You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgees.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. /* > \brief <b> DGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
  490. or GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGEES + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgees.f
  497. "> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgees.f
  500. "> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgees.f
  503. "> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI, */
  509. /* VS, LDVS, WORK, LWORK, BWORK, INFO ) */
  510. /* CHARACTER JOBVS, SORT */
  511. /* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM */
  512. /* LOGICAL BWORK( * ) */
  513. /* DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ), */
  514. /* $ WR( * ) */
  515. /* LOGICAL SELECT */
  516. /* EXTERNAL SELECT */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > DGEES computes for an N-by-N real nonsymmetric matrix A, the */
  523. /* > eigenvalues, the real Schur form T, and, optionally, the matrix of */
  524. /* > Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */
  525. /* > */
  526. /* > Optionally, it also orders the eigenvalues on the diagonal of the */
  527. /* > real Schur form so that selected eigenvalues are at the top left. */
  528. /* > The leading columns of Z then form an orthonormal basis for the */
  529. /* > invariant subspace corresponding to the selected eigenvalues. */
  530. /* > */
  531. /* > A matrix is in real Schur form if it is upper quasi-triangular with */
  532. /* > 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the */
  533. /* > form */
  534. /* > [ a b ] */
  535. /* > [ c a ] */
  536. /* > */
  537. /* > where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] JOBVS */
  542. /* > \verbatim */
  543. /* > JOBVS is CHARACTER*1 */
  544. /* > = 'N': Schur vectors are not computed; */
  545. /* > = 'V': Schur vectors are computed. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] SORT */
  549. /* > \verbatim */
  550. /* > SORT is CHARACTER*1 */
  551. /* > Specifies whether or not to order the eigenvalues on the */
  552. /* > diagonal of the Schur form. */
  553. /* > = 'N': Eigenvalues are not ordered; */
  554. /* > = 'S': Eigenvalues are ordered (see SELECT). */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] SELECT */
  558. /* > \verbatim */
  559. /* > SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments */
  560. /* > SELECT must be declared EXTERNAL in the calling subroutine. */
  561. /* > If SORT = 'S', SELECT is used to select eigenvalues to sort */
  562. /* > to the top left of the Schur form. */
  563. /* > If SORT = 'N', SELECT is not referenced. */
  564. /* > An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
  565. /* > SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex */
  566. /* > conjugate pair of eigenvalues is selected, then both complex */
  567. /* > eigenvalues are selected. */
  568. /* > Note that a selected complex eigenvalue may no longer */
  569. /* > satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
  570. /* > ordering may change the value of complex eigenvalues */
  571. /* > (especially if the eigenvalue is ill-conditioned); in this */
  572. /* > case INFO is set to N+2 (see INFO below). */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] N */
  576. /* > \verbatim */
  577. /* > N is INTEGER */
  578. /* > The order of the matrix A. N >= 0. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] A */
  582. /* > \verbatim */
  583. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  584. /* > On entry, the N-by-N matrix A. */
  585. /* > On exit, A has been overwritten by its real Schur form T. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDA */
  589. /* > \verbatim */
  590. /* > LDA is INTEGER */
  591. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[out] SDIM */
  595. /* > \verbatim */
  596. /* > SDIM is INTEGER */
  597. /* > If SORT = 'N', SDIM = 0. */
  598. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  599. /* > for which SELECT is true. (Complex conjugate */
  600. /* > pairs for which SELECT is true for either */
  601. /* > eigenvalue count as 2.) */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] WR */
  605. /* > \verbatim */
  606. /* > WR is DOUBLE PRECISION array, dimension (N) */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] WI */
  610. /* > \verbatim */
  611. /* > WI is DOUBLE PRECISION array, dimension (N) */
  612. /* > WR and WI contain the real and imaginary parts, */
  613. /* > respectively, of the computed eigenvalues in the same order */
  614. /* > that they appear on the diagonal of the output Schur form T. */
  615. /* > Complex conjugate pairs of eigenvalues will appear */
  616. /* > consecutively with the eigenvalue having the positive */
  617. /* > imaginary part first. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] VS */
  621. /* > \verbatim */
  622. /* > VS is DOUBLE PRECISION array, dimension (LDVS,N) */
  623. /* > If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
  624. /* > vectors. */
  625. /* > If JOBVS = 'N', VS is not referenced. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LDVS */
  629. /* > \verbatim */
  630. /* > LDVS is INTEGER */
  631. /* > The leading dimension of the array VS. LDVS >= 1; if */
  632. /* > JOBVS = 'V', LDVS >= N. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] WORK */
  636. /* > \verbatim */
  637. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  638. /* > On exit, if INFO = 0, WORK(1) contains the optimal LWORK. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] LWORK */
  642. /* > \verbatim */
  643. /* > LWORK is INTEGER */
  644. /* > The dimension of the array WORK. LWORK >= f2cmax(1,3*N). */
  645. /* > For good performance, LWORK must generally be larger. */
  646. /* > */
  647. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  648. /* > only calculates the optimal size of the WORK array, returns */
  649. /* > this value as the first entry of the WORK array, and no error */
  650. /* > message related to LWORK is issued by XERBLA. */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] BWORK */
  654. /* > \verbatim */
  655. /* > BWORK is LOGICAL array, dimension (N) */
  656. /* > Not referenced if SORT = 'N'. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[out] INFO */
  660. /* > \verbatim */
  661. /* > INFO is INTEGER */
  662. /* > = 0: successful exit */
  663. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  664. /* > > 0: if INFO = i, and i is */
  665. /* > <= N: the QR algorithm failed to compute all the */
  666. /* > eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
  667. /* > contain those eigenvalues which have converged; if */
  668. /* > JOBVS = 'V', VS contains the matrix which reduces A */
  669. /* > to its partially converged Schur form. */
  670. /* > = N+1: the eigenvalues could not be reordered because some */
  671. /* > eigenvalues were too close to separate (the problem */
  672. /* > is very ill-conditioned); */
  673. /* > = N+2: after reordering, roundoff changed values of some */
  674. /* > complex eigenvalues so that leading eigenvalues in */
  675. /* > the Schur form no longer satisfy SELECT=.TRUE. This */
  676. /* > could also be caused by underflow due to scaling. */
  677. /* > \endverbatim */
  678. /* Authors: */
  679. /* ======== */
  680. /* > \author Univ. of Tennessee */
  681. /* > \author Univ. of California Berkeley */
  682. /* > \author Univ. of Colorado Denver */
  683. /* > \author NAG Ltd. */
  684. /* > \date December 2016 */
  685. /* > \ingroup doubleGEeigen */
  686. /* ===================================================================== */
  687. /* Subroutine */ int dgees_(char *jobvs, char *sort, L_fp select, integer *n,
  688. doublereal *a, integer *lda, integer *sdim, doublereal *wr,
  689. doublereal *wi, doublereal *vs, integer *ldvs, doublereal *work,
  690. integer *lwork, logical *bwork, integer *info)
  691. {
  692. /* System generated locals */
  693. integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;
  694. /* Local variables */
  695. integer ibal;
  696. doublereal anrm;
  697. integer idum[1], ierr, itau, iwrk, inxt, i__;
  698. doublereal s;
  699. integer icond, ieval;
  700. extern logical lsame_(char *, char *);
  701. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  702. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  703. *, doublereal *, integer *);
  704. logical cursl;
  705. integer i1, i2;
  706. extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebak_(
  707. char *, char *, integer *, integer *, integer *, doublereal *,
  708. integer *, doublereal *, integer *, integer *),
  709. dgebal_(char *, integer *, doublereal *, integer *, integer *,
  710. integer *, doublereal *, integer *);
  711. logical lst2sl, scalea;
  712. integer ip;
  713. doublereal cscale;
  714. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  715. integer *, doublereal *, integer *, doublereal *);
  716. extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *,
  717. doublereal *, integer *, doublereal *, doublereal *, integer *,
  718. integer *), dlascl_(char *, integer *, integer *, doublereal *,
  719. doublereal *, integer *, integer *, doublereal *, integer *,
  720. integer *), dlacpy_(char *, integer *, integer *,
  721. doublereal *, integer *, doublereal *, integer *),
  722. xerbla_(char *, integer *, ftnlen);
  723. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  724. integer *, integer *, ftnlen, ftnlen);
  725. doublereal bignum;
  726. extern /* Subroutine */ int dorghr_(integer *, integer *, integer *,
  727. doublereal *, integer *, doublereal *, doublereal *, integer *,
  728. integer *), dhseqr_(char *, char *, integer *, integer *, integer
  729. *, doublereal *, integer *, doublereal *, doublereal *,
  730. doublereal *, integer *, doublereal *, integer *, integer *), dtrsen_(char *, char *, logical *, integer *,
  731. doublereal *, integer *, doublereal *, integer *, doublereal *,
  732. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  733. integer *, integer *, integer *, integer *);
  734. logical lastsl;
  735. integer minwrk, maxwrk;
  736. doublereal smlnum;
  737. integer hswork;
  738. logical wantst, lquery, wantvs;
  739. integer ihi, ilo;
  740. doublereal dum[1], eps, sep;
  741. /* -- LAPACK driver routine (version 3.7.0) -- */
  742. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  743. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  744. /* December 2016 */
  745. /* ===================================================================== */
  746. /* Test the input arguments */
  747. /* Parameter adjustments */
  748. a_dim1 = *lda;
  749. a_offset = 1 + a_dim1 * 1;
  750. a -= a_offset;
  751. --wr;
  752. --wi;
  753. vs_dim1 = *ldvs;
  754. vs_offset = 1 + vs_dim1 * 1;
  755. vs -= vs_offset;
  756. --work;
  757. --bwork;
  758. /* Function Body */
  759. *info = 0;
  760. lquery = *lwork == -1;
  761. wantvs = lsame_(jobvs, "V");
  762. wantst = lsame_(sort, "S");
  763. if (! wantvs && ! lsame_(jobvs, "N")) {
  764. *info = -1;
  765. } else if (! wantst && ! lsame_(sort, "N")) {
  766. *info = -2;
  767. } else if (*n < 0) {
  768. *info = -4;
  769. } else if (*lda < f2cmax(1,*n)) {
  770. *info = -6;
  771. } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
  772. *info = -11;
  773. }
  774. /* Compute workspace */
  775. /* (Note: Comments in the code beginning "Workspace:" describe the */
  776. /* minimal amount of workspace needed at that point in the code, */
  777. /* as well as the preferred amount for good performance. */
  778. /* NB refers to the optimal block size for the immediately */
  779. /* following subroutine, as returned by ILAENV. */
  780. /* HSWORK refers to the workspace preferred by DHSEQR, as */
  781. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  782. /* the worst case.) */
  783. if (*info == 0) {
  784. if (*n == 0) {
  785. minwrk = 1;
  786. maxwrk = 1;
  787. } else {
  788. maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1,
  789. n, &c__0, (ftnlen)6, (ftnlen)1);
  790. minwrk = *n * 3;
  791. dhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1]
  792. , &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);
  793. hswork = (integer) work[1];
  794. if (! wantvs) {
  795. /* Computing MAX */
  796. i__1 = maxwrk, i__2 = *n + hswork;
  797. maxwrk = f2cmax(i__1,i__2);
  798. } else {
  799. /* Computing MAX */
  800. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  801. "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
  802. 1);
  803. maxwrk = f2cmax(i__1,i__2);
  804. /* Computing MAX */
  805. i__1 = maxwrk, i__2 = *n + hswork;
  806. maxwrk = f2cmax(i__1,i__2);
  807. }
  808. }
  809. work[1] = (doublereal) maxwrk;
  810. if (*lwork < minwrk && ! lquery) {
  811. *info = -13;
  812. }
  813. }
  814. if (*info != 0) {
  815. i__1 = -(*info);
  816. xerbla_("DGEES ", &i__1, (ftnlen)6);
  817. return 0;
  818. } else if (lquery) {
  819. return 0;
  820. }
  821. /* Quick return if possible */
  822. if (*n == 0) {
  823. *sdim = 0;
  824. return 0;
  825. }
  826. /* Get machine constants */
  827. eps = dlamch_("P");
  828. smlnum = dlamch_("S");
  829. bignum = 1. / smlnum;
  830. dlabad_(&smlnum, &bignum);
  831. smlnum = sqrt(smlnum) / eps;
  832. bignum = 1. / smlnum;
  833. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  834. anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
  835. scalea = FALSE_;
  836. if (anrm > 0. && anrm < smlnum) {
  837. scalea = TRUE_;
  838. cscale = smlnum;
  839. } else if (anrm > bignum) {
  840. scalea = TRUE_;
  841. cscale = bignum;
  842. }
  843. if (scalea) {
  844. dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  845. ierr);
  846. }
  847. /* Permute the matrix to make it more nearly triangular */
  848. /* (Workspace: need N) */
  849. ibal = 1;
  850. dgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
  851. /* Reduce to upper Hessenberg form */
  852. /* (Workspace: need 3*N, prefer 2*N+N*NB) */
  853. itau = *n + ibal;
  854. iwrk = *n + itau;
  855. i__1 = *lwork - iwrk + 1;
  856. dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  857. &ierr);
  858. if (wantvs) {
  859. /* Copy Householder vectors to VS */
  860. dlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
  861. ;
  862. /* Generate orthogonal matrix in VS */
  863. /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  864. i__1 = *lwork - iwrk + 1;
  865. dorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
  866. &i__1, &ierr);
  867. }
  868. *sdim = 0;
  869. /* Perform QR iteration, accumulating Schur vectors in VS if desired */
  870. /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
  871. iwrk = itau;
  872. i__1 = *lwork - iwrk + 1;
  873. dhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[
  874. vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
  875. if (ieval > 0) {
  876. *info = ieval;
  877. }
  878. /* Sort eigenvalues if desired */
  879. if (wantst && *info == 0) {
  880. if (scalea) {
  881. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &
  882. ierr);
  883. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &
  884. ierr);
  885. }
  886. i__1 = *n;
  887. for (i__ = 1; i__ <= i__1; ++i__) {
  888. bwork[i__] = (*select)(&wr[i__], &wi[i__]);
  889. /* L10: */
  890. }
  891. /* Reorder eigenvalues and transform Schur vectors */
  892. /* (Workspace: none needed) */
  893. i__1 = *lwork - iwrk + 1;
  894. dtrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
  895. ldvs, &wr[1], &wi[1], sdim, &s, &sep, &work[iwrk], &i__1,
  896. idum, &c__1, &icond);
  897. if (icond > 0) {
  898. *info = *n + icond;
  899. }
  900. }
  901. if (wantvs) {
  902. /* Undo balancing */
  903. /* (Workspace: need N) */
  904. dgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs,
  905. &ierr);
  906. }
  907. if (scalea) {
  908. /* Undo scaling for the Schur form of A */
  909. dlascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
  910. ierr);
  911. i__1 = *lda + 1;
  912. dcopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);
  913. if (cscale == smlnum) {
  914. /* If scaling back towards underflow, adjust WI if an */
  915. /* offdiagonal element of a 2-by-2 block in the Schur form */
  916. /* underflows. */
  917. if (ieval > 0) {
  918. i1 = ieval + 1;
  919. i2 = ihi - 1;
  920. i__1 = ilo - 1;
  921. /* Computing MAX */
  922. i__3 = ilo - 1;
  923. i__2 = f2cmax(i__3,1);
  924. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[
  925. 1], &i__2, &ierr);
  926. } else if (wantst) {
  927. i1 = 1;
  928. i2 = *n - 1;
  929. } else {
  930. i1 = ilo;
  931. i2 = ihi - 1;
  932. }
  933. inxt = i1 - 1;
  934. i__1 = i2;
  935. for (i__ = i1; i__ <= i__1; ++i__) {
  936. if (i__ < inxt) {
  937. goto L20;
  938. }
  939. if (wi[i__] == 0.) {
  940. inxt = i__ + 1;
  941. } else {
  942. if (a[i__ + 1 + i__ * a_dim1] == 0.) {
  943. wi[i__] = 0.;
  944. wi[i__ + 1] = 0.;
  945. } else if (a[i__ + 1 + i__ * a_dim1] != 0. && a[i__ + (
  946. i__ + 1) * a_dim1] == 0.) {
  947. wi[i__] = 0.;
  948. wi[i__ + 1] = 0.;
  949. if (i__ > 1) {
  950. i__2 = i__ - 1;
  951. dswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(
  952. i__ + 1) * a_dim1 + 1], &c__1);
  953. }
  954. if (*n > i__ + 1) {
  955. i__2 = *n - i__ - 1;
  956. dswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &
  957. a[i__ + 1 + (i__ + 2) * a_dim1], lda);
  958. }
  959. if (wantvs) {
  960. dswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__
  961. + 1) * vs_dim1 + 1], &c__1);
  962. }
  963. a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ *
  964. a_dim1];
  965. a[i__ + 1 + i__ * a_dim1] = 0.;
  966. }
  967. inxt = i__ + 2;
  968. }
  969. L20:
  970. ;
  971. }
  972. }
  973. /* Undo scaling for the imaginary part of the eigenvalues */
  974. i__1 = *n - ieval;
  975. /* Computing MAX */
  976. i__3 = *n - ieval;
  977. i__2 = f2cmax(i__3,1);
  978. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval +
  979. 1], &i__2, &ierr);
  980. }
  981. if (wantst && *info == 0) {
  982. /* Check if reordering successful */
  983. lastsl = TRUE_;
  984. lst2sl = TRUE_;
  985. *sdim = 0;
  986. ip = 0;
  987. i__1 = *n;
  988. for (i__ = 1; i__ <= i__1; ++i__) {
  989. cursl = (*select)(&wr[i__], &wi[i__]);
  990. if (wi[i__] == 0.) {
  991. if (cursl) {
  992. ++(*sdim);
  993. }
  994. ip = 0;
  995. if (cursl && ! lastsl) {
  996. *info = *n + 2;
  997. }
  998. } else {
  999. if (ip == 1) {
  1000. /* Last eigenvalue of conjugate pair */
  1001. cursl = cursl || lastsl;
  1002. lastsl = cursl;
  1003. if (cursl) {
  1004. *sdim += 2;
  1005. }
  1006. ip = -1;
  1007. if (cursl && ! lst2sl) {
  1008. *info = *n + 2;
  1009. }
  1010. } else {
  1011. /* First eigenvalue of conjugate pair */
  1012. ip = 1;
  1013. }
  1014. }
  1015. lst2sl = lastsl;
  1016. lastsl = cursl;
  1017. /* L30: */
  1018. }
  1019. }
  1020. work[1] = (doublereal) maxwrk;
  1021. return 0;
  1022. /* End of DGEES */
  1023. } /* dgees_ */