You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clantb.c 27 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele
  486. ment of largest absolute value of a triangular band matrix. */
  487. /* =========== DOCUMENTATION =========== */
  488. /* Online html documentation available at */
  489. /* http://www.netlib.org/lapack/explore-html/ */
  490. /* > \htmlonly */
  491. /* > Download CLANTB + dependencies */
  492. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clantb.
  493. f"> */
  494. /* > [TGZ]</a> */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clantb.
  496. f"> */
  497. /* > [ZIP]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clantb.
  499. f"> */
  500. /* > [TXT]</a> */
  501. /* > \endhtmlonly */
  502. /* Definition: */
  503. /* =========== */
  504. /* REAL FUNCTION CLANTB( NORM, UPLO, DIAG, N, K, AB, */
  505. /* LDAB, WORK ) */
  506. /* CHARACTER DIAG, NORM, UPLO */
  507. /* INTEGER K, LDAB, N */
  508. /* REAL WORK( * ) */
  509. /* COMPLEX AB( LDAB, * ) */
  510. /* > \par Purpose: */
  511. /* ============= */
  512. /* > */
  513. /* > \verbatim */
  514. /* > */
  515. /* > CLANTB returns the value of the one norm, or the Frobenius norm, or */
  516. /* > the infinity norm, or the element of largest absolute value of an */
  517. /* > n by n triangular band matrix A, with ( k + 1 ) diagonals. */
  518. /* > \endverbatim */
  519. /* > */
  520. /* > \return CLANTB */
  521. /* > \verbatim */
  522. /* > */
  523. /* > CLANTB = ( f2cmax(abs(A(i,j))), NORM = 'M' or 'm' */
  524. /* > ( */
  525. /* > ( norm1(A), NORM = '1', 'O' or 'o' */
  526. /* > ( */
  527. /* > ( normI(A), NORM = 'I' or 'i' */
  528. /* > ( */
  529. /* > ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
  530. /* > */
  531. /* > where norm1 denotes the one norm of a matrix (maximum column sum), */
  532. /* > normI denotes the infinity norm of a matrix (maximum row sum) and */
  533. /* > normF denotes the Frobenius norm of a matrix (square root of sum of */
  534. /* > squares). Note that f2cmax(abs(A(i,j))) is not a consistent matrix norm. */
  535. /* > \endverbatim */
  536. /* Arguments: */
  537. /* ========== */
  538. /* > \param[in] NORM */
  539. /* > \verbatim */
  540. /* > NORM is CHARACTER*1 */
  541. /* > Specifies the value to be returned in CLANTB as described */
  542. /* > above. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] UPLO */
  546. /* > \verbatim */
  547. /* > UPLO is CHARACTER*1 */
  548. /* > Specifies whether the matrix A is upper or lower triangular. */
  549. /* > = 'U': Upper triangular */
  550. /* > = 'L': Lower triangular */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] DIAG */
  554. /* > \verbatim */
  555. /* > DIAG is CHARACTER*1 */
  556. /* > Specifies whether or not the matrix A is unit triangular. */
  557. /* > = 'N': Non-unit triangular */
  558. /* > = 'U': Unit triangular */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] N */
  562. /* > \verbatim */
  563. /* > N is INTEGER */
  564. /* > The order of the matrix A. N >= 0. When N = 0, CLANTB is */
  565. /* > set to zero. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] K */
  569. /* > \verbatim */
  570. /* > K is INTEGER */
  571. /* > The number of super-diagonals of the matrix A if UPLO = 'U', */
  572. /* > or the number of sub-diagonals of the matrix A if UPLO = 'L'. */
  573. /* > K >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] AB */
  577. /* > \verbatim */
  578. /* > AB is COMPLEX array, dimension (LDAB,N) */
  579. /* > The upper or lower triangular band matrix A, stored in the */
  580. /* > first k+1 rows of AB. The j-th column of A is stored */
  581. /* > in the j-th column of the array AB as follows: */
  582. /* > if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for f2cmax(1,j-k)<=i<=j; */
  583. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+k). */
  584. /* > Note that when DIAG = 'U', the elements of the array AB */
  585. /* > corresponding to the diagonal elements of the matrix A are */
  586. /* > not referenced, but are assumed to be one. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] LDAB */
  590. /* > \verbatim */
  591. /* > LDAB is INTEGER */
  592. /* > The leading dimension of the array AB. LDAB >= K+1. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[out] WORK */
  596. /* > \verbatim */
  597. /* > WORK is REAL array, dimension (MAX(1,LWORK)), */
  598. /* > where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
  599. /* > referenced. */
  600. /* > \endverbatim */
  601. /* Authors: */
  602. /* ======== */
  603. /* > \author Univ. of Tennessee */
  604. /* > \author Univ. of California Berkeley */
  605. /* > \author Univ. of Colorado Denver */
  606. /* > \author NAG Ltd. */
  607. /* > \date December 2016 */
  608. /* > \ingroup complexOTHERauxiliary */
  609. /* ===================================================================== */
  610. real clantb_(char *norm, char *uplo, char *diag, integer *n, integer *k,
  611. complex *ab, integer *ldab, real *work)
  612. {
  613. /* System generated locals */
  614. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
  615. real ret_val;
  616. /* Local variables */
  617. extern /* Subroutine */ void scombssq_(real *, real *);
  618. integer i__, j, l;
  619. logical udiag;
  620. extern logical lsame_(char *, char *);
  621. real value;
  622. extern /* Subroutine */ void classq_(integer *, complex *, integer *, real
  623. *, real *);
  624. extern logical sisnan_(real *);
  625. real colssq[2], sum, ssq[2];
  626. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  627. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  628. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  629. /* December 2016 */
  630. /* ===================================================================== */
  631. /* Parameter adjustments */
  632. ab_dim1 = *ldab;
  633. ab_offset = 1 + ab_dim1 * 1;
  634. ab -= ab_offset;
  635. --work;
  636. /* Function Body */
  637. if (*n == 0) {
  638. value = 0.f;
  639. } else if (lsame_(norm, "M")) {
  640. /* Find f2cmax(abs(A(i,j))). */
  641. if (lsame_(diag, "U")) {
  642. value = 1.f;
  643. if (lsame_(uplo, "U")) {
  644. i__1 = *n;
  645. for (j = 1; j <= i__1; ++j) {
  646. /* Computing MAX */
  647. i__2 = *k + 2 - j;
  648. i__3 = *k;
  649. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  650. sum = c_abs(&ab[i__ + j * ab_dim1]);
  651. if (value < sum || sisnan_(&sum)) {
  652. value = sum;
  653. }
  654. /* L10: */
  655. }
  656. /* L20: */
  657. }
  658. } else {
  659. i__1 = *n;
  660. for (j = 1; j <= i__1; ++j) {
  661. /* Computing MIN */
  662. i__2 = *n + 1 - j, i__4 = *k + 1;
  663. i__3 = f2cmin(i__2,i__4);
  664. for (i__ = 2; i__ <= i__3; ++i__) {
  665. sum = c_abs(&ab[i__ + j * ab_dim1]);
  666. if (value < sum || sisnan_(&sum)) {
  667. value = sum;
  668. }
  669. /* L30: */
  670. }
  671. /* L40: */
  672. }
  673. }
  674. } else {
  675. value = 0.f;
  676. if (lsame_(uplo, "U")) {
  677. i__1 = *n;
  678. for (j = 1; j <= i__1; ++j) {
  679. /* Computing MAX */
  680. i__3 = *k + 2 - j;
  681. i__2 = *k + 1;
  682. for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
  683. sum = c_abs(&ab[i__ + j * ab_dim1]);
  684. if (value < sum || sisnan_(&sum)) {
  685. value = sum;
  686. }
  687. /* L50: */
  688. }
  689. /* L60: */
  690. }
  691. } else {
  692. i__1 = *n;
  693. for (j = 1; j <= i__1; ++j) {
  694. /* Computing MIN */
  695. i__3 = *n + 1 - j, i__4 = *k + 1;
  696. i__2 = f2cmin(i__3,i__4);
  697. for (i__ = 1; i__ <= i__2; ++i__) {
  698. sum = c_abs(&ab[i__ + j * ab_dim1]);
  699. if (value < sum || sisnan_(&sum)) {
  700. value = sum;
  701. }
  702. /* L70: */
  703. }
  704. /* L80: */
  705. }
  706. }
  707. }
  708. } else if (lsame_(norm, "O") || *(unsigned char *)
  709. norm == '1') {
  710. /* Find norm1(A). */
  711. value = 0.f;
  712. udiag = lsame_(diag, "U");
  713. if (lsame_(uplo, "U")) {
  714. i__1 = *n;
  715. for (j = 1; j <= i__1; ++j) {
  716. if (udiag) {
  717. sum = 1.f;
  718. /* Computing MAX */
  719. i__2 = *k + 2 - j;
  720. i__3 = *k;
  721. for (i__ = f2cmax(i__2,1); i__ <= i__3; ++i__) {
  722. sum += c_abs(&ab[i__ + j * ab_dim1]);
  723. /* L90: */
  724. }
  725. } else {
  726. sum = 0.f;
  727. /* Computing MAX */
  728. i__3 = *k + 2 - j;
  729. i__2 = *k + 1;
  730. for (i__ = f2cmax(i__3,1); i__ <= i__2; ++i__) {
  731. sum += c_abs(&ab[i__ + j * ab_dim1]);
  732. /* L100: */
  733. }
  734. }
  735. if (value < sum || sisnan_(&sum)) {
  736. value = sum;
  737. }
  738. /* L110: */
  739. }
  740. } else {
  741. i__1 = *n;
  742. for (j = 1; j <= i__1; ++j) {
  743. if (udiag) {
  744. sum = 1.f;
  745. /* Computing MIN */
  746. i__3 = *n + 1 - j, i__4 = *k + 1;
  747. i__2 = f2cmin(i__3,i__4);
  748. for (i__ = 2; i__ <= i__2; ++i__) {
  749. sum += c_abs(&ab[i__ + j * ab_dim1]);
  750. /* L120: */
  751. }
  752. } else {
  753. sum = 0.f;
  754. /* Computing MIN */
  755. i__3 = *n + 1 - j, i__4 = *k + 1;
  756. i__2 = f2cmin(i__3,i__4);
  757. for (i__ = 1; i__ <= i__2; ++i__) {
  758. sum += c_abs(&ab[i__ + j * ab_dim1]);
  759. /* L130: */
  760. }
  761. }
  762. if (value < sum || sisnan_(&sum)) {
  763. value = sum;
  764. }
  765. /* L140: */
  766. }
  767. }
  768. } else if (lsame_(norm, "I")) {
  769. /* Find normI(A). */
  770. value = 0.f;
  771. if (lsame_(uplo, "U")) {
  772. if (lsame_(diag, "U")) {
  773. i__1 = *n;
  774. for (i__ = 1; i__ <= i__1; ++i__) {
  775. work[i__] = 1.f;
  776. /* L150: */
  777. }
  778. i__1 = *n;
  779. for (j = 1; j <= i__1; ++j) {
  780. l = *k + 1 - j;
  781. /* Computing MAX */
  782. i__2 = 1, i__3 = j - *k;
  783. i__4 = j - 1;
  784. for (i__ = f2cmax(i__2,i__3); i__ <= i__4; ++i__) {
  785. work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
  786. /* L160: */
  787. }
  788. /* L170: */
  789. }
  790. } else {
  791. i__1 = *n;
  792. for (i__ = 1; i__ <= i__1; ++i__) {
  793. work[i__] = 0.f;
  794. /* L180: */
  795. }
  796. i__1 = *n;
  797. for (j = 1; j <= i__1; ++j) {
  798. l = *k + 1 - j;
  799. /* Computing MAX */
  800. i__4 = 1, i__2 = j - *k;
  801. i__3 = j;
  802. for (i__ = f2cmax(i__4,i__2); i__ <= i__3; ++i__) {
  803. work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
  804. /* L190: */
  805. }
  806. /* L200: */
  807. }
  808. }
  809. } else {
  810. if (lsame_(diag, "U")) {
  811. i__1 = *n;
  812. for (i__ = 1; i__ <= i__1; ++i__) {
  813. work[i__] = 1.f;
  814. /* L210: */
  815. }
  816. i__1 = *n;
  817. for (j = 1; j <= i__1; ++j) {
  818. l = 1 - j;
  819. /* Computing MIN */
  820. i__4 = *n, i__2 = j + *k;
  821. i__3 = f2cmin(i__4,i__2);
  822. for (i__ = j + 1; i__ <= i__3; ++i__) {
  823. work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
  824. /* L220: */
  825. }
  826. /* L230: */
  827. }
  828. } else {
  829. i__1 = *n;
  830. for (i__ = 1; i__ <= i__1; ++i__) {
  831. work[i__] = 0.f;
  832. /* L240: */
  833. }
  834. i__1 = *n;
  835. for (j = 1; j <= i__1; ++j) {
  836. l = 1 - j;
  837. /* Computing MIN */
  838. i__4 = *n, i__2 = j + *k;
  839. i__3 = f2cmin(i__4,i__2);
  840. for (i__ = j; i__ <= i__3; ++i__) {
  841. work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]);
  842. /* L250: */
  843. }
  844. /* L260: */
  845. }
  846. }
  847. }
  848. i__1 = *n;
  849. for (i__ = 1; i__ <= i__1; ++i__) {
  850. sum = work[i__];
  851. if (value < sum || sisnan_(&sum)) {
  852. value = sum;
  853. }
  854. /* L270: */
  855. }
  856. } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
  857. /* Find normF(A). */
  858. /* SSQ(1) is scale */
  859. /* SSQ(2) is sum-of-squares */
  860. /* For better accuracy, sum each column separately. */
  861. if (lsame_(uplo, "U")) {
  862. if (lsame_(diag, "U")) {
  863. ssq[0] = 1.f;
  864. ssq[1] = (real) (*n);
  865. if (*k > 0) {
  866. i__1 = *n;
  867. for (j = 2; j <= i__1; ++j) {
  868. colssq[0] = 0.f;
  869. colssq[1] = 1.f;
  870. /* Computing MIN */
  871. i__4 = j - 1;
  872. i__3 = f2cmin(i__4,*k);
  873. /* Computing MAX */
  874. i__2 = *k + 2 - j;
  875. classq_(&i__3, &ab[f2cmax(i__2,1) + j * ab_dim1], &c__1,
  876. colssq, &colssq[1]);
  877. scombssq_(ssq, colssq);
  878. /* L280: */
  879. }
  880. }
  881. } else {
  882. ssq[0] = 0.f;
  883. ssq[1] = 1.f;
  884. i__1 = *n;
  885. for (j = 1; j <= i__1; ++j) {
  886. colssq[0] = 0.f;
  887. colssq[1] = 1.f;
  888. /* Computing MIN */
  889. i__4 = j, i__2 = *k + 1;
  890. i__3 = f2cmin(i__4,i__2);
  891. /* Computing MAX */
  892. i__5 = *k + 2 - j;
  893. classq_(&i__3, &ab[f2cmax(i__5,1) + j * ab_dim1], &c__1,
  894. colssq, &colssq[1]);
  895. scombssq_(ssq, colssq);
  896. /* L290: */
  897. }
  898. }
  899. } else {
  900. if (lsame_(diag, "U")) {
  901. ssq[0] = 1.f;
  902. ssq[1] = (real) (*n);
  903. if (*k > 0) {
  904. i__1 = *n - 1;
  905. for (j = 1; j <= i__1; ++j) {
  906. colssq[0] = 0.f;
  907. colssq[1] = 1.f;
  908. /* Computing MIN */
  909. i__4 = *n - j;
  910. i__3 = f2cmin(i__4,*k);
  911. classq_(&i__3, &ab[j * ab_dim1 + 2], &c__1, colssq, &
  912. colssq[1]);
  913. scombssq_(ssq, colssq);
  914. /* L300: */
  915. }
  916. }
  917. } else {
  918. ssq[0] = 0.f;
  919. ssq[1] = 1.f;
  920. i__1 = *n;
  921. for (j = 1; j <= i__1; ++j) {
  922. colssq[0] = 0.f;
  923. colssq[1] = 1.f;
  924. /* Computing MIN */
  925. i__4 = *n - j + 1, i__2 = *k + 1;
  926. i__3 = f2cmin(i__4,i__2);
  927. classq_(&i__3, &ab[j * ab_dim1 + 1], &c__1, colssq, &
  928. colssq[1]);
  929. scombssq_(ssq, colssq);
  930. /* L310: */
  931. }
  932. }
  933. }
  934. value = ssq[0] * sqrt(ssq[1]);
  935. }
  936. ret_val = value;
  937. return ret_val;
  938. /* End of CLANTB */
  939. } /* clantb_ */