You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatps.c 47 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b36 = .5f;
  488. /* > \brief \b CLATPS solves a triangular system of equations with the matrix held in packed storage. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CLATPS + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatps.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatps.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatps.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE, */
  507. /* CNORM, INFO ) */
  508. /* CHARACTER DIAG, NORMIN, TRANS, UPLO */
  509. /* INTEGER INFO, N */
  510. /* REAL SCALE */
  511. /* REAL CNORM( * ) */
  512. /* COMPLEX AP( * ), X( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CLATPS solves one of the triangular systems */
  519. /* > */
  520. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b, */
  521. /* > */
  522. /* > with scaling to prevent overflow, where A is an upper or lower */
  523. /* > triangular matrix stored in packed form. Here A**T denotes the */
  524. /* > transpose of A, A**H denotes the conjugate transpose of A, x and b */
  525. /* > are n-element vectors, and s is a scaling factor, usually less than */
  526. /* > or equal to 1, chosen so that the components of x will be less than */
  527. /* > the overflow threshold. If the unscaled problem will not cause */
  528. /* > overflow, the Level 2 BLAS routine CTPSV is called. If the matrix A */
  529. /* > is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
  530. /* > non-trivial solution to A*x = 0 is returned. */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] UPLO */
  535. /* > \verbatim */
  536. /* > UPLO is CHARACTER*1 */
  537. /* > Specifies whether the matrix A is upper or lower triangular. */
  538. /* > = 'U': Upper triangular */
  539. /* > = 'L': Lower triangular */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] TRANS */
  543. /* > \verbatim */
  544. /* > TRANS is CHARACTER*1 */
  545. /* > Specifies the operation applied to A. */
  546. /* > = 'N': Solve A * x = s*b (No transpose) */
  547. /* > = 'T': Solve A**T * x = s*b (Transpose) */
  548. /* > = 'C': Solve A**H * x = s*b (Conjugate transpose) */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] DIAG */
  552. /* > \verbatim */
  553. /* > DIAG is CHARACTER*1 */
  554. /* > Specifies whether or not the matrix A is unit triangular. */
  555. /* > = 'N': Non-unit triangular */
  556. /* > = 'U': Unit triangular */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NORMIN */
  560. /* > \verbatim */
  561. /* > NORMIN is CHARACTER*1 */
  562. /* > Specifies whether CNORM has been set or not. */
  563. /* > = 'Y': CNORM contains the column norms on entry */
  564. /* > = 'N': CNORM is not set on entry. On exit, the norms will */
  565. /* > be computed and stored in CNORM. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] N */
  569. /* > \verbatim */
  570. /* > N is INTEGER */
  571. /* > The order of the matrix A. N >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] AP */
  575. /* > \verbatim */
  576. /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
  577. /* > The upper or lower triangular matrix A, packed columnwise in */
  578. /* > a linear array. The j-th column of A is stored in the array */
  579. /* > AP as follows: */
  580. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  581. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] X */
  585. /* > \verbatim */
  586. /* > X is COMPLEX array, dimension (N) */
  587. /* > On entry, the right hand side b of the triangular system. */
  588. /* > On exit, X is overwritten by the solution vector x. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] SCALE */
  592. /* > \verbatim */
  593. /* > SCALE is REAL */
  594. /* > The scaling factor s for the triangular system */
  595. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b. */
  596. /* > If SCALE = 0, the matrix A is singular or badly scaled, and */
  597. /* > the vector x is an exact or approximate solution to A*x = 0. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] CNORM */
  601. /* > \verbatim */
  602. /* > CNORM is REAL array, dimension (N) */
  603. /* > */
  604. /* > If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
  605. /* > contains the norm of the off-diagonal part of the j-th column */
  606. /* > of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
  607. /* > to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
  608. /* > must be greater than or equal to the 1-norm. */
  609. /* > */
  610. /* > If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
  611. /* > returns the 1-norm of the offdiagonal part of the j-th column */
  612. /* > of A. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] INFO */
  616. /* > \verbatim */
  617. /* > INFO is INTEGER */
  618. /* > = 0: successful exit */
  619. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  620. /* > \endverbatim */
  621. /* Authors: */
  622. /* ======== */
  623. /* > \author Univ. of Tennessee */
  624. /* > \author Univ. of California Berkeley */
  625. /* > \author Univ. of Colorado Denver */
  626. /* > \author NAG Ltd. */
  627. /* > \date December 2016 */
  628. /* > \ingroup complexOTHERauxiliary */
  629. /* > \par Further Details: */
  630. /* ===================== */
  631. /* > */
  632. /* > \verbatim */
  633. /* > */
  634. /* > A rough bound on x is computed; if that is less than overflow, CTPSV */
  635. /* > is called, otherwise, specific code is used which checks for possible */
  636. /* > overflow or divide-by-zero at every operation. */
  637. /* > */
  638. /* > A columnwise scheme is used for solving A*x = b. The basic algorithm */
  639. /* > if A is lower triangular is */
  640. /* > */
  641. /* > x[1:n] := b[1:n] */
  642. /* > for j = 1, ..., n */
  643. /* > x(j) := x(j) / A(j,j) */
  644. /* > x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
  645. /* > end */
  646. /* > */
  647. /* > Define bounds on the components of x after j iterations of the loop: */
  648. /* > M(j) = bound on x[1:j] */
  649. /* > G(j) = bound on x[j+1:n] */
  650. /* > Initially, let M(0) = 0 and G(0) = f2cmax{x(i), i=1,...,n}. */
  651. /* > */
  652. /* > Then for iteration j+1 we have */
  653. /* > M(j+1) <= G(j) / | A(j+1,j+1) | */
  654. /* > G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
  655. /* > <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
  656. /* > */
  657. /* > where CNORM(j+1) is greater than or equal to the infinity-norm of */
  658. /* > column j+1 of A, not counting the diagonal. Hence */
  659. /* > */
  660. /* > G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
  661. /* > 1<=i<=j */
  662. /* > and */
  663. /* > */
  664. /* > |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
  665. /* > 1<=i< j */
  666. /* > */
  667. /* > Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTPSV if the */
  668. /* > reciprocal of the largest M(j), j=1,..,n, is larger than */
  669. /* > f2cmax(underflow, 1/overflow). */
  670. /* > */
  671. /* > The bound on x(j) is also used to determine when a step in the */
  672. /* > columnwise method can be performed without fear of overflow. If */
  673. /* > the computed bound is greater than a large constant, x is scaled to */
  674. /* > prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
  675. /* > 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
  676. /* > */
  677. /* > Similarly, a row-wise scheme is used to solve A**T *x = b or */
  678. /* > A**H *x = b. The basic algorithm for A upper triangular is */
  679. /* > */
  680. /* > for j = 1, ..., n */
  681. /* > x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
  682. /* > end */
  683. /* > */
  684. /* > We simultaneously compute two bounds */
  685. /* > G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
  686. /* > M(j) = bound on x(i), 1<=i<=j */
  687. /* > */
  688. /* > The initial values are G(0) = 0, M(0) = f2cmax{b(i), i=1,..,n}, and we */
  689. /* > add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
  690. /* > Then the bound on x(j) is */
  691. /* > */
  692. /* > M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
  693. /* > */
  694. /* > <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
  695. /* > 1<=i<=j */
  696. /* > */
  697. /* > and we can safely call CTPSV if 1/M(n) and 1/G(n) are both greater */
  698. /* > than f2cmax(underflow, 1/overflow). */
  699. /* > \endverbatim */
  700. /* > */
  701. /* ===================================================================== */
  702. /* Subroutine */ int clatps_(char *uplo, char *trans, char *diag, char *
  703. normin, integer *n, complex *ap, complex *x, real *scale, real *cnorm,
  704. integer *info)
  705. {
  706. /* System generated locals */
  707. integer i__1, i__2, i__3, i__4, i__5;
  708. real r__1, r__2, r__3, r__4;
  709. complex q__1, q__2, q__3, q__4;
  710. /* Local variables */
  711. integer jinc, jlen;
  712. real xbnd;
  713. integer imax;
  714. real tmax;
  715. complex tjjs;
  716. real xmax, grow;
  717. integer i__, j;
  718. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  719. *, complex *, integer *);
  720. extern logical lsame_(char *, char *);
  721. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  722. real tscal;
  723. complex uscal;
  724. integer jlast;
  725. extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer
  726. *, complex *, integer *);
  727. complex csumj;
  728. extern /* Subroutine */ int caxpy_(integer *, complex *, complex *,
  729. integer *, complex *, integer *);
  730. logical upper;
  731. extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *,
  732. complex *, complex *, integer *), slabad_(
  733. real *, real *);
  734. integer ip;
  735. real xj;
  736. extern integer icamax_(integer *, complex *, integer *);
  737. extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
  738. extern real slamch_(char *);
  739. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  740. *), xerbla_(char *, integer *, ftnlen);
  741. real bignum;
  742. extern integer isamax_(integer *, real *, integer *);
  743. extern real scasum_(integer *, complex *, integer *);
  744. logical notran;
  745. integer jfirst;
  746. real smlnum;
  747. logical nounit;
  748. real rec, tjj;
  749. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  750. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  751. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  752. /* December 2016 */
  753. /* ===================================================================== */
  754. /* Parameter adjustments */
  755. --cnorm;
  756. --x;
  757. --ap;
  758. /* Function Body */
  759. *info = 0;
  760. upper = lsame_(uplo, "U");
  761. notran = lsame_(trans, "N");
  762. nounit = lsame_(diag, "N");
  763. /* Test the input parameters. */
  764. if (! upper && ! lsame_(uplo, "L")) {
  765. *info = -1;
  766. } else if (! notran && ! lsame_(trans, "T") && !
  767. lsame_(trans, "C")) {
  768. *info = -2;
  769. } else if (! nounit && ! lsame_(diag, "U")) {
  770. *info = -3;
  771. } else if (! lsame_(normin, "Y") && ! lsame_(normin,
  772. "N")) {
  773. *info = -4;
  774. } else if (*n < 0) {
  775. *info = -5;
  776. }
  777. if (*info != 0) {
  778. i__1 = -(*info);
  779. xerbla_("CLATPS", &i__1, (ftnlen)6);
  780. return 0;
  781. }
  782. /* Quick return if possible */
  783. if (*n == 0) {
  784. return 0;
  785. }
  786. /* Determine machine dependent parameters to control overflow. */
  787. smlnum = slamch_("Safe minimum");
  788. bignum = 1.f / smlnum;
  789. slabad_(&smlnum, &bignum);
  790. smlnum /= slamch_("Precision");
  791. bignum = 1.f / smlnum;
  792. *scale = 1.f;
  793. if (lsame_(normin, "N")) {
  794. /* Compute the 1-norm of each column, not including the diagonal. */
  795. if (upper) {
  796. /* A is upper triangular. */
  797. ip = 1;
  798. i__1 = *n;
  799. for (j = 1; j <= i__1; ++j) {
  800. i__2 = j - 1;
  801. cnorm[j] = scasum_(&i__2, &ap[ip], &c__1);
  802. ip += j;
  803. /* L10: */
  804. }
  805. } else {
  806. /* A is lower triangular. */
  807. ip = 1;
  808. i__1 = *n - 1;
  809. for (j = 1; j <= i__1; ++j) {
  810. i__2 = *n - j;
  811. cnorm[j] = scasum_(&i__2, &ap[ip + 1], &c__1);
  812. ip = ip + *n - j + 1;
  813. /* L20: */
  814. }
  815. cnorm[*n] = 0.f;
  816. }
  817. }
  818. /* Scale the column norms by TSCAL if the maximum element in CNORM is */
  819. /* greater than BIGNUM/2. */
  820. imax = isamax_(n, &cnorm[1], &c__1);
  821. tmax = cnorm[imax];
  822. if (tmax <= bignum * .5f) {
  823. tscal = 1.f;
  824. } else {
  825. tscal = .5f / (smlnum * tmax);
  826. sscal_(n, &tscal, &cnorm[1], &c__1);
  827. }
  828. /* Compute a bound on the computed solution vector to see if the */
  829. /* Level 2 BLAS routine CTPSV can be used. */
  830. xmax = 0.f;
  831. i__1 = *n;
  832. for (j = 1; j <= i__1; ++j) {
  833. /* Computing MAX */
  834. i__2 = j;
  835. r__3 = xmax, r__4 = (r__1 = x[i__2].r / 2.f, abs(r__1)) + (r__2 =
  836. r_imag(&x[j]) / 2.f, abs(r__2));
  837. xmax = f2cmax(r__3,r__4);
  838. /* L30: */
  839. }
  840. xbnd = xmax;
  841. if (notran) {
  842. /* Compute the growth in A * x = b. */
  843. if (upper) {
  844. jfirst = *n;
  845. jlast = 1;
  846. jinc = -1;
  847. } else {
  848. jfirst = 1;
  849. jlast = *n;
  850. jinc = 1;
  851. }
  852. if (tscal != 1.f) {
  853. grow = 0.f;
  854. goto L60;
  855. }
  856. if (nounit) {
  857. /* A is non-unit triangular. */
  858. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  859. /* Initially, G(0) = f2cmax{x(i), i=1,...,n}. */
  860. grow = .5f / f2cmax(xbnd,smlnum);
  861. xbnd = grow;
  862. ip = jfirst * (jfirst + 1) / 2;
  863. jlen = *n;
  864. i__1 = jlast;
  865. i__2 = jinc;
  866. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  867. /* Exit the loop if the growth factor is too small. */
  868. if (grow <= smlnum) {
  869. goto L60;
  870. }
  871. i__3 = ip;
  872. tjjs.r = ap[i__3].r, tjjs.i = ap[i__3].i;
  873. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
  874. r__2));
  875. if (tjj >= smlnum) {
  876. /* M(j) = G(j-1) / abs(A(j,j)) */
  877. /* Computing MIN */
  878. r__1 = xbnd, r__2 = f2cmin(1.f,tjj) * grow;
  879. xbnd = f2cmin(r__1,r__2);
  880. } else {
  881. /* M(j) could overflow, set XBND to 0. */
  882. xbnd = 0.f;
  883. }
  884. if (tjj + cnorm[j] >= smlnum) {
  885. /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
  886. grow *= tjj / (tjj + cnorm[j]);
  887. } else {
  888. /* G(j) could overflow, set GROW to 0. */
  889. grow = 0.f;
  890. }
  891. ip += jinc * jlen;
  892. --jlen;
  893. /* L40: */
  894. }
  895. grow = xbnd;
  896. } else {
  897. /* A is unit triangular. */
  898. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  899. /* Computing MIN */
  900. r__1 = 1.f, r__2 = .5f / f2cmax(xbnd,smlnum);
  901. grow = f2cmin(r__1,r__2);
  902. i__2 = jlast;
  903. i__1 = jinc;
  904. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  905. /* Exit the loop if the growth factor is too small. */
  906. if (grow <= smlnum) {
  907. goto L60;
  908. }
  909. /* G(j) = G(j-1)*( 1 + CNORM(j) ) */
  910. grow *= 1.f / (cnorm[j] + 1.f);
  911. /* L50: */
  912. }
  913. }
  914. L60:
  915. ;
  916. } else {
  917. /* Compute the growth in A**T * x = b or A**H * x = b. */
  918. if (upper) {
  919. jfirst = 1;
  920. jlast = *n;
  921. jinc = 1;
  922. } else {
  923. jfirst = *n;
  924. jlast = 1;
  925. jinc = -1;
  926. }
  927. if (tscal != 1.f) {
  928. grow = 0.f;
  929. goto L90;
  930. }
  931. if (nounit) {
  932. /* A is non-unit triangular. */
  933. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  934. /* Initially, M(0) = f2cmax{x(i), i=1,...,n}. */
  935. grow = .5f / f2cmax(xbnd,smlnum);
  936. xbnd = grow;
  937. ip = jfirst * (jfirst + 1) / 2;
  938. jlen = 1;
  939. i__1 = jlast;
  940. i__2 = jinc;
  941. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  942. /* Exit the loop if the growth factor is too small. */
  943. if (grow <= smlnum) {
  944. goto L90;
  945. }
  946. /* G(j) = f2cmax( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
  947. xj = cnorm[j] + 1.f;
  948. /* Computing MIN */
  949. r__1 = grow, r__2 = xbnd / xj;
  950. grow = f2cmin(r__1,r__2);
  951. i__3 = ip;
  952. tjjs.r = ap[i__3].r, tjjs.i = ap[i__3].i;
  953. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
  954. r__2));
  955. if (tjj >= smlnum) {
  956. /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
  957. if (xj > tjj) {
  958. xbnd *= tjj / xj;
  959. }
  960. } else {
  961. /* M(j) could overflow, set XBND to 0. */
  962. xbnd = 0.f;
  963. }
  964. ++jlen;
  965. ip += jinc * jlen;
  966. /* L70: */
  967. }
  968. grow = f2cmin(grow,xbnd);
  969. } else {
  970. /* A is unit triangular. */
  971. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  972. /* Computing MIN */
  973. r__1 = 1.f, r__2 = .5f / f2cmax(xbnd,smlnum);
  974. grow = f2cmin(r__1,r__2);
  975. i__2 = jlast;
  976. i__1 = jinc;
  977. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  978. /* Exit the loop if the growth factor is too small. */
  979. if (grow <= smlnum) {
  980. goto L90;
  981. }
  982. /* G(j) = ( 1 + CNORM(j) )*G(j-1) */
  983. xj = cnorm[j] + 1.f;
  984. grow /= xj;
  985. /* L80: */
  986. }
  987. }
  988. L90:
  989. ;
  990. }
  991. if (grow * tscal > smlnum) {
  992. /* Use the Level 2 BLAS solve if the reciprocal of the bound on */
  993. /* elements of X is not too small. */
  994. ctpsv_(uplo, trans, diag, n, &ap[1], &x[1], &c__1);
  995. } else {
  996. /* Use a Level 1 BLAS solve, scaling intermediate results. */
  997. if (xmax > bignum * .5f) {
  998. /* Scale X so that its components are less than or equal to */
  999. /* BIGNUM in absolute value. */
  1000. *scale = bignum * .5f / xmax;
  1001. csscal_(n, scale, &x[1], &c__1);
  1002. xmax = bignum;
  1003. } else {
  1004. xmax *= 2.f;
  1005. }
  1006. if (notran) {
  1007. /* Solve A * x = b */
  1008. ip = jfirst * (jfirst + 1) / 2;
  1009. i__1 = jlast;
  1010. i__2 = jinc;
  1011. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1012. /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
  1013. i__3 = j;
  1014. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
  1015. abs(r__2));
  1016. if (nounit) {
  1017. i__3 = ip;
  1018. q__1.r = tscal * ap[i__3].r, q__1.i = tscal * ap[i__3].i;
  1019. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1020. } else {
  1021. tjjs.r = tscal, tjjs.i = 0.f;
  1022. if (tscal == 1.f) {
  1023. goto L105;
  1024. }
  1025. }
  1026. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
  1027. r__2));
  1028. if (tjj > smlnum) {
  1029. /* abs(A(j,j)) > SMLNUM: */
  1030. if (tjj < 1.f) {
  1031. if (xj > tjj * bignum) {
  1032. /* Scale x by 1/b(j). */
  1033. rec = 1.f / xj;
  1034. csscal_(n, &rec, &x[1], &c__1);
  1035. *scale *= rec;
  1036. xmax *= rec;
  1037. }
  1038. }
  1039. i__3 = j;
  1040. cladiv_(&q__1, &x[j], &tjjs);
  1041. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1042. i__3 = j;
  1043. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
  1044. , abs(r__2));
  1045. } else if (tjj > 0.f) {
  1046. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1047. if (xj > tjj * bignum) {
  1048. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
  1049. /* to avoid overflow when dividing by A(j,j). */
  1050. rec = tjj * bignum / xj;
  1051. if (cnorm[j] > 1.f) {
  1052. /* Scale by 1/CNORM(j) to avoid overflow when */
  1053. /* multiplying x(j) times column j. */
  1054. rec /= cnorm[j];
  1055. }
  1056. csscal_(n, &rec, &x[1], &c__1);
  1057. *scale *= rec;
  1058. xmax *= rec;
  1059. }
  1060. i__3 = j;
  1061. cladiv_(&q__1, &x[j], &tjjs);
  1062. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1063. i__3 = j;
  1064. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
  1065. , abs(r__2));
  1066. } else {
  1067. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1068. /* scale = 0, and compute a solution to A*x = 0. */
  1069. i__3 = *n;
  1070. for (i__ = 1; i__ <= i__3; ++i__) {
  1071. i__4 = i__;
  1072. x[i__4].r = 0.f, x[i__4].i = 0.f;
  1073. /* L100: */
  1074. }
  1075. i__3 = j;
  1076. x[i__3].r = 1.f, x[i__3].i = 0.f;
  1077. xj = 1.f;
  1078. *scale = 0.f;
  1079. xmax = 0.f;
  1080. }
  1081. L105:
  1082. /* Scale x if necessary to avoid overflow when adding a */
  1083. /* multiple of column j of A. */
  1084. if (xj > 1.f) {
  1085. rec = 1.f / xj;
  1086. if (cnorm[j] > (bignum - xmax) * rec) {
  1087. /* Scale x by 1/(2*abs(x(j))). */
  1088. rec *= .5f;
  1089. csscal_(n, &rec, &x[1], &c__1);
  1090. *scale *= rec;
  1091. }
  1092. } else if (xj * cnorm[j] > bignum - xmax) {
  1093. /* Scale x by 1/2. */
  1094. csscal_(n, &c_b36, &x[1], &c__1);
  1095. *scale *= .5f;
  1096. }
  1097. if (upper) {
  1098. if (j > 1) {
  1099. /* Compute the update */
  1100. /* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
  1101. i__3 = j - 1;
  1102. i__4 = j;
  1103. q__2.r = -x[i__4].r, q__2.i = -x[i__4].i;
  1104. q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
  1105. caxpy_(&i__3, &q__1, &ap[ip - j + 1], &c__1, &x[1], &
  1106. c__1);
  1107. i__3 = j - 1;
  1108. i__ = icamax_(&i__3, &x[1], &c__1);
  1109. i__3 = i__;
  1110. xmax = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(
  1111. &x[i__]), abs(r__2));
  1112. }
  1113. ip -= j;
  1114. } else {
  1115. if (j < *n) {
  1116. /* Compute the update */
  1117. /* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
  1118. i__3 = *n - j;
  1119. i__4 = j;
  1120. q__2.r = -x[i__4].r, q__2.i = -x[i__4].i;
  1121. q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
  1122. caxpy_(&i__3, &q__1, &ap[ip + 1], &c__1, &x[j + 1], &
  1123. c__1);
  1124. i__3 = *n - j;
  1125. i__ = j + icamax_(&i__3, &x[j + 1], &c__1);
  1126. i__3 = i__;
  1127. xmax = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(
  1128. &x[i__]), abs(r__2));
  1129. }
  1130. ip = ip + *n - j + 1;
  1131. }
  1132. /* L110: */
  1133. }
  1134. } else if (lsame_(trans, "T")) {
  1135. /* Solve A**T * x = b */
  1136. ip = jfirst * (jfirst + 1) / 2;
  1137. jlen = 1;
  1138. i__2 = jlast;
  1139. i__1 = jinc;
  1140. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  1141. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1142. /* k<>j */
  1143. i__3 = j;
  1144. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
  1145. abs(r__2));
  1146. uscal.r = tscal, uscal.i = 0.f;
  1147. rec = 1.f / f2cmax(xmax,1.f);
  1148. if (cnorm[j] > (bignum - xj) * rec) {
  1149. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1150. rec *= .5f;
  1151. if (nounit) {
  1152. i__3 = ip;
  1153. q__1.r = tscal * ap[i__3].r, q__1.i = tscal * ap[i__3]
  1154. .i;
  1155. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1156. } else {
  1157. tjjs.r = tscal, tjjs.i = 0.f;
  1158. }
  1159. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
  1160. abs(r__2));
  1161. if (tjj > 1.f) {
  1162. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1163. /* Computing MIN */
  1164. r__1 = 1.f, r__2 = rec * tjj;
  1165. rec = f2cmin(r__1,r__2);
  1166. cladiv_(&q__1, &uscal, &tjjs);
  1167. uscal.r = q__1.r, uscal.i = q__1.i;
  1168. }
  1169. if (rec < 1.f) {
  1170. csscal_(n, &rec, &x[1], &c__1);
  1171. *scale *= rec;
  1172. xmax *= rec;
  1173. }
  1174. }
  1175. csumj.r = 0.f, csumj.i = 0.f;
  1176. if (uscal.r == 1.f && uscal.i == 0.f) {
  1177. /* If the scaling needed for A in the dot product is 1, */
  1178. /* call CDOTU to perform the dot product. */
  1179. if (upper) {
  1180. i__3 = j - 1;
  1181. cdotu_(&q__1, &i__3, &ap[ip - j + 1], &c__1, &x[1], &
  1182. c__1);
  1183. csumj.r = q__1.r, csumj.i = q__1.i;
  1184. } else if (j < *n) {
  1185. i__3 = *n - j;
  1186. cdotu_(&q__1, &i__3, &ap[ip + 1], &c__1, &x[j + 1], &
  1187. c__1);
  1188. csumj.r = q__1.r, csumj.i = q__1.i;
  1189. }
  1190. } else {
  1191. /* Otherwise, use in-line code for the dot product. */
  1192. if (upper) {
  1193. i__3 = j - 1;
  1194. for (i__ = 1; i__ <= i__3; ++i__) {
  1195. i__4 = ip - j + i__;
  1196. q__3.r = ap[i__4].r * uscal.r - ap[i__4].i *
  1197. uscal.i, q__3.i = ap[i__4].r * uscal.i +
  1198. ap[i__4].i * uscal.r;
  1199. i__5 = i__;
  1200. q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i,
  1201. q__2.i = q__3.r * x[i__5].i + q__3.i * x[
  1202. i__5].r;
  1203. q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
  1204. q__2.i;
  1205. csumj.r = q__1.r, csumj.i = q__1.i;
  1206. /* L120: */
  1207. }
  1208. } else if (j < *n) {
  1209. i__3 = *n - j;
  1210. for (i__ = 1; i__ <= i__3; ++i__) {
  1211. i__4 = ip + i__;
  1212. q__3.r = ap[i__4].r * uscal.r - ap[i__4].i *
  1213. uscal.i, q__3.i = ap[i__4].r * uscal.i +
  1214. ap[i__4].i * uscal.r;
  1215. i__5 = j + i__;
  1216. q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i,
  1217. q__2.i = q__3.r * x[i__5].i + q__3.i * x[
  1218. i__5].r;
  1219. q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
  1220. q__2.i;
  1221. csumj.r = q__1.r, csumj.i = q__1.i;
  1222. /* L130: */
  1223. }
  1224. }
  1225. }
  1226. q__1.r = tscal, q__1.i = 0.f;
  1227. if (uscal.r == q__1.r && uscal.i == q__1.i) {
  1228. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1229. /* was not used to scale the dotproduct. */
  1230. i__3 = j;
  1231. i__4 = j;
  1232. q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i -
  1233. csumj.i;
  1234. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1235. i__3 = j;
  1236. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
  1237. , abs(r__2));
  1238. if (nounit) {
  1239. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1240. i__3 = ip;
  1241. q__1.r = tscal * ap[i__3].r, q__1.i = tscal * ap[i__3]
  1242. .i;
  1243. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1244. } else {
  1245. tjjs.r = tscal, tjjs.i = 0.f;
  1246. if (tscal == 1.f) {
  1247. goto L145;
  1248. }
  1249. }
  1250. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
  1251. abs(r__2));
  1252. if (tjj > smlnum) {
  1253. /* abs(A(j,j)) > SMLNUM: */
  1254. if (tjj < 1.f) {
  1255. if (xj > tjj * bignum) {
  1256. /* Scale X by 1/abs(x(j)). */
  1257. rec = 1.f / xj;
  1258. csscal_(n, &rec, &x[1], &c__1);
  1259. *scale *= rec;
  1260. xmax *= rec;
  1261. }
  1262. }
  1263. i__3 = j;
  1264. cladiv_(&q__1, &x[j], &tjjs);
  1265. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1266. } else if (tjj > 0.f) {
  1267. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1268. if (xj > tjj * bignum) {
  1269. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1270. rec = tjj * bignum / xj;
  1271. csscal_(n, &rec, &x[1], &c__1);
  1272. *scale *= rec;
  1273. xmax *= rec;
  1274. }
  1275. i__3 = j;
  1276. cladiv_(&q__1, &x[j], &tjjs);
  1277. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1278. } else {
  1279. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1280. /* scale = 0 and compute a solution to A**T *x = 0. */
  1281. i__3 = *n;
  1282. for (i__ = 1; i__ <= i__3; ++i__) {
  1283. i__4 = i__;
  1284. x[i__4].r = 0.f, x[i__4].i = 0.f;
  1285. /* L140: */
  1286. }
  1287. i__3 = j;
  1288. x[i__3].r = 1.f, x[i__3].i = 0.f;
  1289. *scale = 0.f;
  1290. xmax = 0.f;
  1291. }
  1292. L145:
  1293. ;
  1294. } else {
  1295. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1296. /* product has already been divided by 1/A(j,j). */
  1297. i__3 = j;
  1298. cladiv_(&q__2, &x[j], &tjjs);
  1299. q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
  1300. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1301. }
  1302. /* Computing MAX */
  1303. i__3 = j;
  1304. r__3 = xmax, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
  1305. r_imag(&x[j]), abs(r__2));
  1306. xmax = f2cmax(r__3,r__4);
  1307. ++jlen;
  1308. ip += jinc * jlen;
  1309. /* L150: */
  1310. }
  1311. } else {
  1312. /* Solve A**H * x = b */
  1313. ip = jfirst * (jfirst + 1) / 2;
  1314. jlen = 1;
  1315. i__1 = jlast;
  1316. i__2 = jinc;
  1317. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1318. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1319. /* k<>j */
  1320. i__3 = j;
  1321. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
  1322. abs(r__2));
  1323. uscal.r = tscal, uscal.i = 0.f;
  1324. rec = 1.f / f2cmax(xmax,1.f);
  1325. if (cnorm[j] > (bignum - xj) * rec) {
  1326. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1327. rec *= .5f;
  1328. if (nounit) {
  1329. r_cnjg(&q__2, &ap[ip]);
  1330. q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
  1331. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1332. } else {
  1333. tjjs.r = tscal, tjjs.i = 0.f;
  1334. }
  1335. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
  1336. abs(r__2));
  1337. if (tjj > 1.f) {
  1338. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1339. /* Computing MIN */
  1340. r__1 = 1.f, r__2 = rec * tjj;
  1341. rec = f2cmin(r__1,r__2);
  1342. cladiv_(&q__1, &uscal, &tjjs);
  1343. uscal.r = q__1.r, uscal.i = q__1.i;
  1344. }
  1345. if (rec < 1.f) {
  1346. csscal_(n, &rec, &x[1], &c__1);
  1347. *scale *= rec;
  1348. xmax *= rec;
  1349. }
  1350. }
  1351. csumj.r = 0.f, csumj.i = 0.f;
  1352. if (uscal.r == 1.f && uscal.i == 0.f) {
  1353. /* If the scaling needed for A in the dot product is 1, */
  1354. /* call CDOTC to perform the dot product. */
  1355. if (upper) {
  1356. i__3 = j - 1;
  1357. cdotc_(&q__1, &i__3, &ap[ip - j + 1], &c__1, &x[1], &
  1358. c__1);
  1359. csumj.r = q__1.r, csumj.i = q__1.i;
  1360. } else if (j < *n) {
  1361. i__3 = *n - j;
  1362. cdotc_(&q__1, &i__3, &ap[ip + 1], &c__1, &x[j + 1], &
  1363. c__1);
  1364. csumj.r = q__1.r, csumj.i = q__1.i;
  1365. }
  1366. } else {
  1367. /* Otherwise, use in-line code for the dot product. */
  1368. if (upper) {
  1369. i__3 = j - 1;
  1370. for (i__ = 1; i__ <= i__3; ++i__) {
  1371. r_cnjg(&q__4, &ap[ip - j + i__]);
  1372. q__3.r = q__4.r * uscal.r - q__4.i * uscal.i,
  1373. q__3.i = q__4.r * uscal.i + q__4.i *
  1374. uscal.r;
  1375. i__4 = i__;
  1376. q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
  1377. q__2.i = q__3.r * x[i__4].i + q__3.i * x[
  1378. i__4].r;
  1379. q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
  1380. q__2.i;
  1381. csumj.r = q__1.r, csumj.i = q__1.i;
  1382. /* L160: */
  1383. }
  1384. } else if (j < *n) {
  1385. i__3 = *n - j;
  1386. for (i__ = 1; i__ <= i__3; ++i__) {
  1387. r_cnjg(&q__4, &ap[ip + i__]);
  1388. q__3.r = q__4.r * uscal.r - q__4.i * uscal.i,
  1389. q__3.i = q__4.r * uscal.i + q__4.i *
  1390. uscal.r;
  1391. i__4 = j + i__;
  1392. q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
  1393. q__2.i = q__3.r * x[i__4].i + q__3.i * x[
  1394. i__4].r;
  1395. q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
  1396. q__2.i;
  1397. csumj.r = q__1.r, csumj.i = q__1.i;
  1398. /* L170: */
  1399. }
  1400. }
  1401. }
  1402. q__1.r = tscal, q__1.i = 0.f;
  1403. if (uscal.r == q__1.r && uscal.i == q__1.i) {
  1404. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1405. /* was not used to scale the dotproduct. */
  1406. i__3 = j;
  1407. i__4 = j;
  1408. q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i -
  1409. csumj.i;
  1410. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1411. i__3 = j;
  1412. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
  1413. , abs(r__2));
  1414. if (nounit) {
  1415. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1416. r_cnjg(&q__2, &ap[ip]);
  1417. q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
  1418. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1419. } else {
  1420. tjjs.r = tscal, tjjs.i = 0.f;
  1421. if (tscal == 1.f) {
  1422. goto L185;
  1423. }
  1424. }
  1425. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
  1426. abs(r__2));
  1427. if (tjj > smlnum) {
  1428. /* abs(A(j,j)) > SMLNUM: */
  1429. if (tjj < 1.f) {
  1430. if (xj > tjj * bignum) {
  1431. /* Scale X by 1/abs(x(j)). */
  1432. rec = 1.f / xj;
  1433. csscal_(n, &rec, &x[1], &c__1);
  1434. *scale *= rec;
  1435. xmax *= rec;
  1436. }
  1437. }
  1438. i__3 = j;
  1439. cladiv_(&q__1, &x[j], &tjjs);
  1440. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1441. } else if (tjj > 0.f) {
  1442. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1443. if (xj > tjj * bignum) {
  1444. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1445. rec = tjj * bignum / xj;
  1446. csscal_(n, &rec, &x[1], &c__1);
  1447. *scale *= rec;
  1448. xmax *= rec;
  1449. }
  1450. i__3 = j;
  1451. cladiv_(&q__1, &x[j], &tjjs);
  1452. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1453. } else {
  1454. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1455. /* scale = 0 and compute a solution to A**H *x = 0. */
  1456. i__3 = *n;
  1457. for (i__ = 1; i__ <= i__3; ++i__) {
  1458. i__4 = i__;
  1459. x[i__4].r = 0.f, x[i__4].i = 0.f;
  1460. /* L180: */
  1461. }
  1462. i__3 = j;
  1463. x[i__3].r = 1.f, x[i__3].i = 0.f;
  1464. *scale = 0.f;
  1465. xmax = 0.f;
  1466. }
  1467. L185:
  1468. ;
  1469. } else {
  1470. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1471. /* product has already been divided by 1/A(j,j). */
  1472. i__3 = j;
  1473. cladiv_(&q__2, &x[j], &tjjs);
  1474. q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
  1475. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1476. }
  1477. /* Computing MAX */
  1478. i__3 = j;
  1479. r__3 = xmax, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
  1480. r_imag(&x[j]), abs(r__2));
  1481. xmax = f2cmax(r__3,r__4);
  1482. ++jlen;
  1483. ip += jinc * jlen;
  1484. /* L190: */
  1485. }
  1486. }
  1487. *scale /= tscal;
  1488. }
  1489. /* Scale the column norms by 1/TSCAL for return. */
  1490. if (tscal != 1.f) {
  1491. r__1 = 1.f / tscal;
  1492. sscal_(n, &r__1, &cnorm[1], &c__1);
  1493. }
  1494. return 0;
  1495. /* End of CLATPS */
  1496. } /* clatps_ */