You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clatrs.c 47 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b36 = .5f;
  488. /* > \brief \b CLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
  489. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLATRS + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatrs.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatrs.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatrs.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, */
  508. /* CNORM, INFO ) */
  509. /* CHARACTER DIAG, NORMIN, TRANS, UPLO */
  510. /* INTEGER INFO, LDA, N */
  511. /* REAL SCALE */
  512. /* REAL CNORM( * ) */
  513. /* COMPLEX A( LDA, * ), X( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > CLATRS solves one of the triangular systems */
  520. /* > */
  521. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b, */
  522. /* > */
  523. /* > with scaling to prevent overflow. Here A is an upper or lower */
  524. /* > triangular matrix, A**T denotes the transpose of A, A**H denotes the */
  525. /* > conjugate transpose of A, x and b are n-element vectors, and s is a */
  526. /* > scaling factor, usually less than or equal to 1, chosen so that the */
  527. /* > components of x will be less than the overflow threshold. If the */
  528. /* > unscaled problem will not cause overflow, the Level 2 BLAS routine */
  529. /* > CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j), */
  530. /* > then s is set to 0 and a non-trivial solution to A*x = 0 is returned. */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] UPLO */
  535. /* > \verbatim */
  536. /* > UPLO is CHARACTER*1 */
  537. /* > Specifies whether the matrix A is upper or lower triangular. */
  538. /* > = 'U': Upper triangular */
  539. /* > = 'L': Lower triangular */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] TRANS */
  543. /* > \verbatim */
  544. /* > TRANS is CHARACTER*1 */
  545. /* > Specifies the operation applied to A. */
  546. /* > = 'N': Solve A * x = s*b (No transpose) */
  547. /* > = 'T': Solve A**T * x = s*b (Transpose) */
  548. /* > = 'C': Solve A**H * x = s*b (Conjugate transpose) */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] DIAG */
  552. /* > \verbatim */
  553. /* > DIAG is CHARACTER*1 */
  554. /* > Specifies whether or not the matrix A is unit triangular. */
  555. /* > = 'N': Non-unit triangular */
  556. /* > = 'U': Unit triangular */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NORMIN */
  560. /* > \verbatim */
  561. /* > NORMIN is CHARACTER*1 */
  562. /* > Specifies whether CNORM has been set or not. */
  563. /* > = 'Y': CNORM contains the column norms on entry */
  564. /* > = 'N': CNORM is not set on entry. On exit, the norms will */
  565. /* > be computed and stored in CNORM. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] N */
  569. /* > \verbatim */
  570. /* > N is INTEGER */
  571. /* > The order of the matrix A. N >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] A */
  575. /* > \verbatim */
  576. /* > A is COMPLEX array, dimension (LDA,N) */
  577. /* > The triangular matrix A. If UPLO = 'U', the leading n by n */
  578. /* > upper triangular part of the array A contains the upper */
  579. /* > triangular matrix, and the strictly lower triangular part of */
  580. /* > A is not referenced. If UPLO = 'L', the leading n by n lower */
  581. /* > triangular part of the array A contains the lower triangular */
  582. /* > matrix, and the strictly upper triangular part of A is not */
  583. /* > referenced. If DIAG = 'U', the diagonal elements of A are */
  584. /* > also not referenced and are assumed to be 1. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDA */
  588. /* > \verbatim */
  589. /* > LDA is INTEGER */
  590. /* > The leading dimension of the array A. LDA >= f2cmax (1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in,out] X */
  594. /* > \verbatim */
  595. /* > X is COMPLEX array, dimension (N) */
  596. /* > On entry, the right hand side b of the triangular system. */
  597. /* > On exit, X is overwritten by the solution vector x. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[out] SCALE */
  601. /* > \verbatim */
  602. /* > SCALE is REAL */
  603. /* > The scaling factor s for the triangular system */
  604. /* > A * x = s*b, A**T * x = s*b, or A**H * x = s*b. */
  605. /* > If SCALE = 0, the matrix A is singular or badly scaled, and */
  606. /* > the vector x is an exact or approximate solution to A*x = 0. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in,out] CNORM */
  610. /* > \verbatim */
  611. /* > CNORM is REAL array, dimension (N) */
  612. /* > */
  613. /* > If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
  614. /* > contains the norm of the off-diagonal part of the j-th column */
  615. /* > of A. If TRANS = 'N', CNORM(j) must be greater than or equal */
  616. /* > to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
  617. /* > must be greater than or equal to the 1-norm. */
  618. /* > */
  619. /* > If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
  620. /* > returns the 1-norm of the offdiagonal part of the j-th column */
  621. /* > of A. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] INFO */
  625. /* > \verbatim */
  626. /* > INFO is INTEGER */
  627. /* > = 0: successful exit */
  628. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  629. /* > \endverbatim */
  630. /* Authors: */
  631. /* ======== */
  632. /* > \author Univ. of Tennessee */
  633. /* > \author Univ. of California Berkeley */
  634. /* > \author Univ. of Colorado Denver */
  635. /* > \author NAG Ltd. */
  636. /* > \date December 2016 */
  637. /* > \ingroup complexOTHERauxiliary */
  638. /* > \par Further Details: */
  639. /* ===================== */
  640. /* > */
  641. /* > \verbatim */
  642. /* > */
  643. /* > A rough bound on x is computed; if that is less than overflow, CTRSV */
  644. /* > is called, otherwise, specific code is used which checks for possible */
  645. /* > overflow or divide-by-zero at every operation. */
  646. /* > */
  647. /* > A columnwise scheme is used for solving A*x = b. The basic algorithm */
  648. /* > if A is lower triangular is */
  649. /* > */
  650. /* > x[1:n] := b[1:n] */
  651. /* > for j = 1, ..., n */
  652. /* > x(j) := x(j) / A(j,j) */
  653. /* > x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
  654. /* > end */
  655. /* > */
  656. /* > Define bounds on the components of x after j iterations of the loop: */
  657. /* > M(j) = bound on x[1:j] */
  658. /* > G(j) = bound on x[j+1:n] */
  659. /* > Initially, let M(0) = 0 and G(0) = f2cmax{x(i), i=1,...,n}. */
  660. /* > */
  661. /* > Then for iteration j+1 we have */
  662. /* > M(j+1) <= G(j) / | A(j+1,j+1) | */
  663. /* > G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
  664. /* > <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
  665. /* > */
  666. /* > where CNORM(j+1) is greater than or equal to the infinity-norm of */
  667. /* > column j+1 of A, not counting the diagonal. Hence */
  668. /* > */
  669. /* > G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
  670. /* > 1<=i<=j */
  671. /* > and */
  672. /* > */
  673. /* > |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
  674. /* > 1<=i< j */
  675. /* > */
  676. /* > Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the */
  677. /* > reciprocal of the largest M(j), j=1,..,n, is larger than */
  678. /* > f2cmax(underflow, 1/overflow). */
  679. /* > */
  680. /* > The bound on x(j) is also used to determine when a step in the */
  681. /* > columnwise method can be performed without fear of overflow. If */
  682. /* > the computed bound is greater than a large constant, x is scaled to */
  683. /* > prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
  684. /* > 1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
  685. /* > */
  686. /* > Similarly, a row-wise scheme is used to solve A**T *x = b or */
  687. /* > A**H *x = b. The basic algorithm for A upper triangular is */
  688. /* > */
  689. /* > for j = 1, ..., n */
  690. /* > x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
  691. /* > end */
  692. /* > */
  693. /* > We simultaneously compute two bounds */
  694. /* > G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
  695. /* > M(j) = bound on x(i), 1<=i<=j */
  696. /* > */
  697. /* > The initial values are G(0) = 0, M(0) = f2cmax{b(i), i=1,..,n}, and we */
  698. /* > add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
  699. /* > Then the bound on x(j) is */
  700. /* > */
  701. /* > M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
  702. /* > */
  703. /* > <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
  704. /* > 1<=i<=j */
  705. /* > */
  706. /* > and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater */
  707. /* > than f2cmax(underflow, 1/overflow). */
  708. /* > \endverbatim */
  709. /* > */
  710. /* ===================================================================== */
  711. /* Subroutine */ int clatrs_(char *uplo, char *trans, char *diag, char *
  712. normin, integer *n, complex *a, integer *lda, complex *x, real *scale,
  713. real *cnorm, integer *info)
  714. {
  715. /* System generated locals */
  716. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
  717. real r__1, r__2, r__3, r__4;
  718. complex q__1, q__2, q__3, q__4;
  719. /* Local variables */
  720. integer jinc;
  721. real xbnd;
  722. integer imax;
  723. real tmax;
  724. complex tjjs;
  725. real xmax, grow;
  726. integer i__, j;
  727. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  728. *, complex *, integer *);
  729. extern logical lsame_(char *, char *);
  730. extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
  731. real tscal;
  732. complex uscal;
  733. integer jlast;
  734. extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer
  735. *, complex *, integer *);
  736. complex csumj;
  737. extern /* Subroutine */ int caxpy_(integer *, complex *, complex *,
  738. integer *, complex *, integer *);
  739. logical upper;
  740. extern /* Subroutine */ int ctrsv_(char *, char *, char *, integer *,
  741. complex *, integer *, complex *, integer *), slabad_(real *, real *);
  742. real xj;
  743. extern integer icamax_(integer *, complex *, integer *);
  744. extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
  745. extern real slamch_(char *);
  746. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  747. *), xerbla_(char *, integer *, ftnlen);
  748. real bignum;
  749. extern integer isamax_(integer *, real *, integer *);
  750. extern real scasum_(integer *, complex *, integer *);
  751. logical notran;
  752. integer jfirst;
  753. real smlnum;
  754. logical nounit;
  755. real rec, tjj;
  756. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  757. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  758. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  759. /* December 2016 */
  760. /* ===================================================================== */
  761. /* Parameter adjustments */
  762. a_dim1 = *lda;
  763. a_offset = 1 + a_dim1 * 1;
  764. a -= a_offset;
  765. --x;
  766. --cnorm;
  767. /* Function Body */
  768. *info = 0;
  769. upper = lsame_(uplo, "U");
  770. notran = lsame_(trans, "N");
  771. nounit = lsame_(diag, "N");
  772. /* Test the input parameters. */
  773. if (! upper && ! lsame_(uplo, "L")) {
  774. *info = -1;
  775. } else if (! notran && ! lsame_(trans, "T") && !
  776. lsame_(trans, "C")) {
  777. *info = -2;
  778. } else if (! nounit && ! lsame_(diag, "U")) {
  779. *info = -3;
  780. } else if (! lsame_(normin, "Y") && ! lsame_(normin,
  781. "N")) {
  782. *info = -4;
  783. } else if (*n < 0) {
  784. *info = -5;
  785. } else if (*lda < f2cmax(1,*n)) {
  786. *info = -7;
  787. }
  788. if (*info != 0) {
  789. i__1 = -(*info);
  790. xerbla_("CLATRS", &i__1, (ftnlen)6);
  791. return 0;
  792. }
  793. /* Quick return if possible */
  794. if (*n == 0) {
  795. return 0;
  796. }
  797. /* Determine machine dependent parameters to control overflow. */
  798. smlnum = slamch_("Safe minimum");
  799. bignum = 1.f / smlnum;
  800. slabad_(&smlnum, &bignum);
  801. smlnum /= slamch_("Precision");
  802. bignum = 1.f / smlnum;
  803. *scale = 1.f;
  804. if (lsame_(normin, "N")) {
  805. /* Compute the 1-norm of each column, not including the diagonal. */
  806. if (upper) {
  807. /* A is upper triangular. */
  808. i__1 = *n;
  809. for (j = 1; j <= i__1; ++j) {
  810. i__2 = j - 1;
  811. cnorm[j] = scasum_(&i__2, &a[j * a_dim1 + 1], &c__1);
  812. /* L10: */
  813. }
  814. } else {
  815. /* A is lower triangular. */
  816. i__1 = *n - 1;
  817. for (j = 1; j <= i__1; ++j) {
  818. i__2 = *n - j;
  819. cnorm[j] = scasum_(&i__2, &a[j + 1 + j * a_dim1], &c__1);
  820. /* L20: */
  821. }
  822. cnorm[*n] = 0.f;
  823. }
  824. }
  825. /* Scale the column norms by TSCAL if the maximum element in CNORM is */
  826. /* greater than BIGNUM/2. */
  827. imax = isamax_(n, &cnorm[1], &c__1);
  828. tmax = cnorm[imax];
  829. if (tmax <= bignum * .5f) {
  830. tscal = 1.f;
  831. } else {
  832. tscal = .5f / (smlnum * tmax);
  833. sscal_(n, &tscal, &cnorm[1], &c__1);
  834. }
  835. /* Compute a bound on the computed solution vector to see if the */
  836. /* Level 2 BLAS routine CTRSV can be used. */
  837. xmax = 0.f;
  838. i__1 = *n;
  839. for (j = 1; j <= i__1; ++j) {
  840. /* Computing MAX */
  841. i__2 = j;
  842. r__3 = xmax, r__4 = (r__1 = x[i__2].r / 2.f, abs(r__1)) + (r__2 =
  843. r_imag(&x[j]) / 2.f, abs(r__2));
  844. xmax = f2cmax(r__3,r__4);
  845. /* L30: */
  846. }
  847. xbnd = xmax;
  848. if (notran) {
  849. /* Compute the growth in A * x = b. */
  850. if (upper) {
  851. jfirst = *n;
  852. jlast = 1;
  853. jinc = -1;
  854. } else {
  855. jfirst = 1;
  856. jlast = *n;
  857. jinc = 1;
  858. }
  859. if (tscal != 1.f) {
  860. grow = 0.f;
  861. goto L60;
  862. }
  863. if (nounit) {
  864. /* A is non-unit triangular. */
  865. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  866. /* Initially, G(0) = f2cmax{x(i), i=1,...,n}. */
  867. grow = .5f / f2cmax(xbnd,smlnum);
  868. xbnd = grow;
  869. i__1 = jlast;
  870. i__2 = jinc;
  871. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  872. /* Exit the loop if the growth factor is too small. */
  873. if (grow <= smlnum) {
  874. goto L60;
  875. }
  876. i__3 = j + j * a_dim1;
  877. tjjs.r = a[i__3].r, tjjs.i = a[i__3].i;
  878. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
  879. r__2));
  880. if (tjj >= smlnum) {
  881. /* M(j) = G(j-1) / abs(A(j,j)) */
  882. /* Computing MIN */
  883. r__1 = xbnd, r__2 = f2cmin(1.f,tjj) * grow;
  884. xbnd = f2cmin(r__1,r__2);
  885. } else {
  886. /* M(j) could overflow, set XBND to 0. */
  887. xbnd = 0.f;
  888. }
  889. if (tjj + cnorm[j] >= smlnum) {
  890. /* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
  891. grow *= tjj / (tjj + cnorm[j]);
  892. } else {
  893. /* G(j) could overflow, set GROW to 0. */
  894. grow = 0.f;
  895. }
  896. /* L40: */
  897. }
  898. grow = xbnd;
  899. } else {
  900. /* A is unit triangular. */
  901. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  902. /* Computing MIN */
  903. r__1 = 1.f, r__2 = .5f / f2cmax(xbnd,smlnum);
  904. grow = f2cmin(r__1,r__2);
  905. i__2 = jlast;
  906. i__1 = jinc;
  907. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  908. /* Exit the loop if the growth factor is too small. */
  909. if (grow <= smlnum) {
  910. goto L60;
  911. }
  912. /* G(j) = G(j-1)*( 1 + CNORM(j) ) */
  913. grow *= 1.f / (cnorm[j] + 1.f);
  914. /* L50: */
  915. }
  916. }
  917. L60:
  918. ;
  919. } else {
  920. /* Compute the growth in A**T * x = b or A**H * x = b. */
  921. if (upper) {
  922. jfirst = 1;
  923. jlast = *n;
  924. jinc = 1;
  925. } else {
  926. jfirst = *n;
  927. jlast = 1;
  928. jinc = -1;
  929. }
  930. if (tscal != 1.f) {
  931. grow = 0.f;
  932. goto L90;
  933. }
  934. if (nounit) {
  935. /* A is non-unit triangular. */
  936. /* Compute GROW = 1/G(j) and XBND = 1/M(j). */
  937. /* Initially, M(0) = f2cmax{x(i), i=1,...,n}. */
  938. grow = .5f / f2cmax(xbnd,smlnum);
  939. xbnd = grow;
  940. i__1 = jlast;
  941. i__2 = jinc;
  942. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  943. /* Exit the loop if the growth factor is too small. */
  944. if (grow <= smlnum) {
  945. goto L90;
  946. }
  947. /* G(j) = f2cmax( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
  948. xj = cnorm[j] + 1.f;
  949. /* Computing MIN */
  950. r__1 = grow, r__2 = xbnd / xj;
  951. grow = f2cmin(r__1,r__2);
  952. i__3 = j + j * a_dim1;
  953. tjjs.r = a[i__3].r, tjjs.i = a[i__3].i;
  954. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
  955. r__2));
  956. if (tjj >= smlnum) {
  957. /* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
  958. if (xj > tjj) {
  959. xbnd *= tjj / xj;
  960. }
  961. } else {
  962. /* M(j) could overflow, set XBND to 0. */
  963. xbnd = 0.f;
  964. }
  965. /* L70: */
  966. }
  967. grow = f2cmin(grow,xbnd);
  968. } else {
  969. /* A is unit triangular. */
  970. /* Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
  971. /* Computing MIN */
  972. r__1 = 1.f, r__2 = .5f / f2cmax(xbnd,smlnum);
  973. grow = f2cmin(r__1,r__2);
  974. i__2 = jlast;
  975. i__1 = jinc;
  976. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  977. /* Exit the loop if the growth factor is too small. */
  978. if (grow <= smlnum) {
  979. goto L90;
  980. }
  981. /* G(j) = ( 1 + CNORM(j) )*G(j-1) */
  982. xj = cnorm[j] + 1.f;
  983. grow /= xj;
  984. /* L80: */
  985. }
  986. }
  987. L90:
  988. ;
  989. }
  990. if (grow * tscal > smlnum) {
  991. /* Use the Level 2 BLAS solve if the reciprocal of the bound on */
  992. /* elements of X is not too small. */
  993. ctrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1);
  994. } else {
  995. /* Use a Level 1 BLAS solve, scaling intermediate results. */
  996. if (xmax > bignum * .5f) {
  997. /* Scale X so that its components are less than or equal to */
  998. /* BIGNUM in absolute value. */
  999. *scale = bignum * .5f / xmax;
  1000. csscal_(n, scale, &x[1], &c__1);
  1001. xmax = bignum;
  1002. } else {
  1003. xmax *= 2.f;
  1004. }
  1005. if (notran) {
  1006. /* Solve A * x = b */
  1007. i__1 = jlast;
  1008. i__2 = jinc;
  1009. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1010. /* Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
  1011. i__3 = j;
  1012. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
  1013. abs(r__2));
  1014. if (nounit) {
  1015. i__3 = j + j * a_dim1;
  1016. q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3].i;
  1017. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1018. } else {
  1019. tjjs.r = tscal, tjjs.i = 0.f;
  1020. if (tscal == 1.f) {
  1021. goto L105;
  1022. }
  1023. }
  1024. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
  1025. r__2));
  1026. if (tjj > smlnum) {
  1027. /* abs(A(j,j)) > SMLNUM: */
  1028. if (tjj < 1.f) {
  1029. if (xj > tjj * bignum) {
  1030. /* Scale x by 1/b(j). */
  1031. rec = 1.f / xj;
  1032. csscal_(n, &rec, &x[1], &c__1);
  1033. *scale *= rec;
  1034. xmax *= rec;
  1035. }
  1036. }
  1037. i__3 = j;
  1038. cladiv_(&q__1, &x[j], &tjjs);
  1039. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1040. i__3 = j;
  1041. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
  1042. , abs(r__2));
  1043. } else if (tjj > 0.f) {
  1044. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1045. if (xj > tjj * bignum) {
  1046. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
  1047. /* to avoid overflow when dividing by A(j,j). */
  1048. rec = tjj * bignum / xj;
  1049. if (cnorm[j] > 1.f) {
  1050. /* Scale by 1/CNORM(j) to avoid overflow when */
  1051. /* multiplying x(j) times column j. */
  1052. rec /= cnorm[j];
  1053. }
  1054. csscal_(n, &rec, &x[1], &c__1);
  1055. *scale *= rec;
  1056. xmax *= rec;
  1057. }
  1058. i__3 = j;
  1059. cladiv_(&q__1, &x[j], &tjjs);
  1060. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1061. i__3 = j;
  1062. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
  1063. , abs(r__2));
  1064. } else {
  1065. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1066. /* scale = 0, and compute a solution to A*x = 0. */
  1067. i__3 = *n;
  1068. for (i__ = 1; i__ <= i__3; ++i__) {
  1069. i__4 = i__;
  1070. x[i__4].r = 0.f, x[i__4].i = 0.f;
  1071. /* L100: */
  1072. }
  1073. i__3 = j;
  1074. x[i__3].r = 1.f, x[i__3].i = 0.f;
  1075. xj = 1.f;
  1076. *scale = 0.f;
  1077. xmax = 0.f;
  1078. }
  1079. L105:
  1080. /* Scale x if necessary to avoid overflow when adding a */
  1081. /* multiple of column j of A. */
  1082. if (xj > 1.f) {
  1083. rec = 1.f / xj;
  1084. if (cnorm[j] > (bignum - xmax) * rec) {
  1085. /* Scale x by 1/(2*abs(x(j))). */
  1086. rec *= .5f;
  1087. csscal_(n, &rec, &x[1], &c__1);
  1088. *scale *= rec;
  1089. }
  1090. } else if (xj * cnorm[j] > bignum - xmax) {
  1091. /* Scale x by 1/2. */
  1092. csscal_(n, &c_b36, &x[1], &c__1);
  1093. *scale *= .5f;
  1094. }
  1095. if (upper) {
  1096. if (j > 1) {
  1097. /* Compute the update */
  1098. /* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
  1099. i__3 = j - 1;
  1100. i__4 = j;
  1101. q__2.r = -x[i__4].r, q__2.i = -x[i__4].i;
  1102. q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
  1103. caxpy_(&i__3, &q__1, &a[j * a_dim1 + 1], &c__1, &x[1],
  1104. &c__1);
  1105. i__3 = j - 1;
  1106. i__ = icamax_(&i__3, &x[1], &c__1);
  1107. i__3 = i__;
  1108. xmax = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(
  1109. &x[i__]), abs(r__2));
  1110. }
  1111. } else {
  1112. if (j < *n) {
  1113. /* Compute the update */
  1114. /* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
  1115. i__3 = *n - j;
  1116. i__4 = j;
  1117. q__2.r = -x[i__4].r, q__2.i = -x[i__4].i;
  1118. q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
  1119. caxpy_(&i__3, &q__1, &a[j + 1 + j * a_dim1], &c__1, &
  1120. x[j + 1], &c__1);
  1121. i__3 = *n - j;
  1122. i__ = j + icamax_(&i__3, &x[j + 1], &c__1);
  1123. i__3 = i__;
  1124. xmax = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(
  1125. &x[i__]), abs(r__2));
  1126. }
  1127. }
  1128. /* L110: */
  1129. }
  1130. } else if (lsame_(trans, "T")) {
  1131. /* Solve A**T * x = b */
  1132. i__2 = jlast;
  1133. i__1 = jinc;
  1134. for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
  1135. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1136. /* k<>j */
  1137. i__3 = j;
  1138. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
  1139. abs(r__2));
  1140. uscal.r = tscal, uscal.i = 0.f;
  1141. rec = 1.f / f2cmax(xmax,1.f);
  1142. if (cnorm[j] > (bignum - xj) * rec) {
  1143. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1144. rec *= .5f;
  1145. if (nounit) {
  1146. i__3 = j + j * a_dim1;
  1147. q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3]
  1148. .i;
  1149. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1150. } else {
  1151. tjjs.r = tscal, tjjs.i = 0.f;
  1152. }
  1153. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
  1154. abs(r__2));
  1155. if (tjj > 1.f) {
  1156. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1157. /* Computing MIN */
  1158. r__1 = 1.f, r__2 = rec * tjj;
  1159. rec = f2cmin(r__1,r__2);
  1160. cladiv_(&q__1, &uscal, &tjjs);
  1161. uscal.r = q__1.r, uscal.i = q__1.i;
  1162. }
  1163. if (rec < 1.f) {
  1164. csscal_(n, &rec, &x[1], &c__1);
  1165. *scale *= rec;
  1166. xmax *= rec;
  1167. }
  1168. }
  1169. csumj.r = 0.f, csumj.i = 0.f;
  1170. if (uscal.r == 1.f && uscal.i == 0.f) {
  1171. /* If the scaling needed for A in the dot product is 1, */
  1172. /* call CDOTU to perform the dot product. */
  1173. if (upper) {
  1174. i__3 = j - 1;
  1175. cdotu_(&q__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
  1176. &c__1);
  1177. csumj.r = q__1.r, csumj.i = q__1.i;
  1178. } else if (j < *n) {
  1179. i__3 = *n - j;
  1180. cdotu_(&q__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, &
  1181. x[j + 1], &c__1);
  1182. csumj.r = q__1.r, csumj.i = q__1.i;
  1183. }
  1184. } else {
  1185. /* Otherwise, use in-line code for the dot product. */
  1186. if (upper) {
  1187. i__3 = j - 1;
  1188. for (i__ = 1; i__ <= i__3; ++i__) {
  1189. i__4 = i__ + j * a_dim1;
  1190. q__3.r = a[i__4].r * uscal.r - a[i__4].i *
  1191. uscal.i, q__3.i = a[i__4].r * uscal.i + a[
  1192. i__4].i * uscal.r;
  1193. i__5 = i__;
  1194. q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i,
  1195. q__2.i = q__3.r * x[i__5].i + q__3.i * x[
  1196. i__5].r;
  1197. q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
  1198. q__2.i;
  1199. csumj.r = q__1.r, csumj.i = q__1.i;
  1200. /* L120: */
  1201. }
  1202. } else if (j < *n) {
  1203. i__3 = *n;
  1204. for (i__ = j + 1; i__ <= i__3; ++i__) {
  1205. i__4 = i__ + j * a_dim1;
  1206. q__3.r = a[i__4].r * uscal.r - a[i__4].i *
  1207. uscal.i, q__3.i = a[i__4].r * uscal.i + a[
  1208. i__4].i * uscal.r;
  1209. i__5 = i__;
  1210. q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i,
  1211. q__2.i = q__3.r * x[i__5].i + q__3.i * x[
  1212. i__5].r;
  1213. q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
  1214. q__2.i;
  1215. csumj.r = q__1.r, csumj.i = q__1.i;
  1216. /* L130: */
  1217. }
  1218. }
  1219. }
  1220. q__1.r = tscal, q__1.i = 0.f;
  1221. if (uscal.r == q__1.r && uscal.i == q__1.i) {
  1222. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1223. /* was not used to scale the dotproduct. */
  1224. i__3 = j;
  1225. i__4 = j;
  1226. q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i -
  1227. csumj.i;
  1228. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1229. i__3 = j;
  1230. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
  1231. , abs(r__2));
  1232. if (nounit) {
  1233. i__3 = j + j * a_dim1;
  1234. q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3]
  1235. .i;
  1236. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1237. } else {
  1238. tjjs.r = tscal, tjjs.i = 0.f;
  1239. if (tscal == 1.f) {
  1240. goto L145;
  1241. }
  1242. }
  1243. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1244. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
  1245. abs(r__2));
  1246. if (tjj > smlnum) {
  1247. /* abs(A(j,j)) > SMLNUM: */
  1248. if (tjj < 1.f) {
  1249. if (xj > tjj * bignum) {
  1250. /* Scale X by 1/abs(x(j)). */
  1251. rec = 1.f / xj;
  1252. csscal_(n, &rec, &x[1], &c__1);
  1253. *scale *= rec;
  1254. xmax *= rec;
  1255. }
  1256. }
  1257. i__3 = j;
  1258. cladiv_(&q__1, &x[j], &tjjs);
  1259. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1260. } else if (tjj > 0.f) {
  1261. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1262. if (xj > tjj * bignum) {
  1263. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1264. rec = tjj * bignum / xj;
  1265. csscal_(n, &rec, &x[1], &c__1);
  1266. *scale *= rec;
  1267. xmax *= rec;
  1268. }
  1269. i__3 = j;
  1270. cladiv_(&q__1, &x[j], &tjjs);
  1271. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1272. } else {
  1273. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1274. /* scale = 0 and compute a solution to A**T *x = 0. */
  1275. i__3 = *n;
  1276. for (i__ = 1; i__ <= i__3; ++i__) {
  1277. i__4 = i__;
  1278. x[i__4].r = 0.f, x[i__4].i = 0.f;
  1279. /* L140: */
  1280. }
  1281. i__3 = j;
  1282. x[i__3].r = 1.f, x[i__3].i = 0.f;
  1283. *scale = 0.f;
  1284. xmax = 0.f;
  1285. }
  1286. L145:
  1287. ;
  1288. } else {
  1289. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1290. /* product has already been divided by 1/A(j,j). */
  1291. i__3 = j;
  1292. cladiv_(&q__2, &x[j], &tjjs);
  1293. q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
  1294. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1295. }
  1296. /* Computing MAX */
  1297. i__3 = j;
  1298. r__3 = xmax, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
  1299. r_imag(&x[j]), abs(r__2));
  1300. xmax = f2cmax(r__3,r__4);
  1301. /* L150: */
  1302. }
  1303. } else {
  1304. /* Solve A**H * x = b */
  1305. i__1 = jlast;
  1306. i__2 = jinc;
  1307. for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1308. /* Compute x(j) = b(j) - sum A(k,j)*x(k). */
  1309. /* k<>j */
  1310. i__3 = j;
  1311. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]),
  1312. abs(r__2));
  1313. uscal.r = tscal, uscal.i = 0.f;
  1314. rec = 1.f / f2cmax(xmax,1.f);
  1315. if (cnorm[j] > (bignum - xj) * rec) {
  1316. /* If x(j) could overflow, scale x by 1/(2*XMAX). */
  1317. rec *= .5f;
  1318. if (nounit) {
  1319. r_cnjg(&q__2, &a[j + j * a_dim1]);
  1320. q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
  1321. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1322. } else {
  1323. tjjs.r = tscal, tjjs.i = 0.f;
  1324. }
  1325. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
  1326. abs(r__2));
  1327. if (tjj > 1.f) {
  1328. /* Divide by A(j,j) when scaling x if A(j,j) > 1. */
  1329. /* Computing MIN */
  1330. r__1 = 1.f, r__2 = rec * tjj;
  1331. rec = f2cmin(r__1,r__2);
  1332. cladiv_(&q__1, &uscal, &tjjs);
  1333. uscal.r = q__1.r, uscal.i = q__1.i;
  1334. }
  1335. if (rec < 1.f) {
  1336. csscal_(n, &rec, &x[1], &c__1);
  1337. *scale *= rec;
  1338. xmax *= rec;
  1339. }
  1340. }
  1341. csumj.r = 0.f, csumj.i = 0.f;
  1342. if (uscal.r == 1.f && uscal.i == 0.f) {
  1343. /* If the scaling needed for A in the dot product is 1, */
  1344. /* call CDOTC to perform the dot product. */
  1345. if (upper) {
  1346. i__3 = j - 1;
  1347. cdotc_(&q__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
  1348. &c__1);
  1349. csumj.r = q__1.r, csumj.i = q__1.i;
  1350. } else if (j < *n) {
  1351. i__3 = *n - j;
  1352. cdotc_(&q__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, &
  1353. x[j + 1], &c__1);
  1354. csumj.r = q__1.r, csumj.i = q__1.i;
  1355. }
  1356. } else {
  1357. /* Otherwise, use in-line code for the dot product. */
  1358. if (upper) {
  1359. i__3 = j - 1;
  1360. for (i__ = 1; i__ <= i__3; ++i__) {
  1361. r_cnjg(&q__4, &a[i__ + j * a_dim1]);
  1362. q__3.r = q__4.r * uscal.r - q__4.i * uscal.i,
  1363. q__3.i = q__4.r * uscal.i + q__4.i *
  1364. uscal.r;
  1365. i__4 = i__;
  1366. q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
  1367. q__2.i = q__3.r * x[i__4].i + q__3.i * x[
  1368. i__4].r;
  1369. q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
  1370. q__2.i;
  1371. csumj.r = q__1.r, csumj.i = q__1.i;
  1372. /* L160: */
  1373. }
  1374. } else if (j < *n) {
  1375. i__3 = *n;
  1376. for (i__ = j + 1; i__ <= i__3; ++i__) {
  1377. r_cnjg(&q__4, &a[i__ + j * a_dim1]);
  1378. q__3.r = q__4.r * uscal.r - q__4.i * uscal.i,
  1379. q__3.i = q__4.r * uscal.i + q__4.i *
  1380. uscal.r;
  1381. i__4 = i__;
  1382. q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
  1383. q__2.i = q__3.r * x[i__4].i + q__3.i * x[
  1384. i__4].r;
  1385. q__1.r = csumj.r + q__2.r, q__1.i = csumj.i +
  1386. q__2.i;
  1387. csumj.r = q__1.r, csumj.i = q__1.i;
  1388. /* L170: */
  1389. }
  1390. }
  1391. }
  1392. q__1.r = tscal, q__1.i = 0.f;
  1393. if (uscal.r == q__1.r && uscal.i == q__1.i) {
  1394. /* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
  1395. /* was not used to scale the dotproduct. */
  1396. i__3 = j;
  1397. i__4 = j;
  1398. q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i -
  1399. csumj.i;
  1400. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1401. i__3 = j;
  1402. xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
  1403. , abs(r__2));
  1404. if (nounit) {
  1405. r_cnjg(&q__2, &a[j + j * a_dim1]);
  1406. q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
  1407. tjjs.r = q__1.r, tjjs.i = q__1.i;
  1408. } else {
  1409. tjjs.r = tscal, tjjs.i = 0.f;
  1410. if (tscal == 1.f) {
  1411. goto L185;
  1412. }
  1413. }
  1414. /* Compute x(j) = x(j) / A(j,j), scaling if necessary. */
  1415. tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs),
  1416. abs(r__2));
  1417. if (tjj > smlnum) {
  1418. /* abs(A(j,j)) > SMLNUM: */
  1419. if (tjj < 1.f) {
  1420. if (xj > tjj * bignum) {
  1421. /* Scale X by 1/abs(x(j)). */
  1422. rec = 1.f / xj;
  1423. csscal_(n, &rec, &x[1], &c__1);
  1424. *scale *= rec;
  1425. xmax *= rec;
  1426. }
  1427. }
  1428. i__3 = j;
  1429. cladiv_(&q__1, &x[j], &tjjs);
  1430. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1431. } else if (tjj > 0.f) {
  1432. /* 0 < abs(A(j,j)) <= SMLNUM: */
  1433. if (xj > tjj * bignum) {
  1434. /* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
  1435. rec = tjj * bignum / xj;
  1436. csscal_(n, &rec, &x[1], &c__1);
  1437. *scale *= rec;
  1438. xmax *= rec;
  1439. }
  1440. i__3 = j;
  1441. cladiv_(&q__1, &x[j], &tjjs);
  1442. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1443. } else {
  1444. /* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and */
  1445. /* scale = 0 and compute a solution to A**H *x = 0. */
  1446. i__3 = *n;
  1447. for (i__ = 1; i__ <= i__3; ++i__) {
  1448. i__4 = i__;
  1449. x[i__4].r = 0.f, x[i__4].i = 0.f;
  1450. /* L180: */
  1451. }
  1452. i__3 = j;
  1453. x[i__3].r = 1.f, x[i__3].i = 0.f;
  1454. *scale = 0.f;
  1455. xmax = 0.f;
  1456. }
  1457. L185:
  1458. ;
  1459. } else {
  1460. /* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
  1461. /* product has already been divided by 1/A(j,j). */
  1462. i__3 = j;
  1463. cladiv_(&q__2, &x[j], &tjjs);
  1464. q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
  1465. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1466. }
  1467. /* Computing MAX */
  1468. i__3 = j;
  1469. r__3 = xmax, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
  1470. r_imag(&x[j]), abs(r__2));
  1471. xmax = f2cmax(r__3,r__4);
  1472. /* L190: */
  1473. }
  1474. }
  1475. *scale /= tscal;
  1476. }
  1477. /* Scale the column norms by 1/TSCAL for return. */
  1478. if (tscal != 1.f) {
  1479. r__1 = 1.f / tscal;
  1480. sscal_(n, &r__1, &cnorm[1], &c__1);
  1481. }
  1482. return 0;
  1483. /* End of CLATRS */
  1484. } /* clatrs_ */