You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clabrd.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__1 = 1;
  489. /* > \brief \b CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CLABRD + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clabrd.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clabrd.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clabrd.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */
  508. /* LDY ) */
  509. /* INTEGER LDA, LDX, LDY, M, N, NB */
  510. /* REAL D( * ), E( * ) */
  511. /* COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ), */
  512. /* $ Y( LDY, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CLABRD reduces the first NB rows and columns of a complex general */
  519. /* > m by n matrix A to upper or lower real bidiagonal form by a unitary */
  520. /* > transformation Q**H * A * P, and returns the matrices X and Y which */
  521. /* > are needed to apply the transformation to the unreduced part of A. */
  522. /* > */
  523. /* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
  524. /* > bidiagonal form. */
  525. /* > */
  526. /* > This is an auxiliary routine called by CGEBRD */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] M */
  531. /* > \verbatim */
  532. /* > M is INTEGER */
  533. /* > The number of rows in the matrix A. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] N */
  537. /* > \verbatim */
  538. /* > N is INTEGER */
  539. /* > The number of columns in the matrix A. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] NB */
  543. /* > \verbatim */
  544. /* > NB is INTEGER */
  545. /* > The number of leading rows and columns of A to be reduced. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in,out] A */
  549. /* > \verbatim */
  550. /* > A is COMPLEX array, dimension (LDA,N) */
  551. /* > On entry, the m by n general matrix to be reduced. */
  552. /* > On exit, the first NB rows and columns of the matrix are */
  553. /* > overwritten; the rest of the array is unchanged. */
  554. /* > If m >= n, elements on and below the diagonal in the first NB */
  555. /* > columns, with the array TAUQ, represent the unitary */
  556. /* > matrix Q as a product of elementary reflectors; and */
  557. /* > elements above the diagonal in the first NB rows, with the */
  558. /* > array TAUP, represent the unitary matrix P as a product */
  559. /* > of elementary reflectors. */
  560. /* > If m < n, elements below the diagonal in the first NB */
  561. /* > columns, with the array TAUQ, represent the unitary */
  562. /* > matrix Q as a product of elementary reflectors, and */
  563. /* > elements on and above the diagonal in the first NB rows, */
  564. /* > with the array TAUP, represent the unitary matrix P as */
  565. /* > a product of elementary reflectors. */
  566. /* > See Further Details. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] LDA */
  570. /* > \verbatim */
  571. /* > LDA is INTEGER */
  572. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[out] D */
  576. /* > \verbatim */
  577. /* > D is REAL array, dimension (NB) */
  578. /* > The diagonal elements of the first NB rows and columns of */
  579. /* > the reduced matrix. D(i) = A(i,i). */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[out] E */
  583. /* > \verbatim */
  584. /* > E is REAL array, dimension (NB) */
  585. /* > The off-diagonal elements of the first NB rows and columns of */
  586. /* > the reduced matrix. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] TAUQ */
  590. /* > \verbatim */
  591. /* > TAUQ is COMPLEX array, dimension (NB) */
  592. /* > The scalar factors of the elementary reflectors which */
  593. /* > represent the unitary matrix Q. See Further Details. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] TAUP */
  597. /* > \verbatim */
  598. /* > TAUP is COMPLEX array, dimension (NB) */
  599. /* > The scalar factors of the elementary reflectors which */
  600. /* > represent the unitary matrix P. See Further Details. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] X */
  604. /* > \verbatim */
  605. /* > X is COMPLEX array, dimension (LDX,NB) */
  606. /* > The m-by-nb matrix X required to update the unreduced part */
  607. /* > of A. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDX */
  611. /* > \verbatim */
  612. /* > LDX is INTEGER */
  613. /* > The leading dimension of the array X. LDX >= f2cmax(1,M). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[out] Y */
  617. /* > \verbatim */
  618. /* > Y is COMPLEX array, dimension (LDY,NB) */
  619. /* > The n-by-nb matrix Y required to update the unreduced part */
  620. /* > of A. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] LDY */
  624. /* > \verbatim */
  625. /* > LDY is INTEGER */
  626. /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
  627. /* > \endverbatim */
  628. /* Authors: */
  629. /* ======== */
  630. /* > \author Univ. of Tennessee */
  631. /* > \author Univ. of California Berkeley */
  632. /* > \author Univ. of Colorado Denver */
  633. /* > \author NAG Ltd. */
  634. /* > \date June 2017 */
  635. /* > \ingroup complexOTHERauxiliary */
  636. /* > \par Further Details: */
  637. /* ===================== */
  638. /* > */
  639. /* > \verbatim */
  640. /* > */
  641. /* > The matrices Q and P are represented as products of elementary */
  642. /* > reflectors: */
  643. /* > */
  644. /* > Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */
  645. /* > */
  646. /* > Each H(i) and G(i) has the form: */
  647. /* > */
  648. /* > H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H */
  649. /* > */
  650. /* > where tauq and taup are complex scalars, and v and u are complex */
  651. /* > vectors. */
  652. /* > */
  653. /* > If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
  654. /* > A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
  655. /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
  656. /* > */
  657. /* > If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
  658. /* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
  659. /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
  660. /* > */
  661. /* > The elements of the vectors v and u together form the m-by-nb matrix */
  662. /* > V and the nb-by-n matrix U**H which are needed, with X and Y, to apply */
  663. /* > the transformation to the unreduced part of the matrix, using a block */
  664. /* > update of the form: A := A - V*Y**H - X*U**H. */
  665. /* > */
  666. /* > The contents of A on exit are illustrated by the following examples */
  667. /* > with nb = 2: */
  668. /* > */
  669. /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
  670. /* > */
  671. /* > ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */
  672. /* > ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */
  673. /* > ( v1 v2 a a a ) ( v1 1 a a a a ) */
  674. /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
  675. /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
  676. /* > ( v1 v2 a a a ) */
  677. /* > */
  678. /* > where a denotes an element of the original matrix which is unchanged, */
  679. /* > vi denotes an element of the vector defining H(i), and ui an element */
  680. /* > of the vector defining G(i). */
  681. /* > \endverbatim */
  682. /* > */
  683. /* ===================================================================== */
  684. /* Subroutine */ int clabrd_(integer *m, integer *n, integer *nb, complex *a,
  685. integer *lda, real *d__, real *e, complex *tauq, complex *taup,
  686. complex *x, integer *ldx, complex *y, integer *ldy)
  687. {
  688. /* System generated locals */
  689. integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
  690. i__3;
  691. complex q__1;
  692. /* Local variables */
  693. integer i__;
  694. complex alpha;
  695. extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
  696. integer *), cgemv_(char *, integer *, integer *, complex *,
  697. complex *, integer *, complex *, integer *, complex *, complex *,
  698. integer *), clarfg_(integer *, complex *, complex *,
  699. integer *, complex *), clacgv_(integer *, complex *, integer *);
  700. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  701. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  702. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  703. /* June 2017 */
  704. /* ===================================================================== */
  705. /* Quick return if possible */
  706. /* Parameter adjustments */
  707. a_dim1 = *lda;
  708. a_offset = 1 + a_dim1 * 1;
  709. a -= a_offset;
  710. --d__;
  711. --e;
  712. --tauq;
  713. --taup;
  714. x_dim1 = *ldx;
  715. x_offset = 1 + x_dim1 * 1;
  716. x -= x_offset;
  717. y_dim1 = *ldy;
  718. y_offset = 1 + y_dim1 * 1;
  719. y -= y_offset;
  720. /* Function Body */
  721. if (*m <= 0 || *n <= 0) {
  722. return 0;
  723. }
  724. if (*m >= *n) {
  725. /* Reduce to upper bidiagonal form */
  726. i__1 = *nb;
  727. for (i__ = 1; i__ <= i__1; ++i__) {
  728. /* Update A(i:m,i) */
  729. i__2 = i__ - 1;
  730. clacgv_(&i__2, &y[i__ + y_dim1], ldy);
  731. i__2 = *m - i__ + 1;
  732. i__3 = i__ - 1;
  733. q__1.r = -1.f, q__1.i = 0.f;
  734. cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + a_dim1], lda,
  735. &y[i__ + y_dim1], ldy, &c_b2, &a[i__ + i__ * a_dim1], &
  736. c__1);
  737. i__2 = i__ - 1;
  738. clacgv_(&i__2, &y[i__ + y_dim1], ldy);
  739. i__2 = *m - i__ + 1;
  740. i__3 = i__ - 1;
  741. q__1.r = -1.f, q__1.i = 0.f;
  742. cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + x_dim1], ldx,
  743. &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[i__ + i__ *
  744. a_dim1], &c__1);
  745. /* Generate reflection Q(i) to annihilate A(i+1:m,i) */
  746. i__2 = i__ + i__ * a_dim1;
  747. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  748. i__2 = *m - i__ + 1;
  749. /* Computing MIN */
  750. i__3 = i__ + 1;
  751. clarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1, &
  752. tauq[i__]);
  753. i__2 = i__;
  754. d__[i__2] = alpha.r;
  755. if (i__ < *n) {
  756. i__2 = i__ + i__ * a_dim1;
  757. a[i__2].r = 1.f, a[i__2].i = 0.f;
  758. /* Compute Y(i+1:n,i) */
  759. i__2 = *m - i__ + 1;
  760. i__3 = *n - i__;
  761. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + (
  762. i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], &
  763. c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
  764. i__2 = *m - i__ + 1;
  765. i__3 = i__ - 1;
  766. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ +
  767. a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
  768. y[i__ * y_dim1 + 1], &c__1);
  769. i__2 = *n - i__;
  770. i__3 = i__ - 1;
  771. q__1.r = -1.f, q__1.i = 0.f;
  772. cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + 1 +
  773. y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
  774. i__ + 1 + i__ * y_dim1], &c__1);
  775. i__2 = *m - i__ + 1;
  776. i__3 = i__ - 1;
  777. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &x[i__ +
  778. x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
  779. y[i__ * y_dim1 + 1], &c__1);
  780. i__2 = i__ - 1;
  781. i__3 = *n - i__;
  782. q__1.r = -1.f, q__1.i = 0.f;
  783. cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[(i__ +
  784. 1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
  785. c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
  786. i__2 = *n - i__;
  787. cscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
  788. /* Update A(i,i+1:n) */
  789. i__2 = *n - i__;
  790. clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
  791. clacgv_(&i__, &a[i__ + a_dim1], lda);
  792. i__2 = *n - i__;
  793. q__1.r = -1.f, q__1.i = 0.f;
  794. cgemv_("No transpose", &i__2, &i__, &q__1, &y[i__ + 1 +
  795. y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + (
  796. i__ + 1) * a_dim1], lda);
  797. clacgv_(&i__, &a[i__ + a_dim1], lda);
  798. i__2 = i__ - 1;
  799. clacgv_(&i__2, &x[i__ + x_dim1], ldx);
  800. i__2 = i__ - 1;
  801. i__3 = *n - i__;
  802. q__1.r = -1.f, q__1.i = 0.f;
  803. cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[(i__ +
  804. 1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &
  805. a[i__ + (i__ + 1) * a_dim1], lda);
  806. i__2 = i__ - 1;
  807. clacgv_(&i__2, &x[i__ + x_dim1], ldx);
  808. /* Generate reflection P(i) to annihilate A(i,i+2:n) */
  809. i__2 = i__ + (i__ + 1) * a_dim1;
  810. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  811. i__2 = *n - i__;
  812. /* Computing MIN */
  813. i__3 = i__ + 2;
  814. clarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
  815. taup[i__]);
  816. i__2 = i__;
  817. e[i__2] = alpha.r;
  818. i__2 = i__ + (i__ + 1) * a_dim1;
  819. a[i__2].r = 1.f, a[i__2].i = 0.f;
  820. /* Compute X(i+1:m,i) */
  821. i__2 = *m - i__;
  822. i__3 = *n - i__;
  823. cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (i__
  824. + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
  825. lda, &c_b1, &x[i__ + 1 + i__ * x_dim1], &c__1);
  826. i__2 = *n - i__;
  827. cgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &y[i__ + 1
  828. + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &
  829. c_b1, &x[i__ * x_dim1 + 1], &c__1);
  830. i__2 = *m - i__;
  831. q__1.r = -1.f, q__1.i = 0.f;
  832. cgemv_("No transpose", &i__2, &i__, &q__1, &a[i__ + 1 +
  833. a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  834. i__ + 1 + i__ * x_dim1], &c__1);
  835. i__2 = i__ - 1;
  836. i__3 = *n - i__;
  837. cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[(i__ + 1) *
  838. a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
  839. c_b1, &x[i__ * x_dim1 + 1], &c__1);
  840. i__2 = *m - i__;
  841. i__3 = i__ - 1;
  842. q__1.r = -1.f, q__1.i = 0.f;
  843. cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + 1 +
  844. x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  845. i__ + 1 + i__ * x_dim1], &c__1);
  846. i__2 = *m - i__;
  847. cscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
  848. i__2 = *n - i__;
  849. clacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
  850. }
  851. /* L10: */
  852. }
  853. } else {
  854. /* Reduce to lower bidiagonal form */
  855. i__1 = *nb;
  856. for (i__ = 1; i__ <= i__1; ++i__) {
  857. /* Update A(i,i:n) */
  858. i__2 = *n - i__ + 1;
  859. clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  860. i__2 = i__ - 1;
  861. clacgv_(&i__2, &a[i__ + a_dim1], lda);
  862. i__2 = *n - i__ + 1;
  863. i__3 = i__ - 1;
  864. q__1.r = -1.f, q__1.i = 0.f;
  865. cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + y_dim1], ldy,
  866. &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1],
  867. lda);
  868. i__2 = i__ - 1;
  869. clacgv_(&i__2, &a[i__ + a_dim1], lda);
  870. i__2 = i__ - 1;
  871. clacgv_(&i__2, &x[i__ + x_dim1], ldx);
  872. i__2 = i__ - 1;
  873. i__3 = *n - i__ + 1;
  874. q__1.r = -1.f, q__1.i = 0.f;
  875. cgemv_("Conjugate transpose", &i__2, &i__3, &q__1, &a[i__ *
  876. a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &a[i__ +
  877. i__ * a_dim1], lda);
  878. i__2 = i__ - 1;
  879. clacgv_(&i__2, &x[i__ + x_dim1], ldx);
  880. /* Generate reflection P(i) to annihilate A(i,i+1:n) */
  881. i__2 = i__ + i__ * a_dim1;
  882. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  883. i__2 = *n - i__ + 1;
  884. /* Computing MIN */
  885. i__3 = i__ + 1;
  886. clarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
  887. taup[i__]);
  888. i__2 = i__;
  889. d__[i__2] = alpha.r;
  890. if (i__ < *m) {
  891. i__2 = i__ + i__ * a_dim1;
  892. a[i__2].r = 1.f, a[i__2].i = 0.f;
  893. /* Compute X(i+1:m,i) */
  894. i__2 = *m - i__;
  895. i__3 = *n - i__ + 1;
  896. cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + i__ *
  897. a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
  898. i__ + 1 + i__ * x_dim1], &c__1);
  899. i__2 = *n - i__ + 1;
  900. i__3 = i__ - 1;
  901. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &y[i__ +
  902. y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
  903. i__ * x_dim1 + 1], &c__1);
  904. i__2 = *m - i__;
  905. i__3 = i__ - 1;
  906. q__1.r = -1.f, q__1.i = 0.f;
  907. cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 +
  908. a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  909. i__ + 1 + i__ * x_dim1], &c__1);
  910. i__2 = i__ - 1;
  911. i__3 = *n - i__ + 1;
  912. cgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ * a_dim1 +
  913. 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[i__ *
  914. x_dim1 + 1], &c__1);
  915. i__2 = *m - i__;
  916. i__3 = i__ - 1;
  917. q__1.r = -1.f, q__1.i = 0.f;
  918. cgemv_("No transpose", &i__2, &i__3, &q__1, &x[i__ + 1 +
  919. x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
  920. i__ + 1 + i__ * x_dim1], &c__1);
  921. i__2 = *m - i__;
  922. cscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
  923. i__2 = *n - i__ + 1;
  924. clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  925. /* Update A(i+1:m,i) */
  926. i__2 = i__ - 1;
  927. clacgv_(&i__2, &y[i__ + y_dim1], ldy);
  928. i__2 = *m - i__;
  929. i__3 = i__ - 1;
  930. q__1.r = -1.f, q__1.i = 0.f;
  931. cgemv_("No transpose", &i__2, &i__3, &q__1, &a[i__ + 1 +
  932. a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b2, &a[i__ +
  933. 1 + i__ * a_dim1], &c__1);
  934. i__2 = i__ - 1;
  935. clacgv_(&i__2, &y[i__ + y_dim1], ldy);
  936. i__2 = *m - i__;
  937. q__1.r = -1.f, q__1.i = 0.f;
  938. cgemv_("No transpose", &i__2, &i__, &q__1, &x[i__ + 1 +
  939. x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[
  940. i__ + 1 + i__ * a_dim1], &c__1);
  941. /* Generate reflection Q(i) to annihilate A(i+2:m,i) */
  942. i__2 = i__ + 1 + i__ * a_dim1;
  943. alpha.r = a[i__2].r, alpha.i = a[i__2].i;
  944. i__2 = *m - i__;
  945. /* Computing MIN */
  946. i__3 = i__ + 2;
  947. clarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1,
  948. &tauq[i__]);
  949. i__2 = i__;
  950. e[i__2] = alpha.r;
  951. i__2 = i__ + 1 + i__ * a_dim1;
  952. a[i__2].r = 1.f, a[i__2].i = 0.f;
  953. /* Compute Y(i+1:n,i) */
  954. i__2 = *m - i__;
  955. i__3 = *n - i__;
  956. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
  957. + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1]
  958. , &c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
  959. i__2 = *m - i__;
  960. i__3 = i__ - 1;
  961. cgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
  962. + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
  963. c_b1, &y[i__ * y_dim1 + 1], &c__1);
  964. i__2 = *n - i__;
  965. i__3 = i__ - 1;
  966. q__1.r = -1.f, q__1.i = 0.f;
  967. cgemv_("No transpose", &i__2, &i__3, &q__1, &y[i__ + 1 +
  968. y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
  969. i__ + 1 + i__ * y_dim1], &c__1);
  970. i__2 = *m - i__;
  971. cgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &x[i__ + 1
  972. + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &
  973. c_b1, &y[i__ * y_dim1 + 1], &c__1);
  974. i__2 = *n - i__;
  975. q__1.r = -1.f, q__1.i = 0.f;
  976. cgemv_("Conjugate transpose", &i__, &i__2, &q__1, &a[(i__ + 1)
  977. * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
  978. c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
  979. i__2 = *n - i__;
  980. cscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
  981. } else {
  982. i__2 = *n - i__ + 1;
  983. clacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
  984. }
  985. /* L20: */
  986. }
  987. }
  988. return 0;
  989. /* End of CLABRD */
  990. } /* clabrd_ */