You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clabrd.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static complex c_b2 = {1.f,0.f};
  486. static integer c__1 = 1;
  487. /* > \brief \b CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CLABRD + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clabrd.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clabrd.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clabrd.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */
  506. /* LDY ) */
  507. /* INTEGER LDA, LDX, LDY, M, N, NB */
  508. /* REAL D( * ), E( * ) */
  509. /* COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ), */
  510. /* $ Y( LDY, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CLABRD reduces the first NB rows and columns of a complex general */
  517. /* > m by n matrix A to upper or lower real bidiagonal form by a unitary */
  518. /* > transformation Q**H * A * P, and returns the matrices X and Y which */
  519. /* > are needed to apply the transformation to the unreduced part of A. */
  520. /* > */
  521. /* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
  522. /* > bidiagonal form. */
  523. /* > */
  524. /* > This is an auxiliary routine called by CGEBRD */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] M */
  529. /* > \verbatim */
  530. /* > M is INTEGER */
  531. /* > The number of rows in the matrix A. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] N */
  535. /* > \verbatim */
  536. /* > N is INTEGER */
  537. /* > The number of columns in the matrix A. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] NB */
  541. /* > \verbatim */
  542. /* > NB is INTEGER */
  543. /* > The number of leading rows and columns of A to be reduced. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in,out] A */
  547. /* > \verbatim */
  548. /* > A is COMPLEX array, dimension (LDA,N) */
  549. /* > On entry, the m by n general matrix to be reduced. */
  550. /* > On exit, the first NB rows and columns of the matrix are */
  551. /* > overwritten; the rest of the array is unchanged. */
  552. /* > If m >= n, elements on and below the diagonal in the first NB */
  553. /* > columns, with the array TAUQ, represent the unitary */
  554. /* > matrix Q as a product of elementary reflectors; and */
  555. /* > elements above the diagonal in the first NB rows, with the */
  556. /* > array TAUP, represent the unitary matrix P as a product */
  557. /* > of elementary reflectors. */
  558. /* > If m < n, elements below the diagonal in the first NB */
  559. /* > columns, with the array TAUQ, represent the unitary */
  560. /* > matrix Q as a product of elementary reflectors, and */
  561. /* > elements on and above the diagonal in the first NB rows, */
  562. /* > with the array TAUP, represent the unitary matrix P as */
  563. /* > a product of elementary reflectors. */
  564. /* > See Further Details. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] LDA */
  568. /* > \verbatim */
  569. /* > LDA is INTEGER */
  570. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[out] D */
  574. /* > \verbatim */
  575. /* > D is REAL array, dimension (NB) */
  576. /* > The diagonal elements of the first NB rows and columns of */
  577. /* > the reduced matrix. D(i) = A(i,i). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[out] E */
  581. /* > \verbatim */
  582. /* > E is REAL array, dimension (NB) */
  583. /* > The off-diagonal elements of the first NB rows and columns of */
  584. /* > the reduced matrix. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] TAUQ */
  588. /* > \verbatim */
  589. /* > TAUQ is COMPLEX array, dimension (NB) */
  590. /* > The scalar factors of the elementary reflectors which */
  591. /* > represent the unitary matrix Q. See Further Details. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[out] TAUP */
  595. /* > \verbatim */
  596. /* > TAUP is COMPLEX array, dimension (NB) */
  597. /* > The scalar factors of the elementary reflectors which */
  598. /* > represent the unitary matrix P. See Further Details. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] X */
  602. /* > \verbatim */
  603. /* > X is COMPLEX array, dimension (LDX,NB) */
  604. /* > The m-by-nb matrix X required to update the unreduced part */
  605. /* > of A. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] LDX */
  609. /* > \verbatim */
  610. /* > LDX is INTEGER */
  611. /* > The leading dimension of the array X. LDX >= f2cmax(1,M). */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] Y */
  615. /* > \verbatim */
  616. /* > Y is COMPLEX array, dimension (LDY,NB) */
  617. /* > The n-by-nb matrix Y required to update the unreduced part */
  618. /* > of A. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] LDY */
  622. /* > \verbatim */
  623. /* > LDY is INTEGER */
  624. /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
  625. /* > \endverbatim */
  626. /* Authors: */
  627. /* ======== */
  628. /* > \author Univ. of Tennessee */
  629. /* > \author Univ. of California Berkeley */
  630. /* > \author Univ. of Colorado Denver */
  631. /* > \author NAG Ltd. */
  632. /* > \date June 2017 */
  633. /* > \ingroup complexOTHERauxiliary */
  634. /* > \par Further Details: */
  635. /* ===================== */
  636. /* > */
  637. /* > \verbatim */
  638. /* > */
  639. /* > The matrices Q and P are represented as products of elementary */
  640. /* > reflectors: */
  641. /* > */
  642. /* > Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */
  643. /* > */
  644. /* > Each H(i) and G(i) has the form: */
  645. /* > */
  646. /* > H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H */
  647. /* > */
  648. /* > where tauq and taup are complex scalars, and v and u are complex */
  649. /* > vectors. */
  650. /* > */
  651. /* > If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
  652. /* > A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
  653. /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
  654. /* > */
  655. /* > If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
  656. /* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
  657. /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
  658. /* > */
  659. /* > The elements of the vectors v and u together form the m-by-nb matrix */
  660. /* > V and the nb-by-n matrix U**H which are needed, with X and Y, to apply */
  661. /* > the transformation to the unreduced part of the matrix, using a block */
  662. /* > update of the form: A := A - V*Y**H - X*U**H. */
  663. /* > */
  664. /* > The contents of A on exit are illustrated by the following examples */
  665. /* > with nb = 2: */
  666. /* > */
  667. /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
  668. /* > */
  669. /* > ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */
  670. /* > ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */
  671. /* > ( v1 v2 a a a ) ( v1 1 a a a a ) */
  672. /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
  673. /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
  674. /* > ( v1 v2 a a a ) */
  675. /* > */
  676. /* > where a denotes an element of the original matrix which is unchanged, */
  677. /* > vi denotes an element of the vector defining H(i), and ui an element */
  678. /* > of the vector defining G(i). */
  679. /* > \endverbatim */
  680. /* > */
  681. /* ===================================================================== */
  682. /* Subroutine */ void clabrd_(integer *m, integer *n, integer *nb, complex *a,
  683. integer *lda, real *d__, real *e, complex *tauq, complex *taup,
  684. complex *x, integer *ldx, complex *y, integer *ldy)
  685. {
  686. /* System generated locals */
  687. integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
  688. i__3;
  689. complex q__1;
  690. /* Local variables */
  691. integer i__;
  692. complex alpha;
  693. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  694. integer *), cgemv_(char *, integer *, integer *, complex *,
  695. complex *, integer *, complex *, integer *, complex *, complex *,
  696. integer *), clarfg_(integer *, complex *, complex *,
  697. integer *, complex *), clacgv_(integer *, complex *, integer *);
  698. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  699. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  700. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  701. /* June 2017 */
  702. /* ===================================================================== */
  703. /* Quick return if possible */
  704. /* Parameter adjustments */
  705. a_dim1 = *lda;
  706. a_offset = 1 + a_dim1 * 1;
  707. a -= a_offset;
  708. --d__;
  709. --e;
  710. --tauq;
  711. --taup;
  712. x_dim1 = *ldx;
  713. x_offset = 1 + x_dim1 * 1;
  714. x -= x_offset;
  715. y_dim1 = *ldy;
  716. y_offset = 1 + y_dim1 * 1;
  717. y -= y_offset;
  718. /* Function Body */
  719. if (*m <= 0 || *n <= 0) {
  720. return;
  721. }
  722. if (*m >= *n) {
  723. /* Reduce to upper bidiagonal form */
  724. i__1 = *nb;
  725. for (i__ = 1; i__ <= i__1; ++i__) {
  726. /* Update A(i:m,i) */
  727. i__2 = i__ - 1;
  728. clacgv_(&i__2, &y[i__ + y_dim1], ldy);
  729. i__2 = *m - i__ + 1;
  730. i__3 = i__ - 1;
  731. q__1.r = -1.f, q__1.i = 0.f;
  732. cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + a_dim1], lda,
  733. &y[i__ + y_dim1], ldy, &c_b2, &a[i__ + i__ * a_dim1], &
  734. c__1);
  735. i__2 = i__ - 1;
  736. clacgv_(&i__2, &y[i__ + y_dim1], ldy);
  737. i__2 = *m - i__ + 1;
  738. i__3 = i__ - 1;
  739. q__1.r = -1.f, q__1.i = 0.f;
  740. cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + x_dim1], ldx,
  741. &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[i__ + i__ *
  742. a_dim1], &c__1);
  743. /* Generate reflection Q(i) to annihilate A(i+1:m,i) */
  744. i__2 = i__ + i__ * a_dim1;
  745. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  746. i__2 = *m - i__ + 1;
  747. /* Computing MIN */
  748. i__3 = i__ + 1;
  749. clarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1, &
  750. tauq[i__]);
  751. i__2 = i__;
  752. d__[i__2] = alpha.r;
  753. if (i__ < *n) {
  754. i__2 = i__ + i__ * a_dim1;
  755. a[i__2].r = 1.f, a[i__2].i = 0.f;
  756. /* Compute Y(i+1:n,i) */
  757. i__2 = *m - i__ + 1;
  758. i__3 = *n - i__;
  759. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + (
  760. i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], &
  761. c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
  762. i__2 = *m - i__ + 1;
  763. i__3 = i__ - 1;
  764. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ +
  765. a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
  766. y[i__ * y_dim1 + 1], &c__1);
  767. i__2 = *n - i__;
  768. i__3 = i__ - 1;
  769. q__1.r = -1.f, q__1.i = 0.f;
  770. cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + 1 +
  771. y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
  772. i__ + 1 + i__ * y_dim1], &c__1);
  773. i__2 = *m - i__ + 1;
  774. i__3 = i__ - 1;
  775. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &x[i__ +
  776. x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
  777. y[i__ * y_dim1 + 1], &c__1);
  778. i__2 = i__ - 1;
  779. i__3 = *n - i__;
  780. q__1.r = -1.f, q__1.i = 0.f;
  781. cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[(i__ +
  782. 1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
  783. c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
  784. i__2 = *n - i__;
  785. cscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
  786. /* Update A(i,i+1:n) */
  787. i__2 = *n - i__;
  788. clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
  789. clacgv_(&i__, &a[i__ + a_dim1], lda);
  790. i__2 = *n - i__;
  791. q__1.r = -1.f, q__1.i = 0.f;
  792. cgemv_("No transpose", &i__2, &i__, &q__1, &y[i__ + 1 +
  793. y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + (
  794. i__ + 1) * a_dim1], lda);
  795. clacgv_(&i__, &a[i__ + a_dim1], lda);
  796. i__2 = i__ - 1;
  797. clacgv_(&i__2, &x[i__ + x_dim1], ldx);
  798. i__2 = i__ - 1;
  799. i__3 = *n - i__;
  800. q__1.r = -1.f, q__1.i = 0.f;
  801. cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[(i__ +
  802. 1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &
  803. a[i__ + (i__ + 1) * a_dim1], lda);
  804. i__2 = i__ - 1;
  805. clacgv_(&i__2, &x[i__ + x_dim1], ldx);
  806. /* Generate reflection P(i) to annihilate A(i,i+2:n) */
  807. i__2 = i__ + (i__ + 1) * a_dim1;
  808. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  809. i__2 = *n - i__;
  810. /* Computing MIN */
  811. i__3 = i__ + 2;
  812. clarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
  813. taup[i__]);
  814. i__2 = i__;
  815. e[i__2] = alpha.r;
  816. i__2 = i__ + (i__ + 1) * a_dim1;
  817. a[i__2].r = 1.f, a[i__2].i = 0.f;
  818. /* Compute X(i+1:m,i) */
  819. i__2 = *m - i__;
  820. i__3 = *n - i__;
  821. cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (i__
  822. + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
  823. lda, &c_b1, &x[i__ + 1 + i__ * x_dim1], &c__1);
  824. i__2 = *n - i__;
  825. cgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &y[i__ + 1
  826. + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &
  827. c_b1, &x[i__ * x_dim1 + 1], &c__1);
  828. i__2 = *m - i__;
  829. q__1.r = -1.f, q__1.i = 0.f;
  830. cgemv_("No transpose", &i__2, &i__, &q__1, &a[i__ + 1 +
  831. a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  832. i__ + 1 + i__ * x_dim1], &c__1);
  833. i__2 = i__ - 1;
  834. i__3 = *n - i__;
  835. cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[(i__ + 1) *
  836. a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
  837. c_b1, &x[i__ * x_dim1 + 1], &c__1);
  838. i__2 = *m - i__;
  839. i__3 = i__ - 1;
  840. q__1.r = -1.f, q__1.i = 0.f;
  841. cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + 1 +
  842. x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  843. i__ + 1 + i__ * x_dim1], &c__1);
  844. i__2 = *m - i__;
  845. cscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
  846. i__2 = *n - i__;
  847. clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
  848. }
  849. /* L10: */
  850. }
  851. } else {
  852. /* Reduce to lower bidiagonal form */
  853. i__1 = *nb;
  854. for (i__ = 1; i__ <= i__1; ++i__) {
  855. /* Update A(i,i:n) */
  856. i__2 = *n - i__ + 1;
  857. clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  858. i__2 = i__ - 1;
  859. clacgv_(&i__2, &a[i__ + a_dim1], lda);
  860. i__2 = *n - i__ + 1;
  861. i__3 = i__ - 1;
  862. q__1.r = -1.f, q__1.i = 0.f;
  863. cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + y_dim1], ldy,
  864. &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1],
  865. lda);
  866. i__2 = i__ - 1;
  867. clacgv_(&i__2, &a[i__ + a_dim1], lda);
  868. i__2 = i__ - 1;
  869. clacgv_(&i__2, &x[i__ + x_dim1], ldx);
  870. i__2 = i__ - 1;
  871. i__3 = *n - i__ + 1;
  872. q__1.r = -1.f, q__1.i = 0.f;
  873. cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[i__ *
  874. a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &a[i__ +
  875. i__ * a_dim1], lda);
  876. i__2 = i__ - 1;
  877. clacgv_(&i__2, &x[i__ + x_dim1], ldx);
  878. /* Generate reflection P(i) to annihilate A(i,i+1:n) */
  879. i__2 = i__ + i__ * a_dim1;
  880. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  881. i__2 = *n - i__ + 1;
  882. /* Computing MIN */
  883. i__3 = i__ + 1;
  884. clarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
  885. taup[i__]);
  886. i__2 = i__;
  887. d__[i__2] = alpha.r;
  888. if (i__ < *m) {
  889. i__2 = i__ + i__ * a_dim1;
  890. a[i__2].r = 1.f, a[i__2].i = 0.f;
  891. /* Compute X(i+1:m,i) */
  892. i__2 = *m - i__;
  893. i__3 = *n - i__ + 1;
  894. cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + i__ *
  895. a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
  896. i__ + 1 + i__ * x_dim1], &c__1);
  897. i__2 = *n - i__ + 1;
  898. i__3 = i__ - 1;
  899. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &y[i__ +
  900. y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
  901. i__ * x_dim1 + 1], &c__1);
  902. i__2 = *m - i__;
  903. i__3 = i__ - 1;
  904. q__1.r = -1.f, q__1.i = 0.f;
  905. cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 +
  906. a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  907. i__ + 1 + i__ * x_dim1], &c__1);
  908. i__2 = i__ - 1;
  909. i__3 = *n - i__ + 1;
  910. cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ * a_dim1 +
  911. 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[i__ *
  912. x_dim1 + 1], &c__1);
  913. i__2 = *m - i__;
  914. i__3 = i__ - 1;
  915. q__1.r = -1.f, q__1.i = 0.f;
  916. cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + 1 +
  917. x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  918. i__ + 1 + i__ * x_dim1], &c__1);
  919. i__2 = *m - i__;
  920. cscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
  921. i__2 = *n - i__ + 1;
  922. clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  923. /* Update A(i+1:m,i) */
  924. i__2 = i__ - 1;
  925. clacgv_(&i__2, &y[i__ + y_dim1], ldy);
  926. i__2 = *m - i__;
  927. i__3 = i__ - 1;
  928. q__1.r = -1.f, q__1.i = 0.f;
  929. cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 +
  930. a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b2, &a[i__ +
  931. 1 + i__ * a_dim1], &c__1);
  932. i__2 = i__ - 1;
  933. clacgv_(&i__2, &y[i__ + y_dim1], ldy);
  934. i__2 = *m - i__;
  935. q__1.r = -1.f, q__1.i = 0.f;
  936. cgemv_("No transpose", &i__2, &i__, &q__1, &x[i__ + 1 +
  937. x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[
  938. i__ + 1 + i__ * a_dim1], &c__1);
  939. /* Generate reflection Q(i) to annihilate A(i+2:m,i) */
  940. i__2 = i__ + 1 + i__ * a_dim1;
  941. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  942. i__2 = *m - i__;
  943. /* Computing MIN */
  944. i__3 = i__ + 2;
  945. clarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1,
  946. &tauq[i__]);
  947. i__2 = i__;
  948. e[i__2] = alpha.r;
  949. i__2 = i__ + 1 + i__ * a_dim1;
  950. a[i__2].r = 1.f, a[i__2].i = 0.f;
  951. /* Compute Y(i+1:n,i) */
  952. i__2 = *m - i__;
  953. i__3 = *n - i__;
  954. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
  955. + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1]
  956. , &c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
  957. i__2 = *m - i__;
  958. i__3 = i__ - 1;
  959. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
  960. + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
  961. c_b1, &y[i__ * y_dim1 + 1], &c__1);
  962. i__2 = *n - i__;
  963. i__3 = i__ - 1;
  964. q__1.r = -1.f, q__1.i = 0.f;
  965. cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + 1 +
  966. y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
  967. i__ + 1 + i__ * y_dim1], &c__1);
  968. i__2 = *m - i__;
  969. cgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &x[i__ + 1
  970. + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &
  971. c_b1, &y[i__ * y_dim1 + 1], &c__1);
  972. i__2 = *n - i__;
  973. q__1.r = -1.f, q__1.i = 0.f;
  974. cgemv_("Conjugate transpose", &i__, &i__2, &q__1, &a[(i__ + 1)
  975. * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
  976. c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
  977. i__2 = *n - i__;
  978. cscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
  979. } else {
  980. i__2 = *n - i__ + 1;
  981. clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  982. }
  983. /* L20: */
  984. }
  985. }
  986. return;
  987. /* End of CLABRD */
  988. } /* clabrd_ */