You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgeev.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static integer c_n1 = -1;
  487. /* > \brief <b> CGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
  488. ices</b> */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CGEEV + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeev.f
  495. "> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeev.f
  498. "> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeev.f
  501. "> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR, */
  507. /* WORK, LWORK, RWORK, INFO ) */
  508. /* CHARACTER JOBVL, JOBVR */
  509. /* INTEGER INFO, LDA, LDVL, LDVR, LWORK, N */
  510. /* REAL RWORK( * ) */
  511. /* COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), */
  512. /* $ W( * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CGEEV computes for an N-by-N complex nonsymmetric matrix A, the */
  519. /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
  520. /* > */
  521. /* > The right eigenvector v(j) of A satisfies */
  522. /* > A * v(j) = lambda(j) * v(j) */
  523. /* > where lambda(j) is its eigenvalue. */
  524. /* > The left eigenvector u(j) of A satisfies */
  525. /* > u(j)**H * A = lambda(j) * u(j)**H */
  526. /* > where u(j)**H denotes the conjugate transpose of u(j). */
  527. /* > */
  528. /* > The computed eigenvectors are normalized to have Euclidean norm */
  529. /* > equal to 1 and largest component real. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] JOBVL */
  534. /* > \verbatim */
  535. /* > JOBVL is CHARACTER*1 */
  536. /* > = 'N': left eigenvectors of A are not computed; */
  537. /* > = 'V': left eigenvectors of are computed. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] JOBVR */
  541. /* > \verbatim */
  542. /* > JOBVR is CHARACTER*1 */
  543. /* > = 'N': right eigenvectors of A are not computed; */
  544. /* > = 'V': right eigenvectors of A are computed. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] N */
  548. /* > \verbatim */
  549. /* > N is INTEGER */
  550. /* > The order of the matrix A. N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in,out] A */
  554. /* > \verbatim */
  555. /* > A is COMPLEX array, dimension (LDA,N) */
  556. /* > On entry, the N-by-N matrix A. */
  557. /* > On exit, A has been overwritten. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] LDA */
  561. /* > \verbatim */
  562. /* > LDA is INTEGER */
  563. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[out] W */
  567. /* > \verbatim */
  568. /* > W is COMPLEX array, dimension (N) */
  569. /* > W contains the computed eigenvalues. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[out] VL */
  573. /* > \verbatim */
  574. /* > VL is COMPLEX array, dimension (LDVL,N) */
  575. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  576. /* > after another in the columns of VL, in the same order */
  577. /* > as their eigenvalues. */
  578. /* > If JOBVL = 'N', VL is not referenced. */
  579. /* > u(j) = VL(:,j), the j-th column of VL. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDVL */
  583. /* > \verbatim */
  584. /* > LDVL is INTEGER */
  585. /* > The leading dimension of the array VL. LDVL >= 1; if */
  586. /* > JOBVL = 'V', LDVL >= N. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] VR */
  590. /* > \verbatim */
  591. /* > VR is COMPLEX array, dimension (LDVR,N) */
  592. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  593. /* > after another in the columns of VR, in the same order */
  594. /* > as their eigenvalues. */
  595. /* > If JOBVR = 'N', VR is not referenced. */
  596. /* > v(j) = VR(:,j), the j-th column of VR. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDVR */
  600. /* > \verbatim */
  601. /* > LDVR is INTEGER */
  602. /* > The leading dimension of the array VR. LDVR >= 1; if */
  603. /* > JOBVR = 'V', LDVR >= N. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[out] WORK */
  607. /* > \verbatim */
  608. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  609. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] LWORK */
  613. /* > \verbatim */
  614. /* > LWORK is INTEGER */
  615. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  616. /* > For good performance, LWORK must generally be larger. */
  617. /* > */
  618. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  619. /* > only calculates the optimal size of the WORK array, returns */
  620. /* > this value as the first entry of the WORK array, and no error */
  621. /* > message related to LWORK is issued by XERBLA. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] RWORK */
  625. /* > \verbatim */
  626. /* > RWORK is REAL array, dimension (2*N) */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] INFO */
  630. /* > \verbatim */
  631. /* > INFO is INTEGER */
  632. /* > = 0: successful exit */
  633. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  634. /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
  635. /* > eigenvalues, and no eigenvectors have been computed; */
  636. /* > elements i+1:N of W contain eigenvalues which have */
  637. /* > converged. */
  638. /* > \endverbatim */
  639. /* Authors: */
  640. /* ======== */
  641. /* > \author Univ. of Tennessee */
  642. /* > \author Univ. of California Berkeley */
  643. /* > \author Univ. of Colorado Denver */
  644. /* > \author NAG Ltd. */
  645. /* > \date June 2016 */
  646. /* @generated from zgeev.f, fortran z -> c, Tue Apr 19 01:47:44 2016 */
  647. /* > \ingroup complexGEeigen */
  648. /* ===================================================================== */
  649. /* Subroutine */ void cgeev_(char *jobvl, char *jobvr, integer *n, complex *a,
  650. integer *lda, complex *w, complex *vl, integer *ldvl, complex *vr,
  651. integer *ldvr, complex *work, integer *lwork, real *rwork, integer *
  652. info)
  653. {
  654. /* System generated locals */
  655. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  656. i__2, i__3;
  657. real r__1, r__2;
  658. complex q__1, q__2;
  659. /* Local variables */
  660. integer ibal;
  661. char side[1];
  662. real anrm;
  663. integer ierr, itau, iwrk, nout, i__, k;
  664. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  665. integer *);
  666. extern logical lsame_(char *, char *);
  667. extern real scnrm2_(integer *, complex *, integer *);
  668. extern /* Subroutine */ void cgebak_(char *, char *, integer *, integer *,
  669. integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *,
  670. integer *, integer *, real *, integer *), slabad_(real *,
  671. real *);
  672. logical scalea;
  673. extern real clange_(char *, integer *, integer *, complex *, integer *,
  674. real *);
  675. real cscale;
  676. extern /* Subroutine */ void cgehrd_(integer *, integer *, integer *,
  677. complex *, integer *, complex *, complex *, integer *, integer *),
  678. clascl_(char *, integer *, integer *, real *, real *, integer *,
  679. integer *, complex *, integer *, integer *);
  680. extern real slamch_(char *);
  681. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  682. *), clacpy_(char *, integer *, integer *, complex *, integer *,
  683. complex *, integer *);
  684. extern int xerbla_(char *, integer *, ftnlen);
  685. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  686. integer *, integer *, ftnlen, ftnlen);
  687. logical select[1];
  688. real bignum;
  689. extern integer isamax_(integer *, real *, integer *);
  690. extern /* Subroutine */ void chseqr_(char *, char *, integer *, integer *,
  691. integer *, complex *, integer *, complex *, complex *, integer *,
  692. complex *, integer *, integer *), cunghr_(integer
  693. *, integer *, integer *, complex *, integer *, complex *, complex
  694. *, integer *, integer *);
  695. integer minwrk, maxwrk;
  696. logical wantvl;
  697. real smlnum;
  698. integer hswork, irwork;
  699. logical lquery, wantvr;
  700. extern /* Subroutine */ void ctrevc3_(char *, char *, logical *, integer *,
  701. complex *, integer *, complex *, integer *, complex *, integer *,
  702. integer *, integer *, complex *, integer *, real *, integer *,
  703. integer *);
  704. integer ihi;
  705. real scl;
  706. integer ilo;
  707. real dum[1], eps;
  708. complex tmp;
  709. integer lwork_trevc__;
  710. /* -- LAPACK driver routine (version 3.7.0) -- */
  711. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  712. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  713. /* June 2016 */
  714. /* ===================================================================== */
  715. /* Test the input arguments */
  716. /* Parameter adjustments */
  717. a_dim1 = *lda;
  718. a_offset = 1 + a_dim1 * 1;
  719. a -= a_offset;
  720. --w;
  721. vl_dim1 = *ldvl;
  722. vl_offset = 1 + vl_dim1 * 1;
  723. vl -= vl_offset;
  724. vr_dim1 = *ldvr;
  725. vr_offset = 1 + vr_dim1 * 1;
  726. vr -= vr_offset;
  727. --work;
  728. --rwork;
  729. /* Function Body */
  730. *info = 0;
  731. lquery = *lwork == -1;
  732. wantvl = lsame_(jobvl, "V");
  733. wantvr = lsame_(jobvr, "V");
  734. if (! wantvl && ! lsame_(jobvl, "N")) {
  735. *info = -1;
  736. } else if (! wantvr && ! lsame_(jobvr, "N")) {
  737. *info = -2;
  738. } else if (*n < 0) {
  739. *info = -3;
  740. } else if (*lda < f2cmax(1,*n)) {
  741. *info = -5;
  742. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  743. *info = -8;
  744. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  745. *info = -10;
  746. }
  747. /* Compute workspace */
  748. /* (Note: Comments in the code beginning "Workspace:" describe the */
  749. /* minimal amount of workspace needed at that point in the code, */
  750. /* as well as the preferred amount for good performance. */
  751. /* CWorkspace refers to complex workspace, and RWorkspace to real */
  752. /* workspace. NB refers to the optimal block size for the */
  753. /* immediately following subroutine, as returned by ILAENV. */
  754. /* HSWORK refers to the workspace preferred by CHSEQR, as */
  755. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  756. /* the worst case.) */
  757. if (*info == 0) {
  758. if (*n == 0) {
  759. minwrk = 1;
  760. maxwrk = 1;
  761. } else {
  762. maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
  763. c__0, (ftnlen)6, (ftnlen)1);
  764. minwrk = *n << 1;
  765. if (wantvl) {
  766. /* Computing MAX */
  767. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
  768. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  769. maxwrk = f2cmax(i__1,i__2);
  770. ctrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
  771. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  772. work[1], &c_n1, &rwork[1], &c_n1, &ierr);
  773. lwork_trevc__ = (integer) work[1].r;
  774. /* Computing MAX */
  775. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  776. maxwrk = f2cmax(i__1,i__2);
  777. chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
  778. vl_offset], ldvl, &work[1], &c_n1, info);
  779. } else if (wantvr) {
  780. /* Computing MAX */
  781. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
  782. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  783. maxwrk = f2cmax(i__1,i__2);
  784. ctrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
  785. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  786. work[1], &c_n1, &rwork[1], &c_n1, &ierr);
  787. lwork_trevc__ = (integer) work[1].r;
  788. /* Computing MAX */
  789. i__1 = maxwrk, i__2 = *n + lwork_trevc__;
  790. maxwrk = f2cmax(i__1,i__2);
  791. chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
  792. vr_offset], ldvr, &work[1], &c_n1, info);
  793. } else {
  794. chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
  795. vr_offset], ldvr, &work[1], &c_n1, info);
  796. }
  797. hswork = (integer) work[1].r;
  798. /* Computing MAX */
  799. i__1 = f2cmax(maxwrk,hswork);
  800. maxwrk = f2cmax(i__1,minwrk);
  801. }
  802. work[1].r = (real) maxwrk, work[1].i = 0.f;
  803. if (*lwork < minwrk && ! lquery) {
  804. *info = -12;
  805. }
  806. }
  807. if (*info != 0) {
  808. i__1 = -(*info);
  809. xerbla_("CGEEV ", &i__1, (ftnlen)6);
  810. return;
  811. } else if (lquery) {
  812. return;
  813. }
  814. /* Quick return if possible */
  815. if (*n == 0) {
  816. return;
  817. }
  818. /* Get machine constants */
  819. eps = slamch_("P");
  820. smlnum = slamch_("S");
  821. bignum = 1.f / smlnum;
  822. slabad_(&smlnum, &bignum);
  823. smlnum = sqrt(smlnum) / eps;
  824. bignum = 1.f / smlnum;
  825. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  826. anrm = clange_("M", n, n, &a[a_offset], lda, dum);
  827. scalea = FALSE_;
  828. if (anrm > 0.f && anrm < smlnum) {
  829. scalea = TRUE_;
  830. cscale = smlnum;
  831. } else if (anrm > bignum) {
  832. scalea = TRUE_;
  833. cscale = bignum;
  834. }
  835. if (scalea) {
  836. clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  837. ierr);
  838. }
  839. /* Balance the matrix */
  840. /* (CWorkspace: none) */
  841. /* (RWorkspace: need N) */
  842. ibal = 1;
  843. cgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr);
  844. /* Reduce to upper Hessenberg form */
  845. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  846. /* (RWorkspace: none) */
  847. itau = 1;
  848. iwrk = itau + *n;
  849. i__1 = *lwork - iwrk + 1;
  850. cgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  851. &ierr);
  852. if (wantvl) {
  853. /* Want left eigenvectors */
  854. /* Copy Householder vectors to VL */
  855. *(unsigned char *)side = 'L';
  856. clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  857. ;
  858. /* Generate unitary matrix in VL */
  859. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  860. /* (RWorkspace: none) */
  861. i__1 = *lwork - iwrk + 1;
  862. cunghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
  863. &i__1, &ierr);
  864. /* Perform QR iteration, accumulating Schur vectors in VL */
  865. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  866. /* (RWorkspace: none) */
  867. iwrk = itau;
  868. i__1 = *lwork - iwrk + 1;
  869. chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vl[
  870. vl_offset], ldvl, &work[iwrk], &i__1, info);
  871. if (wantvr) {
  872. /* Want left and right eigenvectors */
  873. /* Copy Schur vectors to VR */
  874. *(unsigned char *)side = 'B';
  875. clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  876. }
  877. } else if (wantvr) {
  878. /* Want right eigenvectors */
  879. /* Copy Householder vectors to VR */
  880. *(unsigned char *)side = 'R';
  881. clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  882. ;
  883. /* Generate unitary matrix in VR */
  884. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  885. /* (RWorkspace: none) */
  886. i__1 = *lwork - iwrk + 1;
  887. cunghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
  888. &i__1, &ierr);
  889. /* Perform QR iteration, accumulating Schur vectors in VR */
  890. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  891. /* (RWorkspace: none) */
  892. iwrk = itau;
  893. i__1 = *lwork - iwrk + 1;
  894. chseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
  895. vr_offset], ldvr, &work[iwrk], &i__1, info);
  896. } else {
  897. /* Compute eigenvalues only */
  898. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  899. /* (RWorkspace: none) */
  900. iwrk = itau;
  901. i__1 = *lwork - iwrk + 1;
  902. chseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vr[
  903. vr_offset], ldvr, &work[iwrk], &i__1, info);
  904. }
  905. /* If INFO .NE. 0 from CHSEQR, then quit */
  906. if (*info != 0) {
  907. goto L50;
  908. }
  909. if (wantvl || wantvr) {
  910. /* Compute left and/or right eigenvectors */
  911. /* (CWorkspace: need 2*N, prefer N + 2*N*NB) */
  912. /* (RWorkspace: need 2*N) */
  913. irwork = ibal + *n;
  914. i__1 = *lwork - iwrk + 1;
  915. ctrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
  916. ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
  917. rwork[irwork], n, &ierr);
  918. }
  919. if (wantvl) {
  920. /* Undo balancing of left eigenvectors */
  921. /* (CWorkspace: none) */
  922. /* (RWorkspace: need N) */
  923. cgebak_("B", "L", n, &ilo, &ihi, &rwork[ibal], n, &vl[vl_offset],
  924. ldvl, &ierr);
  925. /* Normalize left eigenvectors and make largest component real */
  926. i__1 = *n;
  927. for (i__ = 1; i__ <= i__1; ++i__) {
  928. scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  929. csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  930. i__2 = *n;
  931. for (k = 1; k <= i__2; ++k) {
  932. i__3 = k + i__ * vl_dim1;
  933. /* Computing 2nd power */
  934. r__1 = vl[i__3].r;
  935. /* Computing 2nd power */
  936. r__2 = r_imag(&vl[k + i__ * vl_dim1]);
  937. rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2;
  938. /* L10: */
  939. }
  940. k = isamax_(n, &rwork[irwork], &c__1);
  941. r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
  942. r__1 = sqrt(rwork[irwork + k - 1]);
  943. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  944. tmp.r = q__1.r, tmp.i = q__1.i;
  945. cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
  946. i__2 = k + i__ * vl_dim1;
  947. i__3 = k + i__ * vl_dim1;
  948. r__1 = vl[i__3].r;
  949. q__1.r = r__1, q__1.i = 0.f;
  950. vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
  951. /* L20: */
  952. }
  953. }
  954. if (wantvr) {
  955. /* Undo balancing of right eigenvectors */
  956. /* (CWorkspace: none) */
  957. /* (RWorkspace: need N) */
  958. cgebak_("B", "R", n, &ilo, &ihi, &rwork[ibal], n, &vr[vr_offset],
  959. ldvr, &ierr);
  960. /* Normalize right eigenvectors and make largest component real */
  961. i__1 = *n;
  962. for (i__ = 1; i__ <= i__1; ++i__) {
  963. scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  964. csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  965. i__2 = *n;
  966. for (k = 1; k <= i__2; ++k) {
  967. i__3 = k + i__ * vr_dim1;
  968. /* Computing 2nd power */
  969. r__1 = vr[i__3].r;
  970. /* Computing 2nd power */
  971. r__2 = r_imag(&vr[k + i__ * vr_dim1]);
  972. rwork[irwork + k - 1] = r__1 * r__1 + r__2 * r__2;
  973. /* L30: */
  974. }
  975. k = isamax_(n, &rwork[irwork], &c__1);
  976. r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
  977. r__1 = sqrt(rwork[irwork + k - 1]);
  978. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  979. tmp.r = q__1.r, tmp.i = q__1.i;
  980. cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
  981. i__2 = k + i__ * vr_dim1;
  982. i__3 = k + i__ * vr_dim1;
  983. r__1 = vr[i__3].r;
  984. q__1.r = r__1, q__1.i = 0.f;
  985. vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
  986. /* L40: */
  987. }
  988. }
  989. /* Undo scaling if necessary */
  990. L50:
  991. if (scalea) {
  992. i__1 = *n - *info;
  993. /* Computing MAX */
  994. i__3 = *n - *info;
  995. i__2 = f2cmax(i__3,1);
  996. clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
  997. , &i__2, &ierr);
  998. if (*info > 0) {
  999. i__1 = ilo - 1;
  1000. clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
  1001. &ierr);
  1002. }
  1003. }
  1004. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1005. return;
  1006. /* End of CGEEV */
  1007. } /* cgeev_ */