You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zuncsd2by1.c 47 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c_n1 = -1;
  487. static integer c__1 = 1;
  488. static logical c_false = FALSE_;
  489. /* > \brief \b ZUNCSD2BY1 */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZUNCSD2BY1 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd2
  496. by1.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd2
  499. by1.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd2
  502. by1.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZUNCSD2BY1( JOBU1, JOBU2, JOBV1T, M, P, Q, X11, LDX11, */
  508. /* X21, LDX21, THETA, U1, LDU1, U2, LDU2, V1T, */
  509. /* LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, */
  510. /* INFO ) */
  511. /* CHARACTER JOBU1, JOBU2, JOBV1T */
  512. /* INTEGER INFO, LDU1, LDU2, LDV1T, LWORK, LDX11, LDX21, */
  513. /* $ M, P, Q */
  514. /* INTEGER LRWORK, LRWORKMIN, LRWORKOPT */
  515. /* DOUBLE PRECISION RWORK(*) */
  516. /* DOUBLE PRECISION THETA(*) */
  517. /* COMPLEX*16 U1(LDU1,*), U2(LDU2,*), V1T(LDV1T,*), WORK(*), */
  518. /* $ X11(LDX11,*), X21(LDX21,*) */
  519. /* INTEGER IWORK(*) */
  520. /* > \par Purpose: */
  521. /* ============= */
  522. /* > */
  523. /* >\verbatim */
  524. /* > */
  525. /* > ZUNCSD2BY1 computes the CS decomposition of an M-by-Q matrix X with */
  526. /* > orthonormal columns that has been partitioned into a 2-by-1 block */
  527. /* > structure: */
  528. /* > */
  529. /* > [ I1 0 0 ] */
  530. /* > [ 0 C 0 ] */
  531. /* > [ X11 ] [ U1 | ] [ 0 0 0 ] */
  532. /* > X = [-----] = [---------] [----------] V1**T . */
  533. /* > [ X21 ] [ | U2 ] [ 0 0 0 ] */
  534. /* > [ 0 S 0 ] */
  535. /* > [ 0 0 I2] */
  536. /* > */
  537. /* > X11 is P-by-Q. The unitary matrices U1, U2, and V1 are P-by-P, */
  538. /* > (M-P)-by-(M-P), and Q-by-Q, respectively. C and S are R-by-R */
  539. /* > nonnegative diagonal matrices satisfying C^2 + S^2 = I, in which */
  540. /* > R = MIN(P,M-P,Q,M-Q). I1 is a K1-by-K1 identity matrix and I2 is a */
  541. /* > K2-by-K2 identity matrix, where K1 = MAX(Q+P-M,0), K2 = MAX(Q-P,0). */
  542. /* > \endverbatim */
  543. /* Arguments: */
  544. /* ========== */
  545. /* > \param[in] JOBU1 */
  546. /* > \verbatim */
  547. /* > JOBU1 is CHARACTER */
  548. /* > = 'Y': U1 is computed; */
  549. /* > otherwise: U1 is not computed. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] JOBU2 */
  553. /* > \verbatim */
  554. /* > JOBU2 is CHARACTER */
  555. /* > = 'Y': U2 is computed; */
  556. /* > otherwise: U2 is not computed. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] JOBV1T */
  560. /* > \verbatim */
  561. /* > JOBV1T is CHARACTER */
  562. /* > = 'Y': V1T is computed; */
  563. /* > otherwise: V1T is not computed. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] M */
  567. /* > \verbatim */
  568. /* > M is INTEGER */
  569. /* > The number of rows in X. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] P */
  573. /* > \verbatim */
  574. /* > P is INTEGER */
  575. /* > The number of rows in X11. 0 <= P <= M. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] Q */
  579. /* > \verbatim */
  580. /* > Q is INTEGER */
  581. /* > The number of columns in X11 and X21. 0 <= Q <= M. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] X11 */
  585. /* > \verbatim */
  586. /* > X11 is COMPLEX*16 array, dimension (LDX11,Q) */
  587. /* > On entry, part of the unitary matrix whose CSD is desired. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDX11 */
  591. /* > \verbatim */
  592. /* > LDX11 is INTEGER */
  593. /* > The leading dimension of X11. LDX11 >= MAX(1,P). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in,out] X21 */
  597. /* > \verbatim */
  598. /* > X21 is COMPLEX*16 array, dimension (LDX21,Q) */
  599. /* > On entry, part of the unitary matrix whose CSD is desired. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] LDX21 */
  603. /* > \verbatim */
  604. /* > LDX21 is INTEGER */
  605. /* > The leading dimension of X21. LDX21 >= MAX(1,M-P). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[out] THETA */
  609. /* > \verbatim */
  610. /* > THETA is DOUBLE PRECISION array, dimension (R), in which R = */
  611. /* > MIN(P,M-P,Q,M-Q). */
  612. /* > C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
  613. /* > S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[out] U1 */
  617. /* > \verbatim */
  618. /* > U1 is COMPLEX*16 array, dimension (P) */
  619. /* > If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LDU1 */
  623. /* > \verbatim */
  624. /* > LDU1 is INTEGER */
  625. /* > The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
  626. /* > MAX(1,P). */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] U2 */
  630. /* > \verbatim */
  631. /* > U2 is COMPLEX*16 array, dimension (M-P) */
  632. /* > If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary */
  633. /* > matrix U2. */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[in] LDU2 */
  637. /* > \verbatim */
  638. /* > LDU2 is INTEGER */
  639. /* > The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
  640. /* > MAX(1,M-P). */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] V1T */
  644. /* > \verbatim */
  645. /* > V1T is COMPLEX*16 array, dimension (Q) */
  646. /* > If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary */
  647. /* > matrix V1**T. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[in] LDV1T */
  651. /* > \verbatim */
  652. /* > LDV1T is INTEGER */
  653. /* > The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
  654. /* > MAX(1,Q). */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] WORK */
  658. /* > \verbatim */
  659. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  660. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] LWORK */
  664. /* > \verbatim */
  665. /* > LWORK is INTEGER */
  666. /* > The dimension of the array WORK. */
  667. /* > */
  668. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  669. /* > only calculates the optimal size of the WORK array, returns */
  670. /* > this value as the first entry of the work array, and no error */
  671. /* > message related to LWORK is issued by XERBLA. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] RWORK */
  675. /* > \verbatim */
  676. /* > RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
  677. /* > On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
  678. /* > If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), */
  679. /* > ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
  680. /* > define the matrix in intermediate bidiagonal-block form */
  681. /* > remaining after nonconvergence. INFO specifies the number */
  682. /* > of nonzero PHI's. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[in] LRWORK */
  686. /* > \verbatim */
  687. /* > LRWORK is INTEGER */
  688. /* > The dimension of the array RWORK. */
  689. /* > */
  690. /* > If LRWORK = -1, then a workspace query is assumed; the routine */
  691. /* > only calculates the optimal size of the RWORK array, returns */
  692. /* > this value as the first entry of the work array, and no error */
  693. /* > message related to LRWORK is issued by XERBLA. */
  694. /* > \endverbatim */
  695. /* > \param[out] IWORK */
  696. /* > \verbatim */
  697. /* > IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[out] INFO */
  701. /* > \verbatim */
  702. /* > INFO is INTEGER */
  703. /* > = 0: successful exit. */
  704. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  705. /* > > 0: ZBBCSD did not converge. See the description of WORK */
  706. /* > above for details. */
  707. /* > \endverbatim */
  708. /* > \par References: */
  709. /* ================ */
  710. /* > */
  711. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  712. /* > Algorithms, 50(1):33-65, 2009. */
  713. /* Authors: */
  714. /* ======== */
  715. /* > \author Univ. of Tennessee */
  716. /* > \author Univ. of California Berkeley */
  717. /* > \author Univ. of Colorado Denver */
  718. /* > \author NAG Ltd. */
  719. /* > \date July 2012 */
  720. /* > \ingroup complex16OTHERcomputational */
  721. /* ===================================================================== */
  722. /* Subroutine */ int zuncsd2by1_(char *jobu1, char *jobu2, char *jobv1t,
  723. integer *m, integer *p, integer *q, doublecomplex *x11, integer *
  724. ldx11, doublecomplex *x21, integer *ldx21, doublereal *theta,
  725. doublecomplex *u1, integer *ldu1, doublecomplex *u2, integer *ldu2,
  726. doublecomplex *v1t, integer *ldv1t, doublecomplex *work, integer *
  727. lwork, doublereal *rwork, integer *lrwork, integer *iwork, integer *
  728. info)
  729. {
  730. /* System generated locals */
  731. integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset,
  732. x11_dim1, x11_offset, x21_dim1, x21_offset, i__1, i__2, i__3;
  733. /* Local variables */
  734. integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e;
  735. doublecomplex cdum[1] /* was [1][1] */;
  736. integer iphi, lworkmin, lworkopt, i__, j, r__;
  737. extern logical lsame_(char *, char *);
  738. integer childinfo;
  739. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  740. doublecomplex *, integer *);
  741. integer lorglqmin, lorgqrmin, lorglqopt, lrworkmin, itaup1, itaup2,
  742. itauq1, lorgqropt;
  743. logical wantu1, wantu2;
  744. integer lrworkopt, ibbcsd, lbbcsd, iorbdb, lorbdb;
  745. extern /* Subroutine */ int zbbcsd_(char *, char *, char *, char *, char *
  746. , integer *, integer *, integer *, doublereal *, doublereal *,
  747. doublecomplex *, integer *, doublecomplex *, integer *,
  748. doublecomplex *, integer *, doublecomplex *, integer *,
  749. doublereal *, doublereal *, doublereal *, doublereal *,
  750. doublereal *, doublereal *, doublereal *, doublereal *,
  751. doublereal *, integer *, integer *), xerbla_(char *, integer *, ftnlen);
  752. integer iorglq, lorglq;
  753. extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
  754. doublecomplex *, integer *, doublecomplex *, integer *);
  755. integer iorgqr;
  756. extern /* Subroutine */ int zlapmr_(logical *, integer *, integer *,
  757. doublecomplex *, integer *, integer *);
  758. integer lorgqr;
  759. extern /* Subroutine */ int zlapmt_(logical *, integer *, integer *,
  760. doublecomplex *, integer *, integer *);
  761. logical lquery;
  762. extern /* Subroutine */ int zunglq_(integer *, integer *, integer *,
  763. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  764. integer *, integer *), zungqr_(integer *, integer *, integer *,
  765. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  766. integer *, integer *), zunbdb1_(integer *, integer *, integer *,
  767. doublecomplex *, integer *, doublecomplex *, integer *,
  768. doublereal *, doublereal *, doublecomplex *, doublecomplex *,
  769. doublecomplex *, doublecomplex *, integer *, integer *), zunbdb2_(
  770. integer *, integer *, integer *, doublecomplex *, integer *,
  771. doublecomplex *, integer *, doublereal *, doublereal *,
  772. doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
  773. , integer *, integer *), zunbdb3_(integer *, integer *, integer *,
  774. doublecomplex *, integer *, doublecomplex *, integer *,
  775. doublereal *, doublereal *, doublecomplex *, doublecomplex *,
  776. doublecomplex *, doublecomplex *, integer *, integer *), zunbdb4_(
  777. integer *, integer *, integer *, doublecomplex *, integer *,
  778. doublecomplex *, integer *, doublereal *, doublereal *,
  779. doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
  780. , doublecomplex *, integer *, integer *);
  781. logical wantv1t;
  782. doublereal dum[1];
  783. /* -- LAPACK computational routine (version 3.7.1) -- */
  784. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  785. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  786. /* July 2012 */
  787. /* ===================================================================== */
  788. /* Test input arguments */
  789. /* Parameter adjustments */
  790. x11_dim1 = *ldx11;
  791. x11_offset = 1 + x11_dim1 * 1;
  792. x11 -= x11_offset;
  793. x21_dim1 = *ldx21;
  794. x21_offset = 1 + x21_dim1 * 1;
  795. x21 -= x21_offset;
  796. --theta;
  797. u1_dim1 = *ldu1;
  798. u1_offset = 1 + u1_dim1 * 1;
  799. u1 -= u1_offset;
  800. u2_dim1 = *ldu2;
  801. u2_offset = 1 + u2_dim1 * 1;
  802. u2 -= u2_offset;
  803. v1t_dim1 = *ldv1t;
  804. v1t_offset = 1 + v1t_dim1 * 1;
  805. v1t -= v1t_offset;
  806. --work;
  807. --rwork;
  808. --iwork;
  809. /* Function Body */
  810. *info = 0;
  811. wantu1 = lsame_(jobu1, "Y");
  812. wantu2 = lsame_(jobu2, "Y");
  813. wantv1t = lsame_(jobv1t, "Y");
  814. lquery = *lwork == -1;
  815. if (*m < 0) {
  816. *info = -4;
  817. } else if (*p < 0 || *p > *m) {
  818. *info = -5;
  819. } else if (*q < 0 || *q > *m) {
  820. *info = -6;
  821. } else if (*ldx11 < f2cmax(1,*p)) {
  822. *info = -8;
  823. } else /* if(complicated condition) */ {
  824. /* Computing MAX */
  825. i__1 = 1, i__2 = *m - *p;
  826. if (*ldx21 < f2cmax(i__1,i__2)) {
  827. *info = -10;
  828. } else if (wantu1 && *ldu1 < f2cmax(1,*p)) {
  829. *info = -13;
  830. } else /* if(complicated condition) */ {
  831. /* Computing MAX */
  832. i__1 = 1, i__2 = *m - *p;
  833. if (wantu2 && *ldu2 < f2cmax(i__1,i__2)) {
  834. *info = -15;
  835. } else if (wantv1t && *ldv1t < f2cmax(1,*q)) {
  836. *info = -17;
  837. }
  838. }
  839. }
  840. /* Computing MIN */
  841. i__1 = *p, i__2 = *m - *p, i__1 = f2cmin(i__1,i__2), i__1 = f2cmin(i__1,*q),
  842. i__2 = *m - *q;
  843. r__ = f2cmin(i__1,i__2);
  844. /* Compute workspace */
  845. /* WORK layout: */
  846. /* |-----------------------------------------| */
  847. /* | LWORKOPT (1) | */
  848. /* |-----------------------------------------| */
  849. /* | TAUP1 (MAX(1,P)) | */
  850. /* | TAUP2 (MAX(1,M-P)) | */
  851. /* | TAUQ1 (MAX(1,Q)) | */
  852. /* |-----------------------------------------| */
  853. /* | ZUNBDB WORK | ZUNGQR WORK | ZUNGLQ WORK | */
  854. /* | | | | */
  855. /* | | | | */
  856. /* | | | | */
  857. /* | | | | */
  858. /* |-----------------------------------------| */
  859. /* RWORK layout: */
  860. /* |------------------| */
  861. /* | LRWORKOPT (1) | */
  862. /* |------------------| */
  863. /* | PHI (MAX(1,R-1)) | */
  864. /* |------------------| */
  865. /* | B11D (R) | */
  866. /* | B11E (R-1) | */
  867. /* | B12D (R) | */
  868. /* | B12E (R-1) | */
  869. /* | B21D (R) | */
  870. /* | B21E (R-1) | */
  871. /* | B22D (R) | */
  872. /* | B22E (R-1) | */
  873. /* | ZBBCSD RWORK | */
  874. /* |------------------| */
  875. if (*info == 0) {
  876. iphi = 2;
  877. /* Computing MAX */
  878. i__1 = 1, i__2 = r__ - 1;
  879. ib11d = iphi + f2cmax(i__1,i__2);
  880. ib11e = ib11d + f2cmax(1,r__);
  881. /* Computing MAX */
  882. i__1 = 1, i__2 = r__ - 1;
  883. ib12d = ib11e + f2cmax(i__1,i__2);
  884. ib12e = ib12d + f2cmax(1,r__);
  885. /* Computing MAX */
  886. i__1 = 1, i__2 = r__ - 1;
  887. ib21d = ib12e + f2cmax(i__1,i__2);
  888. ib21e = ib21d + f2cmax(1,r__);
  889. /* Computing MAX */
  890. i__1 = 1, i__2 = r__ - 1;
  891. ib22d = ib21e + f2cmax(i__1,i__2);
  892. ib22e = ib22d + f2cmax(1,r__);
  893. /* Computing MAX */
  894. i__1 = 1, i__2 = r__ - 1;
  895. ibbcsd = ib22e + f2cmax(i__1,i__2);
  896. itaup1 = 2;
  897. itaup2 = itaup1 + f2cmax(1,*p);
  898. /* Computing MAX */
  899. i__1 = 1, i__2 = *m - *p;
  900. itauq1 = itaup2 + f2cmax(i__1,i__2);
  901. iorbdb = itauq1 + f2cmax(1,*q);
  902. iorgqr = itauq1 + f2cmax(1,*q);
  903. iorglq = itauq1 + f2cmax(1,*q);
  904. lorgqrmin = 1;
  905. lorgqropt = 1;
  906. lorglqmin = 1;
  907. lorglqopt = 1;
  908. if (r__ == *q) {
  909. zunbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  910. ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1,
  911. &childinfo);
  912. lorbdb = (integer) work[1].r;
  913. if (wantu1 && *p > 0) {
  914. zungqr_(p, p, q, &u1[u1_offset], ldu1, cdum, &work[1], &c_n1,
  915. &childinfo);
  916. lorgqrmin = f2cmax(lorgqrmin,*p);
  917. /* Computing MAX */
  918. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  919. lorgqropt = f2cmax(i__1,i__2);
  920. }
  921. if (wantu2 && *m - *p > 0) {
  922. i__1 = *m - *p;
  923. i__2 = *m - *p;
  924. zungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, cdum, &work[1],
  925. &c_n1, &childinfo);
  926. /* Computing MAX */
  927. i__1 = lorgqrmin, i__2 = *m - *p;
  928. lorgqrmin = f2cmax(i__1,i__2);
  929. /* Computing MAX */
  930. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  931. lorgqropt = f2cmax(i__1,i__2);
  932. }
  933. if (wantv1t && *q > 0) {
  934. i__1 = *q - 1;
  935. i__2 = *q - 1;
  936. i__3 = *q - 1;
  937. zunglq_(&i__1, &i__2, &i__3, &v1t[v1t_offset], ldv1t, cdum, &
  938. work[1], &c_n1, &childinfo);
  939. /* Computing MAX */
  940. i__1 = lorglqmin, i__2 = *q - 1;
  941. lorglqmin = f2cmax(i__1,i__2);
  942. /* Computing MAX */
  943. i__1 = lorglqopt, i__2 = (integer) work[1].r;
  944. lorglqopt = f2cmax(i__1,i__2);
  945. }
  946. zbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], dum, &
  947. u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  948. v1t_offset], ldv1t, cdum, &c__1, dum, dum, dum, dum, dum,
  949. dum, dum, dum, &rwork[1], &c_n1, &childinfo);
  950. lbbcsd = (integer) rwork[1];
  951. } else if (r__ == *p) {
  952. zunbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  953. ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1,
  954. &childinfo);
  955. lorbdb = (integer) work[1].r;
  956. if (wantu1 && *p > 0) {
  957. i__1 = *p - 1;
  958. i__2 = *p - 1;
  959. i__3 = *p - 1;
  960. zungqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1,
  961. cdum, &work[1], &c_n1, &childinfo);
  962. /* Computing MAX */
  963. i__1 = lorgqrmin, i__2 = *p - 1;
  964. lorgqrmin = f2cmax(i__1,i__2);
  965. /* Computing MAX */
  966. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  967. lorgqropt = f2cmax(i__1,i__2);
  968. }
  969. if (wantu2 && *m - *p > 0) {
  970. i__1 = *m - *p;
  971. i__2 = *m - *p;
  972. zungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, cdum, &work[1],
  973. &c_n1, &childinfo);
  974. /* Computing MAX */
  975. i__1 = lorgqrmin, i__2 = *m - *p;
  976. lorgqrmin = f2cmax(i__1,i__2);
  977. /* Computing MAX */
  978. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  979. lorgqropt = f2cmax(i__1,i__2);
  980. }
  981. if (wantv1t && *q > 0) {
  982. zunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, cdum, &work[1], &
  983. c_n1, &childinfo);
  984. lorglqmin = f2cmax(lorglqmin,*q);
  985. /* Computing MAX */
  986. i__1 = lorglqopt, i__2 = (integer) work[1].r;
  987. lorglqopt = f2cmax(i__1,i__2);
  988. }
  989. zbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], dum, &
  990. v1t[v1t_offset], ldv1t, cdum, &c__1, &u1[u1_offset], ldu1,
  991. &u2[u2_offset], ldu2, dum, dum, dum, dum, dum, dum, dum,
  992. dum, &rwork[1], &c_n1, &childinfo);
  993. lbbcsd = (integer) rwork[1];
  994. } else if (r__ == *m - *p) {
  995. zunbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  996. ldx21, &theta[1], dum, cdum, cdum, cdum, &work[1], &c_n1,
  997. &childinfo);
  998. lorbdb = (integer) work[1].r;
  999. if (wantu1 && *p > 0) {
  1000. zungqr_(p, p, q, &u1[u1_offset], ldu1, cdum, &work[1], &c_n1,
  1001. &childinfo);
  1002. lorgqrmin = f2cmax(lorgqrmin,*p);
  1003. /* Computing MAX */
  1004. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  1005. lorgqropt = f2cmax(i__1,i__2);
  1006. }
  1007. if (wantu2 && *m - *p > 0) {
  1008. i__1 = *m - *p - 1;
  1009. i__2 = *m - *p - 1;
  1010. i__3 = *m - *p - 1;
  1011. zungqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2,
  1012. cdum, &work[1], &c_n1, &childinfo);
  1013. /* Computing MAX */
  1014. i__1 = lorgqrmin, i__2 = *m - *p - 1;
  1015. lorgqrmin = f2cmax(i__1,i__2);
  1016. /* Computing MAX */
  1017. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  1018. lorgqropt = f2cmax(i__1,i__2);
  1019. }
  1020. if (wantv1t && *q > 0) {
  1021. zunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, cdum, &work[1], &
  1022. c_n1, &childinfo);
  1023. lorglqmin = f2cmax(lorglqmin,*q);
  1024. /* Computing MAX */
  1025. i__1 = lorglqopt, i__2 = (integer) work[1].r;
  1026. lorglqopt = f2cmax(i__1,i__2);
  1027. }
  1028. i__1 = *m - *q;
  1029. i__2 = *m - *p;
  1030. zbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1]
  1031. , dum, cdum, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  1032. u2_offset], ldu2, &u1[u1_offset], ldu1, dum, dum, dum,
  1033. dum, dum, dum, dum, dum, &rwork[1], &c_n1, &childinfo);
  1034. lbbcsd = (integer) rwork[1];
  1035. } else {
  1036. zunbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset],
  1037. ldx21, &theta[1], dum, cdum, cdum, cdum, cdum, &work[1], &
  1038. c_n1, &childinfo);
  1039. lorbdb = *m + (integer) work[1].r;
  1040. if (wantu1 && *p > 0) {
  1041. i__1 = *m - *q;
  1042. zungqr_(p, p, &i__1, &u1[u1_offset], ldu1, cdum, &work[1], &
  1043. c_n1, &childinfo);
  1044. lorgqrmin = f2cmax(lorgqrmin,*p);
  1045. /* Computing MAX */
  1046. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  1047. lorgqropt = f2cmax(i__1,i__2);
  1048. }
  1049. if (wantu2 && *m - *p > 0) {
  1050. i__1 = *m - *p;
  1051. i__2 = *m - *p;
  1052. i__3 = *m - *q;
  1053. zungqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, cdum, &
  1054. work[1], &c_n1, &childinfo);
  1055. /* Computing MAX */
  1056. i__1 = lorgqrmin, i__2 = *m - *p;
  1057. lorgqrmin = f2cmax(i__1,i__2);
  1058. /* Computing MAX */
  1059. i__1 = lorgqropt, i__2 = (integer) work[1].r;
  1060. lorgqropt = f2cmax(i__1,i__2);
  1061. }
  1062. if (wantv1t && *q > 0) {
  1063. zunglq_(q, q, q, &v1t[v1t_offset], ldv1t, cdum, &work[1], &
  1064. c_n1, &childinfo);
  1065. lorglqmin = f2cmax(lorglqmin,*q);
  1066. /* Computing MAX */
  1067. i__1 = lorglqopt, i__2 = (integer) work[1].r;
  1068. lorglqopt = f2cmax(i__1,i__2);
  1069. }
  1070. i__1 = *m - *p;
  1071. i__2 = *m - *q;
  1072. zbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1]
  1073. , dum, &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, cdum, &
  1074. c__1, &v1t[v1t_offset], ldv1t, dum, dum, dum, dum, dum,
  1075. dum, dum, dum, &rwork[1], &c_n1, &childinfo);
  1076. lbbcsd = (integer) rwork[1];
  1077. }
  1078. lrworkmin = ibbcsd + lbbcsd - 1;
  1079. lrworkopt = lrworkmin;
  1080. rwork[1] = (doublereal) lrworkopt;
  1081. /* Computing MAX */
  1082. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqrmin - 1, i__1 = f2cmax(
  1083. i__1,i__2), i__2 = iorglq + lorglqmin - 1;
  1084. lworkmin = f2cmax(i__1,i__2);
  1085. /* Computing MAX */
  1086. i__1 = iorbdb + lorbdb - 1, i__2 = iorgqr + lorgqropt - 1, i__1 = f2cmax(
  1087. i__1,i__2), i__2 = iorglq + lorglqopt - 1;
  1088. lworkopt = f2cmax(i__1,i__2);
  1089. work[1].r = (doublereal) lworkopt, work[1].i = 0.;
  1090. if (*lwork < lworkmin && ! lquery) {
  1091. *info = -19;
  1092. }
  1093. }
  1094. if (*info != 0) {
  1095. i__1 = -(*info);
  1096. xerbla_("ZUNCSD2BY1", &i__1, (ftnlen)10);
  1097. return 0;
  1098. } else if (lquery) {
  1099. return 0;
  1100. }
  1101. lorgqr = *lwork - iorgqr + 1;
  1102. lorglq = *lwork - iorglq + 1;
  1103. /* Handle four cases separately: R = Q, R = P, R = M-P, and R = M-Q, */
  1104. /* in which R = MIN(P,M-P,Q,M-Q) */
  1105. if (r__ == *q) {
  1106. /* Case 1: R = Q */
  1107. /* Simultaneously bidiagonalize X11 and X21 */
  1108. zunbdb1_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1109. theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[
  1110. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1111. /* Accumulate Householder reflectors */
  1112. if (wantu1 && *p > 0) {
  1113. zlacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1114. zungqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1115. iorgqr], &lorgqr, &childinfo);
  1116. }
  1117. if (wantu2 && *m - *p > 0) {
  1118. i__1 = *m - *p;
  1119. zlacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1120. ldu2);
  1121. i__1 = *m - *p;
  1122. i__2 = *m - *p;
  1123. zungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1124. work[iorgqr], &lorgqr, &childinfo);
  1125. }
  1126. if (wantv1t && *q > 0) {
  1127. i__1 = v1t_dim1 + 1;
  1128. v1t[i__1].r = 1., v1t[i__1].i = 0.;
  1129. i__1 = *q;
  1130. for (j = 2; j <= i__1; ++j) {
  1131. i__2 = j * v1t_dim1 + 1;
  1132. v1t[i__2].r = 0., v1t[i__2].i = 0.;
  1133. i__2 = j + v1t_dim1;
  1134. v1t[i__2].r = 0., v1t[i__2].i = 0.;
  1135. }
  1136. i__1 = *q - 1;
  1137. i__2 = *q - 1;
  1138. zlacpy_("U", &i__1, &i__2, &x21[(x21_dim1 << 1) + 1], ldx21, &v1t[
  1139. (v1t_dim1 << 1) + 2], ldv1t);
  1140. i__1 = *q - 1;
  1141. i__2 = *q - 1;
  1142. i__3 = *q - 1;
  1143. zunglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
  1144. work[itauq1], &work[iorglq], &lorglq, &childinfo);
  1145. }
  1146. /* Simultaneously diagonalize X11 and X21. */
  1147. zbbcsd_(jobu1, jobu2, jobv1t, "N", "N", m, p, q, &theta[1], &rwork[
  1148. iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
  1149. v1t_offset], ldv1t, cdum, &c__1, &rwork[ib11d], &rwork[ib11e],
  1150. &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], &
  1151. rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, &
  1152. childinfo);
  1153. /* Permute rows and columns to place zero submatrices in */
  1154. /* preferred positions */
  1155. if (*q > 0 && wantu2) {
  1156. i__1 = *q;
  1157. for (i__ = 1; i__ <= i__1; ++i__) {
  1158. iwork[i__] = *m - *p - *q + i__;
  1159. }
  1160. i__1 = *m - *p;
  1161. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1162. iwork[i__] = i__ - *q;
  1163. }
  1164. i__1 = *m - *p;
  1165. i__2 = *m - *p;
  1166. zlapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1167. }
  1168. } else if (r__ == *p) {
  1169. /* Case 2: R = P */
  1170. /* Simultaneously bidiagonalize X11 and X21 */
  1171. zunbdb2_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1172. theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[
  1173. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1174. /* Accumulate Householder reflectors */
  1175. if (wantu1 && *p > 0) {
  1176. i__1 = u1_dim1 + 1;
  1177. u1[i__1].r = 1., u1[i__1].i = 0.;
  1178. i__1 = *p;
  1179. for (j = 2; j <= i__1; ++j) {
  1180. i__2 = j * u1_dim1 + 1;
  1181. u1[i__2].r = 0., u1[i__2].i = 0.;
  1182. i__2 = j + u1_dim1;
  1183. u1[i__2].r = 0., u1[i__2].i = 0.;
  1184. }
  1185. i__1 = *p - 1;
  1186. i__2 = *p - 1;
  1187. zlacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1188. u1_dim1 << 1) + 2], ldu1);
  1189. i__1 = *p - 1;
  1190. i__2 = *p - 1;
  1191. i__3 = *p - 1;
  1192. zungqr_(&i__1, &i__2, &i__3, &u1[(u1_dim1 << 1) + 2], ldu1, &work[
  1193. itaup1], &work[iorgqr], &lorgqr, &childinfo);
  1194. }
  1195. if (wantu2 && *m - *p > 0) {
  1196. i__1 = *m - *p;
  1197. zlacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset],
  1198. ldu2);
  1199. i__1 = *m - *p;
  1200. i__2 = *m - *p;
  1201. zungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
  1202. work[iorgqr], &lorgqr, &childinfo);
  1203. }
  1204. if (wantv1t && *q > 0) {
  1205. zlacpy_("U", p, q, &x11[x11_offset], ldx11, &v1t[v1t_offset],
  1206. ldv1t);
  1207. zunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1208. iorglq], &lorglq, &childinfo);
  1209. }
  1210. /* Simultaneously diagonalize X11 and X21. */
  1211. zbbcsd_(jobv1t, "N", jobu1, jobu2, "T", m, q, p, &theta[1], &rwork[
  1212. iphi], &v1t[v1t_offset], ldv1t, cdum, &c__1, &u1[u1_offset],
  1213. ldu1, &u2[u2_offset], ldu2, &rwork[ib11d], &rwork[ib11e], &
  1214. rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], &
  1215. rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, &
  1216. childinfo);
  1217. /* Permute rows and columns to place identity submatrices in */
  1218. /* preferred positions */
  1219. if (*q > 0 && wantu2) {
  1220. i__1 = *q;
  1221. for (i__ = 1; i__ <= i__1; ++i__) {
  1222. iwork[i__] = *m - *p - *q + i__;
  1223. }
  1224. i__1 = *m - *p;
  1225. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1226. iwork[i__] = i__ - *q;
  1227. }
  1228. i__1 = *m - *p;
  1229. i__2 = *m - *p;
  1230. zlapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
  1231. }
  1232. } else if (r__ == *m - *p) {
  1233. /* Case 3: R = M-P */
  1234. /* Simultaneously bidiagonalize X11 and X21 */
  1235. zunbdb3_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1236. theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[
  1237. itauq1], &work[iorbdb], &lorbdb, &childinfo);
  1238. /* Accumulate Householder reflectors */
  1239. if (wantu1 && *p > 0) {
  1240. zlacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
  1241. zungqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1242. iorgqr], &lorgqr, &childinfo);
  1243. }
  1244. if (wantu2 && *m - *p > 0) {
  1245. i__1 = u2_dim1 + 1;
  1246. u2[i__1].r = 1., u2[i__1].i = 0.;
  1247. i__1 = *m - *p;
  1248. for (j = 2; j <= i__1; ++j) {
  1249. i__2 = j * u2_dim1 + 1;
  1250. u2[i__2].r = 0., u2[i__2].i = 0.;
  1251. i__2 = j + u2_dim1;
  1252. u2[i__2].r = 0., u2[i__2].i = 0.;
  1253. }
  1254. i__1 = *m - *p - 1;
  1255. i__2 = *m - *p - 1;
  1256. zlacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1257. u2_dim1 << 1) + 2], ldu2);
  1258. i__1 = *m - *p - 1;
  1259. i__2 = *m - *p - 1;
  1260. i__3 = *m - *p - 1;
  1261. zungqr_(&i__1, &i__2, &i__3, &u2[(u2_dim1 << 1) + 2], ldu2, &work[
  1262. itaup2], &work[iorgqr], &lorgqr, &childinfo);
  1263. }
  1264. if (wantv1t && *q > 0) {
  1265. i__1 = *m - *p;
  1266. zlacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1267. ldv1t);
  1268. zunglq_(q, q, &r__, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1269. iorglq], &lorglq, &childinfo);
  1270. }
  1271. /* Simultaneously diagonalize X11 and X21. */
  1272. i__1 = *m - *q;
  1273. i__2 = *m - *p;
  1274. zbbcsd_("N", jobv1t, jobu2, jobu1, "T", m, &i__1, &i__2, &theta[1], &
  1275. rwork[iphi], cdum, &c__1, &v1t[v1t_offset], ldv1t, &u2[
  1276. u2_offset], ldu2, &u1[u1_offset], ldu1, &rwork[ib11d], &rwork[
  1277. ib11e], &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[
  1278. ib21e], &rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd,
  1279. &childinfo);
  1280. /* Permute rows and columns to place identity submatrices in */
  1281. /* preferred positions */
  1282. if (*q > r__) {
  1283. i__1 = r__;
  1284. for (i__ = 1; i__ <= i__1; ++i__) {
  1285. iwork[i__] = *q - r__ + i__;
  1286. }
  1287. i__1 = *q;
  1288. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1289. iwork[i__] = i__ - r__;
  1290. }
  1291. if (wantu1) {
  1292. zlapmt_(&c_false, p, q, &u1[u1_offset], ldu1, &iwork[1]);
  1293. }
  1294. if (wantv1t) {
  1295. zlapmr_(&c_false, q, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1296. }
  1297. }
  1298. } else {
  1299. /* Case 4: R = M-Q */
  1300. /* Simultaneously bidiagonalize X11 and X21 */
  1301. i__1 = lorbdb - *m;
  1302. zunbdb4_(m, p, q, &x11[x11_offset], ldx11, &x21[x21_offset], ldx21, &
  1303. theta[1], &rwork[iphi], &work[itaup1], &work[itaup2], &work[
  1304. itauq1], &work[iorbdb], &work[iorbdb + *m], &i__1, &childinfo)
  1305. ;
  1306. /* Accumulate Householder reflectors */
  1307. if (wantu1 && *p > 0) {
  1308. zcopy_(p, &work[iorbdb], &c__1, &u1[u1_offset], &c__1);
  1309. i__1 = *p;
  1310. for (j = 2; j <= i__1; ++j) {
  1311. i__2 = j * u1_dim1 + 1;
  1312. u1[i__2].r = 0., u1[i__2].i = 0.;
  1313. }
  1314. i__1 = *p - 1;
  1315. i__2 = *m - *q - 1;
  1316. zlacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &u1[(
  1317. u1_dim1 << 1) + 2], ldu1);
  1318. i__1 = *m - *q;
  1319. zungqr_(p, p, &i__1, &u1[u1_offset], ldu1, &work[itaup1], &work[
  1320. iorgqr], &lorgqr, &childinfo);
  1321. }
  1322. if (wantu2 && *m - *p > 0) {
  1323. i__1 = *m - *p;
  1324. zcopy_(&i__1, &work[iorbdb + *p], &c__1, &u2[u2_offset], &c__1);
  1325. i__1 = *m - *p;
  1326. for (j = 2; j <= i__1; ++j) {
  1327. i__2 = j * u2_dim1 + 1;
  1328. u2[i__2].r = 0., u2[i__2].i = 0.;
  1329. }
  1330. i__1 = *m - *p - 1;
  1331. i__2 = *m - *q - 1;
  1332. zlacpy_("L", &i__1, &i__2, &x21[x21_dim1 + 2], ldx21, &u2[(
  1333. u2_dim1 << 1) + 2], ldu2);
  1334. i__1 = *m - *p;
  1335. i__2 = *m - *p;
  1336. i__3 = *m - *q;
  1337. zungqr_(&i__1, &i__2, &i__3, &u2[u2_offset], ldu2, &work[itaup2],
  1338. &work[iorgqr], &lorgqr, &childinfo);
  1339. }
  1340. if (wantv1t && *q > 0) {
  1341. i__1 = *m - *q;
  1342. zlacpy_("U", &i__1, q, &x21[x21_offset], ldx21, &v1t[v1t_offset],
  1343. ldv1t);
  1344. i__1 = *p - (*m - *q);
  1345. i__2 = *q - (*m - *q);
  1346. zlacpy_("U", &i__1, &i__2, &x11[*m - *q + 1 + (*m - *q + 1) *
  1347. x11_dim1], ldx11, &v1t[*m - *q + 1 + (*m - *q + 1) *
  1348. v1t_dim1], ldv1t);
  1349. i__1 = -(*p) + *q;
  1350. i__2 = *q - *p;
  1351. zlacpy_("U", &i__1, &i__2, &x21[*m - *q + 1 + (*p + 1) * x21_dim1]
  1352. , ldx21, &v1t[*p + 1 + (*p + 1) * v1t_dim1], ldv1t);
  1353. zunglq_(q, q, q, &v1t[v1t_offset], ldv1t, &work[itauq1], &work[
  1354. iorglq], &lorglq, &childinfo);
  1355. }
  1356. /* Simultaneously diagonalize X11 and X21. */
  1357. i__1 = *m - *p;
  1358. i__2 = *m - *q;
  1359. zbbcsd_(jobu2, jobu1, "N", jobv1t, "N", m, &i__1, &i__2, &theta[1], &
  1360. rwork[iphi], &u2[u2_offset], ldu2, &u1[u1_offset], ldu1, cdum,
  1361. &c__1, &v1t[v1t_offset], ldv1t, &rwork[ib11d], &rwork[ib11e],
  1362. &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[ib21e], &
  1363. rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsd, &
  1364. childinfo);
  1365. /* Permute rows and columns to place identity submatrices in */
  1366. /* preferred positions */
  1367. if (*p > r__) {
  1368. i__1 = r__;
  1369. for (i__ = 1; i__ <= i__1; ++i__) {
  1370. iwork[i__] = *p - r__ + i__;
  1371. }
  1372. i__1 = *p;
  1373. for (i__ = r__ + 1; i__ <= i__1; ++i__) {
  1374. iwork[i__] = i__ - r__;
  1375. }
  1376. if (wantu1) {
  1377. zlapmt_(&c_false, p, p, &u1[u1_offset], ldu1, &iwork[1]);
  1378. }
  1379. if (wantv1t) {
  1380. zlapmr_(&c_false, p, q, &v1t[v1t_offset], ldv1t, &iwork[1]);
  1381. }
  1382. }
  1383. }
  1384. return 0;
  1385. /* End of ZUNCSD2BY1 */
  1386. } /* zuncsd2by1_ */