- for (krcol = incol; krcol <= i__3; ++krcol) {
-
- /* ==== Bulges number MTOP to MBOT are active double implicit */
- /* . shift bulges. There may or may not also be small */
- /* . 2-by-2 bulge, if there is room. The inactive bulges */
- /* . (if any) must wait until the active bulges have moved */
- /* . down the diagonal to make room. The phantom matrix */
- /* . paradigm described above helps keep track. ==== */
-
- /* Computing MAX */
- i__4 = 1, i__5 = (*ktop - krcol) / 2 + 1;
- mtop = f2cmax(i__4,i__5);
- /* Computing MIN */
- i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 2;
- mbot = f2cmin(i__4,i__5);
- m22 = mbot + 1;
- bmp22 = mbot < nbmps && krcol + (m22 - 1 << 1) == *kbot - 2;
-
- /* ==== Generate reflections to chase the chain right */
- /* . one column. (The minimum value of K is KTOP-1.) ==== */
-
- if (bmp22) {
-
- /* ==== Special case: 2-by-2 reflection at bottom treated */
- /* . separately ==== */
-
- k = krcol + (m22 - 1 << 1);
- if (k == *ktop - 1) {
- claqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &s[(
- m22 << 1) - 1], &s[m22 * 2], &v[m22 * v_dim1 + 1])
- ;
- i__4 = m22 * v_dim1 + 1;
- beta.r = v[i__4].r, beta.i = v[i__4].i;
- clarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
- * v_dim1 + 1]);
- } else {
- i__4 = k + 1 + k * h_dim1;
- beta.r = h__[i__4].r, beta.i = h__[i__4].i;
- i__4 = m22 * v_dim1 + 2;
- i__5 = k + 2 + k * h_dim1;
- v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
- clarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
- * v_dim1 + 1]);
- i__4 = k + 1 + k * h_dim1;
- h__[i__4].r = beta.r, h__[i__4].i = beta.i;
- i__4 = k + 2 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- }
-
- /* ==== Perform update from right within */
- /* . computational window. ==== */
-
- /* Computing MIN */
- i__5 = *kbot, i__6 = k + 3;
- i__4 = f2cmin(i__5,i__6);
- for (j = jtop; j <= i__4; ++j) {
- i__5 = m22 * v_dim1 + 1;
- i__6 = j + (k + 1) * h_dim1;
- i__7 = m22 * v_dim1 + 2;
- i__8 = j + (k + 2) * h_dim1;
- q__3.r = v[i__7].r * h__[i__8].r - v[i__7].i * h__[i__8]
- .i, q__3.i = v[i__7].r * h__[i__8].i + v[i__7].i *
- h__[i__8].r;
- q__2.r = h__[i__6].r + q__3.r, q__2.i = h__[i__6].i +
- q__3.i;
- q__1.r = v[i__5].r * q__2.r - v[i__5].i * q__2.i, q__1.i =
- v[i__5].r * q__2.i + v[i__5].i * q__2.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__5 = j + (k + 1) * h_dim1;
- i__6 = j + (k + 1) * h_dim1;
- q__1.r = h__[i__6].r - refsum.r, q__1.i = h__[i__6].i -
- refsum.i;
- h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
- i__5 = j + (k + 2) * h_dim1;
- i__6 = j + (k + 2) * h_dim1;
- r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
- refsum.r * q__3.i + refsum.i * q__3.r;
- q__1.r = h__[i__6].r - q__2.r, q__1.i = h__[i__6].i -
- q__2.i;
- h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
- /* L30: */
- }
-
- /* ==== Perform update from left within */
- /* . computational window. ==== */
-
- if (accum) {
- jbot = f2cmin(ndcol,*kbot);
- } else if (*wantt) {
- jbot = *n;
- } else {
- jbot = *kbot;
- }
- i__4 = jbot;
- for (j = k + 1; j <= i__4; ++j) {
- r_cnjg(&q__2, &v[m22 * v_dim1 + 1]);
- i__5 = k + 1 + j * h_dim1;
- r_cnjg(&q__5, &v[m22 * v_dim1 + 2]);
- i__6 = k + 2 + j * h_dim1;
- q__4.r = q__5.r * h__[i__6].r - q__5.i * h__[i__6].i,
- q__4.i = q__5.r * h__[i__6].i + q__5.i * h__[i__6]
- .r;
- q__3.r = h__[i__5].r + q__4.r, q__3.i = h__[i__5].i +
- q__4.i;
- q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
- q__2.r * q__3.i + q__2.i * q__3.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__5 = k + 1 + j * h_dim1;
- i__6 = k + 1 + j * h_dim1;
- q__1.r = h__[i__6].r - refsum.r, q__1.i = h__[i__6].i -
- refsum.i;
- h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
- i__5 = k + 2 + j * h_dim1;
- i__6 = k + 2 + j * h_dim1;
- i__7 = m22 * v_dim1 + 2;
- q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i,
- q__2.i = refsum.r * v[i__7].i + refsum.i * v[i__7]
- .r;
- q__1.r = h__[i__6].r - q__2.r, q__1.i = h__[i__6].i -
- q__2.i;
- h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
- /* L40: */
- }
-
- /* ==== The following convergence test requires that */
- /* . the tradition small-compared-to-nearby-diagonals */
- /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
- /* . criteria both be satisfied. The latter improves */
- /* . accuracy in some examples. Falling back on an */
- /* . alternate convergence criterion when TST1 or TST2 */
- /* . is zero (as done here) is traditional but probably */
- /* . unnecessary. ==== */
-
- if (k >= *ktop) {
- i__4 = k + 1 + k * h_dim1;
- if (h__[i__4].r != 0.f || h__[i__4].i != 0.f) {
- i__4 = k + k * h_dim1;
- i__5 = k + 1 + (k + 1) * h_dim1;
- tst1 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + k * h_dim1]), abs(r__2)) + ((
- r__3 = h__[i__5].r, abs(r__3)) + (r__4 =
- r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
- r__4)));
- if (tst1 == 0.f) {
- if (k >= *ktop + 1) {
- i__4 = k + (k - 1) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
- r__2 = r_imag(&h__[k + (k - 1) *
- h_dim1]), abs(r__2));
- }
- if (k >= *ktop + 2) {
- i__4 = k + (k - 2) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
- r__2 = r_imag(&h__[k + (k - 2) *
- h_dim1]), abs(r__2));
- }
- if (k >= *ktop + 3) {
- i__4 = k + (k - 3) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
- r__2 = r_imag(&h__[k + (k - 3) *
- h_dim1]), abs(r__2));
- }
- if (k <= *kbot - 2) {
- i__4 = k + 2 + (k + 1) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
- r__2 = r_imag(&h__[k + 2 + (k + 1) *
- h_dim1]), abs(r__2));
- }
- if (k <= *kbot - 3) {
- i__4 = k + 3 + (k + 1) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
- r__2 = r_imag(&h__[k + 3 + (k + 1) *
- h_dim1]), abs(r__2));
- }
- if (k <= *kbot - 4) {
- i__4 = k + 4 + (k + 1) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (
- r__2 = r_imag(&h__[k + 4 + (k + 1) *
- h_dim1]), abs(r__2));
- }
- }
- i__4 = k + 1 + k * h_dim1;
- /* Computing MAX */
- r__3 = smlnum, r__4 = ulp * tst1;
- if ((r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&
- h__[k + 1 + k * h_dim1]), abs(r__2)) <= f2cmax(
- r__3,r__4)) {
- /* Computing MAX */
- i__4 = k + 1 + k * h_dim1;
- i__5 = k + (k + 1) * h_dim1;
- r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 1 + k * h_dim1]), abs(
- r__2)), r__6 = (r__3 = h__[i__5].r, abs(
- r__3)) + (r__4 = r_imag(&h__[k + (k + 1) *
- h_dim1]), abs(r__4));
- h12 = f2cmax(r__5,r__6);
- /* Computing MIN */
- i__4 = k + 1 + k * h_dim1;
- i__5 = k + (k + 1) * h_dim1;
- r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 1 + k * h_dim1]), abs(
- r__2)), r__6 = (r__3 = h__[i__5].r, abs(
- r__3)) + (r__4 = r_imag(&h__[k + (k + 1) *
- h_dim1]), abs(r__4));
- h21 = f2cmin(r__5,r__6);
- i__4 = k + k * h_dim1;
- i__5 = k + 1 + (k + 1) * h_dim1;
- q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[
- i__4].i - h__[i__5].i;
- q__1.r = q__2.r, q__1.i = q__2.i;
- /* Computing MAX */
- i__6 = k + 1 + (k + 1) * h_dim1;
- r__5 = (r__1 = h__[i__6].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 1 + (k + 1) * h_dim1]),
- abs(r__2)), r__6 = (r__3 = q__1.r, abs(
- r__3)) + (r__4 = r_imag(&q__1), abs(r__4))
- ;
- h11 = f2cmax(r__5,r__6);
- i__4 = k + k * h_dim1;
- i__5 = k + 1 + (k + 1) * h_dim1;
- q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[
- i__4].i - h__[i__5].i;
- q__1.r = q__2.r, q__1.i = q__2.i;
- /* Computing MIN */
- i__6 = k + 1 + (k + 1) * h_dim1;
- r__5 = (r__1 = h__[i__6].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 1 + (k + 1) * h_dim1]),
- abs(r__2)), r__6 = (r__3 = q__1.r, abs(
- r__3)) + (r__4 = r_imag(&q__1), abs(r__4))
- ;
- h22 = f2cmin(r__5,r__6);
- scl = h11 + h12;
- tst2 = h22 * (h11 / scl);
-
- /* Computing MAX */
- r__1 = smlnum, r__2 = ulp * tst2;
- if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,
- r__2)) {
- i__4 = k + 1 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- }
- }
- }
- }
-
- /* ==== Accumulate orthogonal transformations. ==== */
-
- if (accum) {
- kms = k - incol;
- /* Computing MAX */
- i__4 = 1, i__5 = *ktop - incol;
- i__6 = kdu;
- for (j = f2cmax(i__4,i__5); j <= i__6; ++j) {
- i__4 = m22 * v_dim1 + 1;
- i__5 = j + (kms + 1) * u_dim1;
- i__7 = m22 * v_dim1 + 2;
- i__8 = j + (kms + 2) * u_dim1;
- q__3.r = v[i__7].r * u[i__8].r - v[i__7].i * u[i__8]
- .i, q__3.i = v[i__7].r * u[i__8].i + v[i__7]
- .i * u[i__8].r;
- q__2.r = u[i__5].r + q__3.r, q__2.i = u[i__5].i +
- q__3.i;
- q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
- q__1.i = v[i__4].r * q__2.i + v[i__4].i *
- q__2.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__4 = j + (kms + 1) * u_dim1;
- i__5 = j + (kms + 1) * u_dim1;
- q__1.r = u[i__5].r - refsum.r, q__1.i = u[i__5].i -
- refsum.i;
- u[i__4].r = q__1.r, u[i__4].i = q__1.i;
- i__4 = j + (kms + 2) * u_dim1;
- i__5 = j + (kms + 2) * u_dim1;
- r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
- q__2.i = refsum.r * q__3.i + refsum.i *
- q__3.r;
- q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
- q__2.i;
- u[i__4].r = q__1.r, u[i__4].i = q__1.i;
- /* L50: */
- }
- } else if (*wantz) {
- i__6 = *ihiz;
- for (j = *iloz; j <= i__6; ++j) {
- i__4 = m22 * v_dim1 + 1;
- i__5 = j + (k + 1) * z_dim1;
- i__7 = m22 * v_dim1 + 2;
- i__8 = j + (k + 2) * z_dim1;
- q__3.r = v[i__7].r * z__[i__8].r - v[i__7].i * z__[
- i__8].i, q__3.i = v[i__7].r * z__[i__8].i + v[
- i__7].i * z__[i__8].r;
- q__2.r = z__[i__5].r + q__3.r, q__2.i = z__[i__5].i +
- q__3.i;
- q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
- q__1.i = v[i__4].r * q__2.i + v[i__4].i *
- q__2.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__4 = j + (k + 1) * z_dim1;
- i__5 = j + (k + 1) * z_dim1;
- q__1.r = z__[i__5].r - refsum.r, q__1.i = z__[i__5].i
- - refsum.i;
- z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
- i__4 = j + (k + 2) * z_dim1;
- i__5 = j + (k + 2) * z_dim1;
- r_cnjg(&q__3, &v[m22 * v_dim1 + 2]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
- q__2.i = refsum.r * q__3.i + refsum.i *
- q__3.r;
- q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
- q__2.i;
- z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
- /* L60: */
- }
- }
- }
-
- /* ==== Normal case: Chain of 3-by-3 reflections ==== */
-
- i__6 = mtop;
- for (m = mbot; m >= i__6; --m) {
- k = krcol + (m - 1 << 1);
- if (k == *ktop - 1) {
- claqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &s[(m <<
- 1) - 1], &s[m * 2], &v[m * v_dim1 + 1]);
- i__4 = m * v_dim1 + 1;
- alpha.r = v[i__4].r, alpha.i = v[i__4].i;
- clarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m *
- v_dim1 + 1]);
- } else {
-
- /* ==== Perform delayed transformation of row below */
- /* . Mth bulge. Exploit fact that first two elements */
- /* . of row are actually zero. ==== */
-
- i__4 = m * v_dim1 + 1;
- i__5 = m * v_dim1 + 3;
- q__2.r = v[i__4].r * v[i__5].r - v[i__4].i * v[i__5].i,
- q__2.i = v[i__4].r * v[i__5].i + v[i__4].i * v[
- i__5].r;
- i__7 = k + 3 + (k + 2) * h_dim1;
- q__1.r = q__2.r * h__[i__7].r - q__2.i * h__[i__7].i,
- q__1.i = q__2.r * h__[i__7].i + q__2.i * h__[i__7]
- .r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__4 = k + 3 + k * h_dim1;
- q__1.r = -refsum.r, q__1.i = -refsum.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = k + 3 + (k + 1) * h_dim1;
- q__2.r = -refsum.r, q__2.i = -refsum.i;
- r_cnjg(&q__3, &v[m * v_dim1 + 2]);
- q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
- q__2.r * q__3.i + q__2.i * q__3.r;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = k + 3 + (k + 2) * h_dim1;
- i__5 = k + 3 + (k + 2) * h_dim1;
- r_cnjg(&q__3, &v[m * v_dim1 + 3]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
- refsum.r * q__3.i + refsum.i * q__3.r;
- q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
- q__2.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
-
- /* ==== Calculate reflection to move */
- /* . Mth bulge one step. ==== */
-
- i__4 = k + 1 + k * h_dim1;
- beta.r = h__[i__4].r, beta.i = h__[i__4].i;
- i__4 = m * v_dim1 + 2;
- i__5 = k + 2 + k * h_dim1;
- v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
- i__4 = m * v_dim1 + 3;
- i__5 = k + 3 + k * h_dim1;
- v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
- clarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m *
- v_dim1 + 1]);
-
- /* ==== A Bulge may collapse because of vigilant */
- /* . deflation or destructive underflow. In the */
- /* . underflow case, try the two-small-subdiagonals */
- /* . trick to try to reinflate the bulge. ==== */
-
- i__4 = k + 3 + k * h_dim1;
- i__5 = k + 3 + (k + 1) * h_dim1;
- i__7 = k + 3 + (k + 2) * h_dim1;
- if (h__[i__4].r != 0.f || h__[i__4].i != 0.f || (h__[i__5]
- .r != 0.f || h__[i__5].i != 0.f) || h__[i__7].r ==
- 0.f && h__[i__7].i == 0.f) {
-
- /* ==== Typical case: not collapsed (yet). ==== */
-
- i__4 = k + 1 + k * h_dim1;
- h__[i__4].r = beta.r, h__[i__4].i = beta.i;
- i__4 = k + 2 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- i__4 = k + 3 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- } else {
-
- /* ==== Atypical case: collapsed. Attempt to */
- /* . reintroduce ignoring H(K+1,K) and H(K+2,K). */
- /* . If the fill resulting from the new */
- /* . reflector is too large, then abandon it. */
- /* . Otherwise, use the new one. ==== */
-
- claqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
- s[(m << 1) - 1], &s[m * 2], vt);
- alpha.r = vt[0].r, alpha.i = vt[0].i;
- clarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
- r_cnjg(&q__2, vt);
- i__4 = k + 1 + k * h_dim1;
- r_cnjg(&q__5, &vt[1]);
- i__5 = k + 2 + k * h_dim1;
- q__4.r = q__5.r * h__[i__5].r - q__5.i * h__[i__5].i,
- q__4.i = q__5.r * h__[i__5].i + q__5.i * h__[
- i__5].r;
- q__3.r = h__[i__4].r + q__4.r, q__3.i = h__[i__4].i +
- q__4.i;
- q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
- q__2.r * q__3.i + q__2.i * q__3.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
-
- i__4 = k + 2 + k * h_dim1;
- q__3.r = refsum.r * vt[1].r - refsum.i * vt[1].i,
- q__3.i = refsum.r * vt[1].i + refsum.i * vt[1]
- .r;
- q__2.r = h__[i__4].r - q__3.r, q__2.i = h__[i__4].i -
- q__3.i;
- q__1.r = q__2.r, q__1.i = q__2.i;
- q__5.r = refsum.r * vt[2].r - refsum.i * vt[2].i,
- q__5.i = refsum.r * vt[2].i + refsum.i * vt[2]
- .r;
- q__4.r = q__5.r, q__4.i = q__5.i;
- i__5 = k + k * h_dim1;
- i__7 = k + 1 + (k + 1) * h_dim1;
- i__8 = k + 2 + (k + 2) * h_dim1;
- if ((r__1 = q__1.r, abs(r__1)) + (r__2 = r_imag(&q__1)
- , abs(r__2)) + ((r__3 = q__4.r, abs(r__3)) + (
- r__4 = r_imag(&q__4), abs(r__4))) > ulp * ((
- r__5 = h__[i__5].r, abs(r__5)) + (r__6 =
- r_imag(&h__[k + k * h_dim1]), abs(r__6)) + ((
- r__7 = h__[i__7].r, abs(r__7)) + (r__8 =
- r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
- r__8))) + ((r__9 = h__[i__8].r, abs(r__9)) + (
- r__10 = r_imag(&h__[k + 2 + (k + 2) * h_dim1])
- , abs(r__10))))) {
-
- /* ==== Starting a new bulge here would */
- /* . create non-negligible fill. Use */
- /* . the old one with trepidation. ==== */
-
- i__4 = k + 1 + k * h_dim1;
- h__[i__4].r = beta.r, h__[i__4].i = beta.i;
- i__4 = k + 2 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- i__4 = k + 3 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- } else {
-
- /* ==== Starting a new bulge here would */
- /* . create only negligible fill. */
- /* . Replace the old reflector with */
- /* . the new one. ==== */
-
- i__4 = k + 1 + k * h_dim1;
- i__5 = k + 1 + k * h_dim1;
- q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[
- i__5].i - refsum.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = k + 2 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- i__4 = k + 3 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- i__4 = m * v_dim1 + 1;
- v[i__4].r = vt[0].r, v[i__4].i = vt[0].i;
- i__4 = m * v_dim1 + 2;
- v[i__4].r = vt[1].r, v[i__4].i = vt[1].i;
- i__4 = m * v_dim1 + 3;
- v[i__4].r = vt[2].r, v[i__4].i = vt[2].i;
- }
- }
- }
-
- /* ==== Apply reflection from the right and */
- /* . the first column of update from the left. */
- /* . These updates are required for the vigilant */
- /* . deflation check. We still delay most of the */
- /* . updates from the left for efficiency. ==== */
-
- /* Computing MIN */
- i__5 = *kbot, i__7 = k + 3;
- i__4 = f2cmin(i__5,i__7);
- for (j = jtop; j <= i__4; ++j) {
- i__5 = m * v_dim1 + 1;
- i__7 = j + (k + 1) * h_dim1;
- i__8 = m * v_dim1 + 2;
- i__9 = j + (k + 2) * h_dim1;
- q__4.r = v[i__8].r * h__[i__9].r - v[i__8].i * h__[i__9]
- .i, q__4.i = v[i__8].r * h__[i__9].i + v[i__8].i *
- h__[i__9].r;
- q__3.r = h__[i__7].r + q__4.r, q__3.i = h__[i__7].i +
- q__4.i;
- i__10 = m * v_dim1 + 3;
- i__11 = j + (k + 3) * h_dim1;
- q__5.r = v[i__10].r * h__[i__11].r - v[i__10].i * h__[
- i__11].i, q__5.i = v[i__10].r * h__[i__11].i + v[
- i__10].i * h__[i__11].r;
- q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
- q__1.r = v[i__5].r * q__2.r - v[i__5].i * q__2.i, q__1.i =
- v[i__5].r * q__2.i + v[i__5].i * q__2.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__5 = j + (k + 1) * h_dim1;
- i__7 = j + (k + 1) * h_dim1;
- q__1.r = h__[i__7].r - refsum.r, q__1.i = h__[i__7].i -
- refsum.i;
- h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
- i__5 = j + (k + 2) * h_dim1;
- i__7 = j + (k + 2) * h_dim1;
- r_cnjg(&q__3, &v[m * v_dim1 + 2]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
- refsum.r * q__3.i + refsum.i * q__3.r;
- q__1.r = h__[i__7].r - q__2.r, q__1.i = h__[i__7].i -
- q__2.i;
- h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
- i__5 = j + (k + 3) * h_dim1;
- i__7 = j + (k + 3) * h_dim1;
- r_cnjg(&q__3, &v[m * v_dim1 + 3]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i, q__2.i =
- refsum.r * q__3.i + refsum.i * q__3.r;
- q__1.r = h__[i__7].r - q__2.r, q__1.i = h__[i__7].i -
- q__2.i;
- h__[i__5].r = q__1.r, h__[i__5].i = q__1.i;
- /* L70: */
- }
-
- /* ==== Perform update from left for subsequent */
- /* . column. ==== */
-
- r_cnjg(&q__2, &v[m * v_dim1 + 1]);
- i__4 = k + 1 + (k + 1) * h_dim1;
- r_cnjg(&q__6, &v[m * v_dim1 + 2]);
- i__5 = k + 2 + (k + 1) * h_dim1;
- q__5.r = q__6.r * h__[i__5].r - q__6.i * h__[i__5].i, q__5.i =
- q__6.r * h__[i__5].i + q__6.i * h__[i__5].r;
- q__4.r = h__[i__4].r + q__5.r, q__4.i = h__[i__4].i + q__5.i;
- r_cnjg(&q__8, &v[m * v_dim1 + 3]);
- i__7 = k + 3 + (k + 1) * h_dim1;
- q__7.r = q__8.r * h__[i__7].r - q__8.i * h__[i__7].i, q__7.i =
- q__8.r * h__[i__7].i + q__8.i * h__[i__7].r;
- q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i;
- q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i = q__2.r *
- q__3.i + q__2.i * q__3.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__4 = k + 1 + (k + 1) * h_dim1;
- i__5 = k + 1 + (k + 1) * h_dim1;
- q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[i__5].i -
- refsum.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = k + 2 + (k + 1) * h_dim1;
- i__5 = k + 2 + (k + 1) * h_dim1;
- i__7 = m * v_dim1 + 2;
- q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, q__2.i =
- refsum.r * v[i__7].i + refsum.i * v[i__7].r;
- q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = k + 3 + (k + 1) * h_dim1;
- i__5 = k + 3 + (k + 1) * h_dim1;
- i__7 = m * v_dim1 + 3;
- q__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, q__2.i =
- refsum.r * v[i__7].i + refsum.i * v[i__7].r;
- q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i - q__2.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
-
- /* ==== The following convergence test requires that */
- /* . the tradition small-compared-to-nearby-diagonals */
- /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
- /* . criteria both be satisfied. The latter improves */
- /* . accuracy in some examples. Falling back on an */
- /* . alternate convergence criterion when TST1 or TST2 */
- /* . is zero (as done here) is traditional but probably */
- /* . unnecessary. ==== */
-
- if (k < *ktop) {
- mycycle_();
- }
- i__4 = k + 1 + k * h_dim1;
- if (h__[i__4].r != 0.f || h__[i__4].i != 0.f) {
- i__4 = k + k * h_dim1;
- i__5 = k + 1 + (k + 1) * h_dim1;
- tst1 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&
- h__[k + k * h_dim1]), abs(r__2)) + ((r__3 = h__[
- i__5].r, abs(r__3)) + (r__4 = r_imag(&h__[k + 1 +
- (k + 1) * h_dim1]), abs(r__4)));
- if (tst1 == 0.f) {
- if (k >= *ktop + 1) {
- i__4 = k + (k - 1) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + (k - 1) * h_dim1]), abs(
- r__2));
- }
- if (k >= *ktop + 2) {
- i__4 = k + (k - 2) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + (k - 2) * h_dim1]), abs(
- r__2));
- }
- if (k >= *ktop + 3) {
- i__4 = k + (k - 3) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + (k - 3) * h_dim1]), abs(
- r__2));
- }
- if (k <= *kbot - 2) {
- i__4 = k + 2 + (k + 1) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 2 + (k + 1) * h_dim1]),
- abs(r__2));
- }
- if (k <= *kbot - 3) {
- i__4 = k + 3 + (k + 1) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 3 + (k + 1) * h_dim1]),
- abs(r__2));
- }
- if (k <= *kbot - 4) {
- i__4 = k + 4 + (k + 1) * h_dim1;
- tst1 += (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 4 + (k + 1) * h_dim1]),
- abs(r__2));
- }
- }
- i__4 = k + 1 + k * h_dim1;
- /* Computing MAX */
- r__3 = smlnum, r__4 = ulp * tst1;
- if ((r__1 = h__[i__4].r, abs(r__1)) + (r__2 = r_imag(&h__[
- k + 1 + k * h_dim1]), abs(r__2)) <= f2cmax(r__3,r__4)
- ) {
- /* Computing MAX */
- i__4 = k + 1 + k * h_dim1;
- i__5 = k + (k + 1) * h_dim1;
- r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 1 + k * h_dim1]), abs(r__2)),
- r__6 = (r__3 = h__[i__5].r, abs(r__3)) + (
- r__4 = r_imag(&h__[k + (k + 1) * h_dim1]),
- abs(r__4));
- h12 = f2cmax(r__5,r__6);
- /* Computing MIN */
- i__4 = k + 1 + k * h_dim1;
- i__5 = k + (k + 1) * h_dim1;
- r__5 = (r__1 = h__[i__4].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 1 + k * h_dim1]), abs(r__2)),
- r__6 = (r__3 = h__[i__5].r, abs(r__3)) + (
- r__4 = r_imag(&h__[k + (k + 1) * h_dim1]),
- abs(r__4));
- h21 = f2cmin(r__5,r__6);
- i__4 = k + k * h_dim1;
- i__5 = k + 1 + (k + 1) * h_dim1;
- q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[i__4]
- .i - h__[i__5].i;
- q__1.r = q__2.r, q__1.i = q__2.i;
- /* Computing MAX */
- i__7 = k + 1 + (k + 1) * h_dim1;
- r__5 = (r__1 = h__[i__7].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
- r__2)), r__6 = (r__3 = q__1.r, abs(r__3)) + (
- r__4 = r_imag(&q__1), abs(r__4));
- h11 = f2cmax(r__5,r__6);
- i__4 = k + k * h_dim1;
- i__5 = k + 1 + (k + 1) * h_dim1;
- q__2.r = h__[i__4].r - h__[i__5].r, q__2.i = h__[i__4]
- .i - h__[i__5].i;
- q__1.r = q__2.r, q__1.i = q__2.i;
- /* Computing MIN */
- i__7 = k + 1 + (k + 1) * h_dim1;
- r__5 = (r__1 = h__[i__7].r, abs(r__1)) + (r__2 =
- r_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
- r__2)), r__6 = (r__3 = q__1.r, abs(r__3)) + (
- r__4 = r_imag(&q__1), abs(r__4));
- h22 = f2cmin(r__5,r__6);
- scl = h11 + h12;
- tst2 = h22 * (h11 / scl);
-
- /* Computing MAX */
- r__1 = smlnum, r__2 = ulp * tst2;
- if (tst2 == 0.f || h21 * (h12 / scl) <= f2cmax(r__1,r__2)
- ) {
- i__4 = k + 1 + k * h_dim1;
- h__[i__4].r = 0.f, h__[i__4].i = 0.f;
- }
- }
- }
- /* L80: */
- }
-
- /* ==== Multiply H by reflections from the left ==== */
-
- if (accum) {
- jbot = f2cmin(ndcol,*kbot);
- } else if (*wantt) {
- jbot = *n;
- } else {
- jbot = *kbot;
- }
-
- i__6 = mtop;
- for (m = mbot; m >= i__6; --m) {
- k = krcol + (m - 1 << 1);
- /* Computing MAX */
- i__4 = *ktop, i__5 = krcol + (m << 1);
- i__7 = jbot;
- for (j = f2cmax(i__4,i__5); j <= i__7; ++j) {
- r_cnjg(&q__2, &v[m * v_dim1 + 1]);
- i__4 = k + 1 + j * h_dim1;
- r_cnjg(&q__6, &v[m * v_dim1 + 2]);
- i__5 = k + 2 + j * h_dim1;
- q__5.r = q__6.r * h__[i__5].r - q__6.i * h__[i__5].i,
- q__5.i = q__6.r * h__[i__5].i + q__6.i * h__[i__5]
- .r;
- q__4.r = h__[i__4].r + q__5.r, q__4.i = h__[i__4].i +
- q__5.i;
- r_cnjg(&q__8, &v[m * v_dim1 + 3]);
- i__8 = k + 3 + j * h_dim1;
- q__7.r = q__8.r * h__[i__8].r - q__8.i * h__[i__8].i,
- q__7.i = q__8.r * h__[i__8].i + q__8.i * h__[i__8]
- .r;
- q__3.r = q__4.r + q__7.r, q__3.i = q__4.i + q__7.i;
- q__1.r = q__2.r * q__3.r - q__2.i * q__3.i, q__1.i =
- q__2.r * q__3.i + q__2.i * q__3.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__4 = k + 1 + j * h_dim1;
- i__5 = k + 1 + j * h_dim1;
- q__1.r = h__[i__5].r - refsum.r, q__1.i = h__[i__5].i -
- refsum.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = k + 2 + j * h_dim1;
- i__5 = k + 2 + j * h_dim1;
- i__8 = m * v_dim1 + 2;
- q__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
- q__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
- .r;
- q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
- q__2.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- i__4 = k + 3 + j * h_dim1;
- i__5 = k + 3 + j * h_dim1;
- i__8 = m * v_dim1 + 3;
- q__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
- q__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
- .r;
- q__1.r = h__[i__5].r - q__2.r, q__1.i = h__[i__5].i -
- q__2.i;
- h__[i__4].r = q__1.r, h__[i__4].i = q__1.i;
- /* L90: */
- }
- /* L100: */
- }
-
- /* ==== Accumulate orthogonal transformations. ==== */
-
- if (accum) {
-
- /* ==== Accumulate U. (If needed, update Z later */
- /* . with an efficient matrix-matrix */
- /* . multiply.) ==== */
-
- i__6 = mtop;
- for (m = mbot; m >= i__6; --m) {
- k = krcol + (m - 1 << 1);
- kms = k - incol;
- /* Computing MAX */
- i__7 = 1, i__4 = *ktop - incol;
- i2 = f2cmax(i__7,i__4);
- /* Computing MAX */
- i__7 = i2, i__4 = kms - (krcol - incol) + 1;
- i2 = f2cmax(i__7,i__4);
- /* Computing MIN */
- i__7 = kdu, i__4 = krcol + (mbot - 1 << 1) - incol + 5;
- i4 = f2cmin(i__7,i__4);
- i__7 = i4;
- for (j = i2; j <= i__7; ++j) {
- i__4 = m * v_dim1 + 1;
- i__5 = j + (kms + 1) * u_dim1;
- i__8 = m * v_dim1 + 2;
- i__9 = j + (kms + 2) * u_dim1;
- q__4.r = v[i__8].r * u[i__9].r - v[i__8].i * u[i__9]
- .i, q__4.i = v[i__8].r * u[i__9].i + v[i__8]
- .i * u[i__9].r;
- q__3.r = u[i__5].r + q__4.r, q__3.i = u[i__5].i +
- q__4.i;
- i__10 = m * v_dim1 + 3;
- i__11 = j + (kms + 3) * u_dim1;
- q__5.r = v[i__10].r * u[i__11].r - v[i__10].i * u[
- i__11].i, q__5.i = v[i__10].r * u[i__11].i +
- v[i__10].i * u[i__11].r;
- q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
- q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
- q__1.i = v[i__4].r * q__2.i + v[i__4].i *
- q__2.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__4 = j + (kms + 1) * u_dim1;
- i__5 = j + (kms + 1) * u_dim1;
- q__1.r = u[i__5].r - refsum.r, q__1.i = u[i__5].i -
- refsum.i;
- u[i__4].r = q__1.r, u[i__4].i = q__1.i;
- i__4 = j + (kms + 2) * u_dim1;
- i__5 = j + (kms + 2) * u_dim1;
- r_cnjg(&q__3, &v[m * v_dim1 + 2]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
- q__2.i = refsum.r * q__3.i + refsum.i *
- q__3.r;
- q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
- q__2.i;
- u[i__4].r = q__1.r, u[i__4].i = q__1.i;
- i__4 = j + (kms + 3) * u_dim1;
- i__5 = j + (kms + 3) * u_dim1;
- r_cnjg(&q__3, &v[m * v_dim1 + 3]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
- q__2.i = refsum.r * q__3.i + refsum.i *
- q__3.r;
- q__1.r = u[i__5].r - q__2.r, q__1.i = u[i__5].i -
- q__2.i;
- u[i__4].r = q__1.r, u[i__4].i = q__1.i;
- /* L110: */
- }
- /* L120: */
- }
- } else if (*wantz) {
-
- /* ==== U is not accumulated, so update Z */
- /* . now by multiplying by reflections */
- /* . from the right. ==== */
-
- i__6 = mtop;
- for (m = mbot; m >= i__6; --m) {
- k = krcol + (m - 1 << 1);
- i__7 = *ihiz;
- for (j = *iloz; j <= i__7; ++j) {
- i__4 = m * v_dim1 + 1;
- i__5 = j + (k + 1) * z_dim1;
- i__8 = m * v_dim1 + 2;
- i__9 = j + (k + 2) * z_dim1;
- q__4.r = v[i__8].r * z__[i__9].r - v[i__8].i * z__[
- i__9].i, q__4.i = v[i__8].r * z__[i__9].i + v[
- i__8].i * z__[i__9].r;
- q__3.r = z__[i__5].r + q__4.r, q__3.i = z__[i__5].i +
- q__4.i;
- i__10 = m * v_dim1 + 3;
- i__11 = j + (k + 3) * z_dim1;
- q__5.r = v[i__10].r * z__[i__11].r - v[i__10].i * z__[
- i__11].i, q__5.i = v[i__10].r * z__[i__11].i
- + v[i__10].i * z__[i__11].r;
- q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
- q__1.r = v[i__4].r * q__2.r - v[i__4].i * q__2.i,
- q__1.i = v[i__4].r * q__2.i + v[i__4].i *
- q__2.r;
- refsum.r = q__1.r, refsum.i = q__1.i;
- i__4 = j + (k + 1) * z_dim1;
- i__5 = j + (k + 1) * z_dim1;
- q__1.r = z__[i__5].r - refsum.r, q__1.i = z__[i__5].i
- - refsum.i;
- z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
- i__4 = j + (k + 2) * z_dim1;
- i__5 = j + (k + 2) * z_dim1;
- r_cnjg(&q__3, &v[m * v_dim1 + 2]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
- q__2.i = refsum.r * q__3.i + refsum.i *
- q__3.r;
- q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
- q__2.i;
- z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
- i__4 = j + (k + 3) * z_dim1;
- i__5 = j + (k + 3) * z_dim1;
- r_cnjg(&q__3, &v[m * v_dim1 + 3]);
- q__2.r = refsum.r * q__3.r - refsum.i * q__3.i,
- q__2.i = refsum.r * q__3.i + refsum.i *
- q__3.r;
- q__1.r = z__[i__5].r - q__2.r, q__1.i = z__[i__5].i -
- q__2.i;
- z__[i__4].r = q__1.r, z__[i__4].i = q__1.i;
- /* L130: */
- }
- /* L140: */
- }
- }
-
- /* ==== End of near-the-diagonal bulge chase. ==== */
-
- /* L145: */
- }
-
- /* ==== Use U (if accumulated) to update far-from-diagonal */
- /* . entries in H. If required, use U to update Z as */
- /* . well. ==== */
-
- if (accum) {
- if (*wantt) {
- jtop = 1;
- jbot = *n;
- } else {
- jtop = *ktop;
- jbot = *kbot;
- }
- /* Computing MAX */
- i__3 = 1, i__6 = *ktop - incol;
- k1 = f2cmax(i__3,i__6);
- /* Computing MAX */
- i__3 = 0, i__6 = ndcol - *kbot;
- nu = kdu - f2cmax(i__3,i__6) - k1 + 1;
-
- /* ==== Horizontal Multiply ==== */
-
- i__3 = jbot;
- i__6 = *nh;
- for (jcol = f2cmin(ndcol,*kbot) + 1; i__6 < 0 ? jcol >= i__3 : jcol
- <= i__3; jcol += i__6) {
- /* Computing MIN */
- i__7 = *nh, i__4 = jbot - jcol + 1;
- jlen = f2cmin(i__7,i__4);
- cgemm_("C", "N", &nu, &jlen, &nu, &c_b2, &u[k1 + k1 * u_dim1],
- ldu, &h__[incol + k1 + jcol * h_dim1], ldh, &c_b1, &
- wh[wh_offset], ldwh);
- clacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[incol +
- k1 + jcol * h_dim1], ldh);
- /* L150: */
- }
-
- /* ==== Vertical multiply ==== */
-
- i__6 = f2cmax(*ktop,incol) - 1;
- i__3 = *nv;
- for (jrow = jtop; i__3 < 0 ? jrow >= i__6 : jrow <= i__6; jrow +=
- i__3) {
- /* Computing MIN */
- i__7 = *nv, i__4 = f2cmax(*ktop,incol) - jrow;
- jlen = f2cmin(i__7,i__4);
- cgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &h__[jrow + (incol +
- k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], ldu, &c_b1,
- &wv[wv_offset], ldwv);
- clacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[jrow + (
- incol + k1) * h_dim1], ldh);
- /* L160: */
- }
-
- /* ==== Z multiply (also vertical) ==== */
-
- if (*wantz) {
- i__3 = *ihiz;
- i__6 = *nv;
- for (jrow = *iloz; i__6 < 0 ? jrow >= i__3 : jrow <= i__3;
- jrow += i__6) {
- /* Computing MIN */
- i__7 = *nv, i__4 = *ihiz - jrow + 1;
- jlen = f2cmin(i__7,i__4);
- cgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &z__[jrow + (
- incol + k1) * z_dim1], ldz, &u[k1 + k1 * u_dim1],
- ldu, &c_b1, &wv[wv_offset], ldwv);
- clacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
- jrow + (incol + k1) * z_dim1], ldz);
- /* L170: */
- }
- }
- }
- /* L180: */
- }
-
- /* ==== End of CLAQR5 ==== */
-
- return;
- } /* claqr5_ */
-
|