You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsyevx.c 34 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. /* > \brief <b> DSYEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat
  489. rices</b> */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download DSYEVX + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevx.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevx.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevx.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, */
  508. /* ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, */
  509. /* IFAIL, INFO ) */
  510. /* CHARACTER JOBZ, RANGE, UPLO */
  511. /* INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N */
  512. /* DOUBLE PRECISION ABSTOL, VL, VU */
  513. /* INTEGER IFAIL( * ), IWORK( * ) */
  514. /* DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DSYEVX computes selected eigenvalues and, optionally, eigenvectors */
  521. /* > of a real symmetric matrix A. Eigenvalues and eigenvectors can be */
  522. /* > selected by specifying either a range of values or a range of indices */
  523. /* > for the desired eigenvalues. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] JOBZ */
  528. /* > \verbatim */
  529. /* > JOBZ is CHARACTER*1 */
  530. /* > = 'N': Compute eigenvalues only; */
  531. /* > = 'V': Compute eigenvalues and eigenvectors. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] RANGE */
  535. /* > \verbatim */
  536. /* > RANGE is CHARACTER*1 */
  537. /* > = 'A': all eigenvalues will be found. */
  538. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  539. /* > will be found. */
  540. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] UPLO */
  544. /* > \verbatim */
  545. /* > UPLO is CHARACTER*1 */
  546. /* > = 'U': Upper triangle of A is stored; */
  547. /* > = 'L': Lower triangle of A is stored. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] N */
  551. /* > \verbatim */
  552. /* > N is INTEGER */
  553. /* > The order of the matrix A. N >= 0. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in,out] A */
  557. /* > \verbatim */
  558. /* > A is DOUBLE PRECISION array, dimension (LDA, N) */
  559. /* > On entry, the symmetric matrix A. If UPLO = 'U', the */
  560. /* > leading N-by-N upper triangular part of A contains the */
  561. /* > upper triangular part of the matrix A. If UPLO = 'L', */
  562. /* > the leading N-by-N lower triangular part of A contains */
  563. /* > the lower triangular part of the matrix A. */
  564. /* > On exit, the lower triangle (if UPLO='L') or the upper */
  565. /* > triangle (if UPLO='U') of A, including the diagonal, is */
  566. /* > destroyed. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] LDA */
  570. /* > \verbatim */
  571. /* > LDA is INTEGER */
  572. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] VL */
  576. /* > \verbatim */
  577. /* > VL is DOUBLE PRECISION */
  578. /* > If RANGE='V', the lower bound of the interval to */
  579. /* > be searched for eigenvalues. VL < VU. */
  580. /* > Not referenced if RANGE = 'A' or 'I'. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] VU */
  584. /* > \verbatim */
  585. /* > VU is DOUBLE PRECISION */
  586. /* > If RANGE='V', the upper bound of the interval to */
  587. /* > be searched for eigenvalues. VL < VU. */
  588. /* > Not referenced if RANGE = 'A' or 'I'. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] IL */
  592. /* > \verbatim */
  593. /* > IL is INTEGER */
  594. /* > If RANGE='I', the index of the */
  595. /* > smallest eigenvalue to be returned. */
  596. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  597. /* > Not referenced if RANGE = 'A' or 'V'. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] IU */
  601. /* > \verbatim */
  602. /* > IU is INTEGER */
  603. /* > If RANGE='I', the index of the */
  604. /* > largest eigenvalue to be returned. */
  605. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  606. /* > Not referenced if RANGE = 'A' or 'V'. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] ABSTOL */
  610. /* > \verbatim */
  611. /* > ABSTOL is DOUBLE PRECISION */
  612. /* > The absolute error tolerance for the eigenvalues. */
  613. /* > An approximate eigenvalue is accepted as converged */
  614. /* > when it is determined to lie in an interval [a,b] */
  615. /* > of width less than or equal to */
  616. /* > */
  617. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  618. /* > */
  619. /* > where EPS is the machine precision. If ABSTOL is less than */
  620. /* > or equal to zero, then EPS*|T| will be used in its place, */
  621. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  622. /* > by reducing A to tridiagonal form. */
  623. /* > */
  624. /* > Eigenvalues will be computed most accurately when ABSTOL is */
  625. /* > set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
  626. /* > If this routine returns with INFO>0, indicating that some */
  627. /* > eigenvectors did not converge, try setting ABSTOL to */
  628. /* > 2*DLAMCH('S'). */
  629. /* > */
  630. /* > See "Computing Small Singular Values of Bidiagonal Matrices */
  631. /* > with Guaranteed High Relative Accuracy," by Demmel and */
  632. /* > Kahan, LAPACK Working Note #3. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[out] M */
  636. /* > \verbatim */
  637. /* > M is INTEGER */
  638. /* > The total number of eigenvalues found. 0 <= M <= N. */
  639. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] W */
  643. /* > \verbatim */
  644. /* > W is DOUBLE PRECISION array, dimension (N) */
  645. /* > On normal exit, the first M elements contain the selected */
  646. /* > eigenvalues in ascending order. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] Z */
  650. /* > \verbatim */
  651. /* > Z is DOUBLE PRECISION array, dimension (LDZ, f2cmax(1,M)) */
  652. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  653. /* > contain the orthonormal eigenvectors of the matrix A */
  654. /* > corresponding to the selected eigenvalues, with the i-th */
  655. /* > column of Z holding the eigenvector associated with W(i). */
  656. /* > If an eigenvector fails to converge, then that column of Z */
  657. /* > contains the latest approximation to the eigenvector, and the */
  658. /* > index of the eigenvector is returned in IFAIL. */
  659. /* > If JOBZ = 'N', then Z is not referenced. */
  660. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  661. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  662. /* > is not known in advance and an upper bound must be used. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[in] LDZ */
  666. /* > \verbatim */
  667. /* > LDZ is INTEGER */
  668. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  669. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[out] WORK */
  673. /* > \verbatim */
  674. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  675. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LWORK */
  679. /* > \verbatim */
  680. /* > LWORK is INTEGER */
  681. /* > The length of the array WORK. LWORK >= 1, when N <= 1; */
  682. /* > otherwise 8*N. */
  683. /* > For optimal efficiency, LWORK >= (NB+3)*N, */
  684. /* > where NB is the f2cmax of the blocksize for DSYTRD and DORMTR */
  685. /* > returned by ILAENV. */
  686. /* > */
  687. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  688. /* > only calculates the optimal size of the WORK array, returns */
  689. /* > this value as the first entry of the WORK array, and no error */
  690. /* > message related to LWORK is issued by XERBLA. */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] IWORK */
  694. /* > \verbatim */
  695. /* > IWORK is INTEGER array, dimension (5*N) */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[out] IFAIL */
  699. /* > \verbatim */
  700. /* > IFAIL is INTEGER array, dimension (N) */
  701. /* > If JOBZ = 'V', then if INFO = 0, the first M elements of */
  702. /* > IFAIL are zero. If INFO > 0, then IFAIL contains the */
  703. /* > indices of the eigenvectors that failed to converge. */
  704. /* > If JOBZ = 'N', then IFAIL is not referenced. */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[out] INFO */
  708. /* > \verbatim */
  709. /* > INFO is INTEGER */
  710. /* > = 0: successful exit */
  711. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  712. /* > > 0: if INFO = i, then i eigenvectors failed to converge. */
  713. /* > Their indices are stored in array IFAIL. */
  714. /* > \endverbatim */
  715. /* Authors: */
  716. /* ======== */
  717. /* > \author Univ. of Tennessee */
  718. /* > \author Univ. of California Berkeley */
  719. /* > \author Univ. of Colorado Denver */
  720. /* > \author NAG Ltd. */
  721. /* > \date June 2016 */
  722. /* > \ingroup doubleSYeigen */
  723. /* ===================================================================== */
  724. /* Subroutine */ int dsyevx_(char *jobz, char *range, char *uplo, integer *n,
  725. doublereal *a, integer *lda, doublereal *vl, doublereal *vu, integer *
  726. il, integer *iu, doublereal *abstol, integer *m, doublereal *w,
  727. doublereal *z__, integer *ldz, doublereal *work, integer *lwork,
  728. integer *iwork, integer *ifail, integer *info)
  729. {
  730. /* System generated locals */
  731. integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
  732. doublereal d__1, d__2;
  733. /* Local variables */
  734. integer indd, inde;
  735. doublereal anrm;
  736. integer imax;
  737. doublereal rmin, rmax;
  738. logical test;
  739. integer itmp1, i__, j, indee;
  740. extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
  741. integer *);
  742. doublereal sigma;
  743. extern logical lsame_(char *, char *);
  744. integer iinfo;
  745. char order[1];
  746. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  747. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  748. *, doublereal *, integer *);
  749. logical lower, wantz;
  750. integer nb, jj;
  751. extern doublereal dlamch_(char *);
  752. logical alleig, indeig;
  753. integer iscale, indibl;
  754. logical valeig;
  755. extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
  756. doublereal *, integer *, doublereal *, integer *);
  757. doublereal safmin;
  758. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  759. integer *, integer *, ftnlen, ftnlen);
  760. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  761. doublereal abstll, bignum;
  762. integer indtau, indisp;
  763. extern /* Subroutine */ int dstein_(integer *, doublereal *, doublereal *,
  764. integer *, doublereal *, integer *, integer *, doublereal *,
  765. integer *, doublereal *, integer *, integer *, integer *),
  766. dsterf_(integer *, doublereal *, doublereal *, integer *);
  767. integer indiwo, indwkn;
  768. extern doublereal dlansy_(char *, char *, integer *, doublereal *,
  769. integer *, doublereal *);
  770. extern /* Subroutine */ int dstebz_(char *, char *, integer *, doublereal
  771. *, doublereal *, integer *, integer *, doublereal *, doublereal *,
  772. doublereal *, integer *, integer *, doublereal *, integer *,
  773. integer *, doublereal *, integer *, integer *);
  774. integer indwrk, lwkmin;
  775. extern /* Subroutine */ int dorgtr_(char *, integer *, doublereal *,
  776. integer *, doublereal *, doublereal *, integer *, integer *), dsteqr_(char *, integer *, doublereal *, doublereal *,
  777. doublereal *, integer *, doublereal *, integer *),
  778. dormtr_(char *, char *, char *, integer *, integer *, doublereal *
  779. , integer *, doublereal *, doublereal *, integer *, doublereal *,
  780. integer *, integer *);
  781. integer llwrkn, llwork, nsplit;
  782. doublereal smlnum;
  783. extern /* Subroutine */ int dsytrd_(char *, integer *, doublereal *,
  784. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  785. integer *, integer *);
  786. integer lwkopt;
  787. logical lquery;
  788. doublereal eps, vll, vuu, tmp1;
  789. /* -- LAPACK driver routine (version 3.7.0) -- */
  790. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  791. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  792. /* June 2016 */
  793. /* ===================================================================== */
  794. /* Test the input parameters. */
  795. /* Parameter adjustments */
  796. a_dim1 = *lda;
  797. a_offset = 1 + a_dim1 * 1;
  798. a -= a_offset;
  799. --w;
  800. z_dim1 = *ldz;
  801. z_offset = 1 + z_dim1 * 1;
  802. z__ -= z_offset;
  803. --work;
  804. --iwork;
  805. --ifail;
  806. /* Function Body */
  807. lower = lsame_(uplo, "L");
  808. wantz = lsame_(jobz, "V");
  809. alleig = lsame_(range, "A");
  810. valeig = lsame_(range, "V");
  811. indeig = lsame_(range, "I");
  812. lquery = *lwork == -1;
  813. *info = 0;
  814. if (! (wantz || lsame_(jobz, "N"))) {
  815. *info = -1;
  816. } else if (! (alleig || valeig || indeig)) {
  817. *info = -2;
  818. } else if (! (lower || lsame_(uplo, "U"))) {
  819. *info = -3;
  820. } else if (*n < 0) {
  821. *info = -4;
  822. } else if (*lda < f2cmax(1,*n)) {
  823. *info = -6;
  824. } else {
  825. if (valeig) {
  826. if (*n > 0 && *vu <= *vl) {
  827. *info = -8;
  828. }
  829. } else if (indeig) {
  830. if (*il < 1 || *il > f2cmax(1,*n)) {
  831. *info = -9;
  832. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  833. *info = -10;
  834. }
  835. }
  836. }
  837. if (*info == 0) {
  838. if (*ldz < 1 || wantz && *ldz < *n) {
  839. *info = -15;
  840. }
  841. }
  842. if (*info == 0) {
  843. if (*n <= 1) {
  844. lwkmin = 1;
  845. work[1] = (doublereal) lwkmin;
  846. } else {
  847. lwkmin = *n << 3;
  848. nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (
  849. ftnlen)6, (ftnlen)1);
  850. /* Computing MAX */
  851. i__1 = nb, i__2 = ilaenv_(&c__1, "DORMTR", uplo, n, &c_n1, &c_n1,
  852. &c_n1, (ftnlen)6, (ftnlen)1);
  853. nb = f2cmax(i__1,i__2);
  854. /* Computing MAX */
  855. i__1 = lwkmin, i__2 = (nb + 3) * *n;
  856. lwkopt = f2cmax(i__1,i__2);
  857. work[1] = (doublereal) lwkopt;
  858. }
  859. if (*lwork < lwkmin && ! lquery) {
  860. *info = -17;
  861. }
  862. }
  863. if (*info != 0) {
  864. i__1 = -(*info);
  865. xerbla_("DSYEVX", &i__1, (ftnlen)6);
  866. return 0;
  867. } else if (lquery) {
  868. return 0;
  869. }
  870. /* Quick return if possible */
  871. *m = 0;
  872. if (*n == 0) {
  873. return 0;
  874. }
  875. if (*n == 1) {
  876. if (alleig || indeig) {
  877. *m = 1;
  878. w[1] = a[a_dim1 + 1];
  879. } else {
  880. if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
  881. *m = 1;
  882. w[1] = a[a_dim1 + 1];
  883. }
  884. }
  885. if (wantz) {
  886. z__[z_dim1 + 1] = 1.;
  887. }
  888. return 0;
  889. }
  890. /* Get machine constants. */
  891. safmin = dlamch_("Safe minimum");
  892. eps = dlamch_("Precision");
  893. smlnum = safmin / eps;
  894. bignum = 1. / smlnum;
  895. rmin = sqrt(smlnum);
  896. /* Computing MIN */
  897. d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
  898. rmax = f2cmin(d__1,d__2);
  899. /* Scale matrix to allowable range, if necessary. */
  900. iscale = 0;
  901. abstll = *abstol;
  902. if (valeig) {
  903. vll = *vl;
  904. vuu = *vu;
  905. }
  906. anrm = dlansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
  907. if (anrm > 0. && anrm < rmin) {
  908. iscale = 1;
  909. sigma = rmin / anrm;
  910. } else if (anrm > rmax) {
  911. iscale = 1;
  912. sigma = rmax / anrm;
  913. }
  914. if (iscale == 1) {
  915. if (lower) {
  916. i__1 = *n;
  917. for (j = 1; j <= i__1; ++j) {
  918. i__2 = *n - j + 1;
  919. dscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
  920. /* L10: */
  921. }
  922. } else {
  923. i__1 = *n;
  924. for (j = 1; j <= i__1; ++j) {
  925. dscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
  926. /* L20: */
  927. }
  928. }
  929. if (*abstol > 0.) {
  930. abstll = *abstol * sigma;
  931. }
  932. if (valeig) {
  933. vll = *vl * sigma;
  934. vuu = *vu * sigma;
  935. }
  936. }
  937. /* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
  938. indtau = 1;
  939. inde = indtau + *n;
  940. indd = inde + *n;
  941. indwrk = indd + *n;
  942. llwork = *lwork - indwrk + 1;
  943. dsytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
  944. indtau], &work[indwrk], &llwork, &iinfo);
  945. /* If all eigenvalues are desired and ABSTOL is less than or equal to */
  946. /* zero, then call DSTERF or DORGTR and SSTEQR. If this fails for */
  947. /* some eigenvalue, then try DSTEBZ. */
  948. test = FALSE_;
  949. if (indeig) {
  950. if (*il == 1 && *iu == *n) {
  951. test = TRUE_;
  952. }
  953. }
  954. if ((alleig || test) && *abstol <= 0.) {
  955. dcopy_(n, &work[indd], &c__1, &w[1], &c__1);
  956. indee = indwrk + (*n << 1);
  957. if (! wantz) {
  958. i__1 = *n - 1;
  959. dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
  960. dsterf_(n, &w[1], &work[indee], info);
  961. } else {
  962. dlacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
  963. dorgtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
  964. , &llwork, &iinfo);
  965. i__1 = *n - 1;
  966. dcopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
  967. dsteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
  968. indwrk], info);
  969. if (*info == 0) {
  970. i__1 = *n;
  971. for (i__ = 1; i__ <= i__1; ++i__) {
  972. ifail[i__] = 0;
  973. /* L30: */
  974. }
  975. }
  976. }
  977. if (*info == 0) {
  978. *m = *n;
  979. goto L40;
  980. }
  981. *info = 0;
  982. }
  983. /* Otherwise, call DSTEBZ and, if eigenvectors are desired, SSTEIN. */
  984. if (wantz) {
  985. *(unsigned char *)order = 'B';
  986. } else {
  987. *(unsigned char *)order = 'E';
  988. }
  989. indibl = 1;
  990. indisp = indibl + *n;
  991. indiwo = indisp + *n;
  992. dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
  993. inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
  994. indwrk], &iwork[indiwo], info);
  995. if (wantz) {
  996. dstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
  997. indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
  998. ifail[1], info);
  999. /* Apply orthogonal matrix used in reduction to tridiagonal */
  1000. /* form to eigenvectors returned by DSTEIN. */
  1001. indwkn = inde;
  1002. llwrkn = *lwork - indwkn + 1;
  1003. dormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
  1004. z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
  1005. }
  1006. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1007. L40:
  1008. if (iscale == 1) {
  1009. if (*info == 0) {
  1010. imax = *m;
  1011. } else {
  1012. imax = *info - 1;
  1013. }
  1014. d__1 = 1. / sigma;
  1015. dscal_(&imax, &d__1, &w[1], &c__1);
  1016. }
  1017. /* If eigenvalues are not in order, then sort them, along with */
  1018. /* eigenvectors. */
  1019. if (wantz) {
  1020. i__1 = *m - 1;
  1021. for (j = 1; j <= i__1; ++j) {
  1022. i__ = 0;
  1023. tmp1 = w[j];
  1024. i__2 = *m;
  1025. for (jj = j + 1; jj <= i__2; ++jj) {
  1026. if (w[jj] < tmp1) {
  1027. i__ = jj;
  1028. tmp1 = w[jj];
  1029. }
  1030. /* L50: */
  1031. }
  1032. if (i__ != 0) {
  1033. itmp1 = iwork[indibl + i__ - 1];
  1034. w[i__] = w[j];
  1035. iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
  1036. w[j] = tmp1;
  1037. iwork[indibl + j - 1] = itmp1;
  1038. dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  1039. &c__1);
  1040. if (*info != 0) {
  1041. itmp1 = ifail[i__];
  1042. ifail[i__] = ifail[j];
  1043. ifail[j] = itmp1;
  1044. }
  1045. }
  1046. /* L60: */
  1047. }
  1048. }
  1049. /* Set WORK(1) to optimal workspace size. */
  1050. work[1] = (doublereal) lwkopt;
  1051. return 0;
  1052. /* End of DSYEVX */
  1053. } /* dsyevx_ */