You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrevc3.c 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__1 = 1;
  489. static integer c_n1 = -1;
  490. static integer c__2 = 2;
  491. /* > \brief \b ZTREVC3 */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download ZTREVC3 + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc3
  498. .f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc3
  501. .f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc3
  504. .f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE ZTREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
  510. /* $ LDVR, MM, M, WORK, LWORK, RWORK, LRWORK, INFO) */
  511. /* CHARACTER HOWMNY, SIDE */
  512. /* INTEGER INFO, LDT, LDVL, LDVR, LWORK, M, MM, N */
  513. /* LOGICAL SELECT( * ) */
  514. /* DOUBLE PRECISION RWORK( * ) */
  515. /* COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), */
  516. /* $ WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > ZTREVC3 computes some or all of the right and/or left eigenvectors of */
  523. /* > a complex upper triangular matrix T. */
  524. /* > Matrices of this type are produced by the Schur factorization of */
  525. /* > a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. */
  526. /* > */
  527. /* > The right eigenvector x and the left eigenvector y of T corresponding */
  528. /* > to an eigenvalue w are defined by: */
  529. /* > */
  530. /* > T*x = w*x, (y**H)*T = w*(y**H) */
  531. /* > */
  532. /* > where y**H denotes the conjugate transpose of the vector y. */
  533. /* > The eigenvalues are not input to this routine, but are read directly */
  534. /* > from the diagonal of T. */
  535. /* > */
  536. /* > This routine returns the matrices X and/or Y of right and left */
  537. /* > eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
  538. /* > input matrix. If Q is the unitary factor that reduces a matrix A to */
  539. /* > Schur form T, then Q*X and Q*Y are the matrices of right and left */
  540. /* > eigenvectors of A. */
  541. /* > */
  542. /* > This uses a Level 3 BLAS version of the back transformation. */
  543. /* > \endverbatim */
  544. /* Arguments: */
  545. /* ========== */
  546. /* > \param[in] SIDE */
  547. /* > \verbatim */
  548. /* > SIDE is CHARACTER*1 */
  549. /* > = 'R': compute right eigenvectors only; */
  550. /* > = 'L': compute left eigenvectors only; */
  551. /* > = 'B': compute both right and left eigenvectors. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] HOWMNY */
  555. /* > \verbatim */
  556. /* > HOWMNY is CHARACTER*1 */
  557. /* > = 'A': compute all right and/or left eigenvectors; */
  558. /* > = 'B': compute all right and/or left eigenvectors, */
  559. /* > backtransformed using the matrices supplied in */
  560. /* > VR and/or VL; */
  561. /* > = 'S': compute selected right and/or left eigenvectors, */
  562. /* > as indicated by the logical array SELECT. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] SELECT */
  566. /* > \verbatim */
  567. /* > SELECT is LOGICAL array, dimension (N) */
  568. /* > If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
  569. /* > computed. */
  570. /* > The eigenvector corresponding to the j-th eigenvalue is */
  571. /* > computed if SELECT(j) = .TRUE.. */
  572. /* > Not referenced if HOWMNY = 'A' or 'B'. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] N */
  576. /* > \verbatim */
  577. /* > N is INTEGER */
  578. /* > The order of the matrix T. N >= 0. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] T */
  582. /* > \verbatim */
  583. /* > T is COMPLEX*16 array, dimension (LDT,N) */
  584. /* > The upper triangular matrix T. T is modified, but restored */
  585. /* > on exit. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDT */
  589. /* > \verbatim */
  590. /* > LDT is INTEGER */
  591. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in,out] VL */
  595. /* > \verbatim */
  596. /* > VL is COMPLEX*16 array, dimension (LDVL,MM) */
  597. /* > On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
  598. /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
  599. /* > Schur vectors returned by ZHSEQR). */
  600. /* > On exit, if SIDE = 'L' or 'B', VL contains: */
  601. /* > if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
  602. /* > if HOWMNY = 'B', the matrix Q*Y; */
  603. /* > if HOWMNY = 'S', the left eigenvectors of T specified by */
  604. /* > SELECT, stored consecutively in the columns */
  605. /* > of VL, in the same order as their */
  606. /* > eigenvalues. */
  607. /* > Not referenced if SIDE = 'R'. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDVL */
  611. /* > \verbatim */
  612. /* > LDVL is INTEGER */
  613. /* > The leading dimension of the array VL. */
  614. /* > LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in,out] VR */
  618. /* > \verbatim */
  619. /* > VR is COMPLEX*16 array, dimension (LDVR,MM) */
  620. /* > On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
  621. /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
  622. /* > Schur vectors returned by ZHSEQR). */
  623. /* > On exit, if SIDE = 'R' or 'B', VR contains: */
  624. /* > if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
  625. /* > if HOWMNY = 'B', the matrix Q*X; */
  626. /* > if HOWMNY = 'S', the right eigenvectors of T specified by */
  627. /* > SELECT, stored consecutively in the columns */
  628. /* > of VR, in the same order as their */
  629. /* > eigenvalues. */
  630. /* > Not referenced if SIDE = 'L'. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] LDVR */
  634. /* > \verbatim */
  635. /* > LDVR is INTEGER */
  636. /* > The leading dimension of the array VR. */
  637. /* > LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] MM */
  641. /* > \verbatim */
  642. /* > MM is INTEGER */
  643. /* > The number of columns in the arrays VL and/or VR. MM >= M. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] M */
  647. /* > \verbatim */
  648. /* > M is INTEGER */
  649. /* > The number of columns in the arrays VL and/or VR actually */
  650. /* > used to store the eigenvectors. */
  651. /* > If HOWMNY = 'A' or 'B', M is set to N. */
  652. /* > Each selected eigenvector occupies one column. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] WORK */
  656. /* > \verbatim */
  657. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] LWORK */
  661. /* > \verbatim */
  662. /* > LWORK is INTEGER */
  663. /* > The dimension of array WORK. LWORK >= f2cmax(1,2*N). */
  664. /* > For optimum performance, LWORK >= N + 2*N*NB, where NB is */
  665. /* > the optimal blocksize. */
  666. /* > */
  667. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  668. /* > only calculates the optimal size of the WORK array, returns */
  669. /* > this value as the first entry of the WORK array, and no error */
  670. /* > message related to LWORK is issued by XERBLA. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[out] RWORK */
  674. /* > \verbatim */
  675. /* > RWORK is DOUBLE PRECISION array, dimension (LRWORK) */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LRWORK */
  679. /* > \verbatim */
  680. /* > LRWORK is INTEGER */
  681. /* > The dimension of array RWORK. LRWORK >= f2cmax(1,N). */
  682. /* > */
  683. /* > If LRWORK = -1, then a workspace query is assumed; the routine */
  684. /* > only calculates the optimal size of the RWORK array, returns */
  685. /* > this value as the first entry of the RWORK array, and no error */
  686. /* > message related to LRWORK is issued by XERBLA. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] INFO */
  690. /* > \verbatim */
  691. /* > INFO is INTEGER */
  692. /* > = 0: successful exit */
  693. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  694. /* > \endverbatim */
  695. /* Authors: */
  696. /* ======== */
  697. /* > \author Univ. of Tennessee */
  698. /* > \author Univ. of California Berkeley */
  699. /* > \author Univ. of Colorado Denver */
  700. /* > \author NAG Ltd. */
  701. /* > \date November 2017 */
  702. /* @precisions fortran z -> c */
  703. /* > \ingroup complex16OTHERcomputational */
  704. /* > \par Further Details: */
  705. /* ===================== */
  706. /* > */
  707. /* > \verbatim */
  708. /* > */
  709. /* > The algorithm used in this program is basically backward (forward) */
  710. /* > substitution, with scaling to make the the code robust against */
  711. /* > possible overflow. */
  712. /* > */
  713. /* > Each eigenvector is normalized so that the element of largest */
  714. /* > magnitude has magnitude 1; here the magnitude of a complex number */
  715. /* > (x,y) is taken to be |x| + |y|. */
  716. /* > \endverbatim */
  717. /* > */
  718. /* ===================================================================== */
  719. /* Subroutine */ int ztrevc3_(char *side, char *howmny, logical *select,
  720. integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl,
  721. integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer
  722. *m, doublecomplex *work, integer *lwork, doublereal *rwork, integer *
  723. lrwork, integer *info)
  724. {
  725. /* System generated locals */
  726. address a__1[2];
  727. integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  728. i__2[2], i__3, i__4, i__5, i__6;
  729. doublereal d__1;
  730. doublecomplex z__1, z__2;
  731. char ch__1[2];
  732. /* Local variables */
  733. logical allv;
  734. doublereal unfl, ovfl, smin;
  735. logical over;
  736. integer i__, j, k;
  737. doublereal scale;
  738. extern logical lsame_(char *, char *);
  739. doublereal remax;
  740. extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
  741. integer *, doublecomplex *, doublecomplex *, integer *,
  742. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  743. integer *);
  744. logical leftv, bothv;
  745. extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
  746. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  747. integer *, doublecomplex *, doublecomplex *, integer *);
  748. logical somev;
  749. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  750. doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
  751. integer nb, ii, ki;
  752. extern doublereal dlamch_(char *);
  753. integer is, iv;
  754. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  755. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  756. integer *, integer *, ftnlen, ftnlen);
  757. extern /* Subroutine */ int zdscal_(integer *, doublereal *,
  758. doublecomplex *, integer *);
  759. extern integer izamax_(integer *, doublecomplex *, integer *);
  760. extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
  761. doublecomplex *, doublecomplex *, doublecomplex *, integer *);
  762. logical rightv;
  763. extern doublereal dzasum_(integer *, doublecomplex *, integer *);
  764. extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
  765. doublecomplex *, integer *, doublecomplex *, integer *);
  766. integer maxwrk;
  767. doublereal smlnum;
  768. extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *,
  769. integer *, doublecomplex *, integer *, doublecomplex *,
  770. doublereal *, doublereal *, integer *);
  771. logical lquery;
  772. doublereal ulp;
  773. /* -- LAPACK computational routine (version 3.8.0) -- */
  774. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  775. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  776. /* November 2017 */
  777. /* ===================================================================== */
  778. /* Decode and test the input parameters */
  779. /* Parameter adjustments */
  780. --select;
  781. t_dim1 = *ldt;
  782. t_offset = 1 + t_dim1 * 1;
  783. t -= t_offset;
  784. vl_dim1 = *ldvl;
  785. vl_offset = 1 + vl_dim1 * 1;
  786. vl -= vl_offset;
  787. vr_dim1 = *ldvr;
  788. vr_offset = 1 + vr_dim1 * 1;
  789. vr -= vr_offset;
  790. --work;
  791. --rwork;
  792. /* Function Body */
  793. bothv = lsame_(side, "B");
  794. rightv = lsame_(side, "R") || bothv;
  795. leftv = lsame_(side, "L") || bothv;
  796. allv = lsame_(howmny, "A");
  797. over = lsame_(howmny, "B");
  798. somev = lsame_(howmny, "S");
  799. /* Set M to the number of columns required to store the selected */
  800. /* eigenvectors. */
  801. if (somev) {
  802. *m = 0;
  803. i__1 = *n;
  804. for (j = 1; j <= i__1; ++j) {
  805. if (select[j]) {
  806. ++(*m);
  807. }
  808. /* L10: */
  809. }
  810. } else {
  811. *m = *n;
  812. }
  813. *info = 0;
  814. /* Writing concatenation */
  815. i__2[0] = 1, a__1[0] = side;
  816. i__2[1] = 1, a__1[1] = howmny;
  817. s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);
  818. nb = ilaenv_(&c__1, "ZTREVC", ch__1, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
  819. ftnlen)2);
  820. maxwrk = *n + (*n << 1) * nb;
  821. work[1].r = (doublereal) maxwrk, work[1].i = 0.;
  822. rwork[1] = (doublereal) (*n);
  823. lquery = *lwork == -1 || *lrwork == -1;
  824. if (! rightv && ! leftv) {
  825. *info = -1;
  826. } else if (! allv && ! over && ! somev) {
  827. *info = -2;
  828. } else if (*n < 0) {
  829. *info = -4;
  830. } else if (*ldt < f2cmax(1,*n)) {
  831. *info = -6;
  832. } else if (*ldvl < 1 || leftv && *ldvl < *n) {
  833. *info = -8;
  834. } else if (*ldvr < 1 || rightv && *ldvr < *n) {
  835. *info = -10;
  836. } else if (*mm < *m) {
  837. *info = -11;
  838. } else /* if(complicated condition) */ {
  839. /* Computing MAX */
  840. i__1 = 1, i__3 = *n << 1;
  841. if (*lwork < f2cmax(i__1,i__3) && ! lquery) {
  842. *info = -14;
  843. } else if (*lrwork < f2cmax(1,*n) && ! lquery) {
  844. *info = -16;
  845. }
  846. }
  847. if (*info != 0) {
  848. i__1 = -(*info);
  849. xerbla_("ZTREVC3", &i__1, (ftnlen)7);
  850. return 0;
  851. } else if (lquery) {
  852. return 0;
  853. }
  854. /* Quick return if possible. */
  855. if (*n == 0) {
  856. return 0;
  857. }
  858. /* Use blocked version of back-transformation if sufficient workspace. */
  859. /* Zero-out the workspace to avoid potential NaN propagation. */
  860. if (over && *lwork >= *n + (*n << 4)) {
  861. nb = (*lwork - *n) / (*n << 1);
  862. nb = f2cmin(nb,128);
  863. i__1 = (nb << 1) + 1;
  864. zlaset_("F", n, &i__1, &c_b1, &c_b1, &work[1], n);
  865. } else {
  866. nb = 1;
  867. }
  868. /* Set the constants to control overflow. */
  869. unfl = dlamch_("Safe minimum");
  870. ovfl = 1. / unfl;
  871. dlabad_(&unfl, &ovfl);
  872. ulp = dlamch_("Precision");
  873. smlnum = unfl * (*n / ulp);
  874. /* Store the diagonal elements of T in working array WORK. */
  875. i__1 = *n;
  876. for (i__ = 1; i__ <= i__1; ++i__) {
  877. i__3 = i__;
  878. i__4 = i__ + i__ * t_dim1;
  879. work[i__3].r = t[i__4].r, work[i__3].i = t[i__4].i;
  880. /* L20: */
  881. }
  882. /* Compute 1-norm of each column of strictly upper triangular */
  883. /* part of T to control overflow in triangular solver. */
  884. rwork[1] = 0.;
  885. i__1 = *n;
  886. for (j = 2; j <= i__1; ++j) {
  887. i__3 = j - 1;
  888. rwork[j] = dzasum_(&i__3, &t[j * t_dim1 + 1], &c__1);
  889. /* L30: */
  890. }
  891. if (rightv) {
  892. /* ============================================================ */
  893. /* Compute right eigenvectors. */
  894. /* IV is index of column in current block. */
  895. /* Non-blocked version always uses IV=NB=1; */
  896. /* blocked version starts with IV=NB, goes down to 1. */
  897. /* (Note the "0-th" column is used to store the original diagonal.) */
  898. iv = nb;
  899. is = *m;
  900. for (ki = *n; ki >= 1; --ki) {
  901. if (somev) {
  902. if (! select[ki]) {
  903. goto L80;
  904. }
  905. }
  906. /* Computing MAX */
  907. d__1 = ulp * z_abs(&t[ki + ki * t_dim1]);
  908. smin = f2cmax(d__1,smlnum);
  909. /* SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM ) */
  910. /* -------------------------------------------------------- */
  911. /* Complex right eigenvector */
  912. i__1 = ki + iv * *n;
  913. work[i__1].r = 1., work[i__1].i = 0.;
  914. /* Form right-hand side. */
  915. i__1 = ki - 1;
  916. for (k = 1; k <= i__1; ++k) {
  917. i__3 = k + iv * *n;
  918. i__4 = k + ki * t_dim1;
  919. z__1.r = -t[i__4].r, z__1.i = -t[i__4].i;
  920. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  921. /* L40: */
  922. }
  923. /* Solve upper triangular system: */
  924. /* [ T(1:KI-1,1:KI-1) - T(KI,KI) ]*X = SCALE*WORK. */
  925. i__1 = ki - 1;
  926. for (k = 1; k <= i__1; ++k) {
  927. i__3 = k + k * t_dim1;
  928. i__4 = k + k * t_dim1;
  929. i__5 = ki + ki * t_dim1;
  930. z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5]
  931. .i;
  932. t[i__3].r = z__1.r, t[i__3].i = z__1.i;
  933. /* IF( CABS1( T( K, K ) ).LT.SMIN ) */
  934. if (z_abs(&t[k + k * t_dim1]) < smin) {
  935. i__3 = k + k * t_dim1;
  936. t[i__3].r = smin, t[i__3].i = 0.;
  937. }
  938. /* L50: */
  939. }
  940. if (ki > 1) {
  941. i__1 = ki - 1;
  942. zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
  943. t_offset], ldt, &work[iv * *n + 1], &scale, &rwork[1],
  944. info);
  945. i__1 = ki + iv * *n;
  946. work[i__1].r = scale, work[i__1].i = 0.;
  947. }
  948. /* Copy the vector x or Q*x to VR and normalize. */
  949. if (! over) {
  950. /* ------------------------------ */
  951. /* no back-transform: copy x to VR and normalize. */
  952. zcopy_(&ki, &work[iv * *n + 1], &c__1, &vr[is * vr_dim1 + 1],
  953. &c__1);
  954. ii = izamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
  955. /* REMAX = ONE / CABS1( VR( II, IS ) ) */
  956. remax = 1. / z_abs(&vr[ii + is * vr_dim1]);
  957. zdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
  958. i__1 = *n;
  959. for (k = ki + 1; k <= i__1; ++k) {
  960. i__3 = k + is * vr_dim1;
  961. vr[i__3].r = 0., vr[i__3].i = 0.;
  962. /* L60: */
  963. }
  964. } else if (nb == 1) {
  965. /* ------------------------------ */
  966. /* version 1: back-transform each vector with GEMV, Q*x. */
  967. if (ki > 1) {
  968. i__1 = ki - 1;
  969. z__1.r = scale, z__1.i = 0.;
  970. zgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[
  971. iv * *n + 1], &c__1, &z__1, &vr[ki * vr_dim1 + 1],
  972. &c__1);
  973. }
  974. ii = izamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
  975. /* REMAX = ONE / CABS1( VR( II, KI ) ) */
  976. remax = 1. / z_abs(&vr[ii + ki * vr_dim1]);
  977. zdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
  978. } else {
  979. /* ------------------------------ */
  980. /* version 2: back-transform block of vectors with GEMM */
  981. /* zero out below vector */
  982. i__1 = *n;
  983. for (k = ki + 1; k <= i__1; ++k) {
  984. i__3 = k + iv * *n;
  985. work[i__3].r = 0., work[i__3].i = 0.;
  986. }
  987. /* Columns IV:NB of work are valid vectors. */
  988. /* When the number of vectors stored reaches NB, */
  989. /* or if this was last vector, do the GEMM */
  990. if (iv == 1 || ki == 1) {
  991. i__1 = nb - iv + 1;
  992. i__3 = ki + nb - iv;
  993. zgemm_("N", "N", n, &i__1, &i__3, &c_b2, &vr[vr_offset],
  994. ldvr, &work[iv * *n + 1], n, &c_b1, &work[(nb +
  995. iv) * *n + 1], n);
  996. /* normalize vectors */
  997. i__1 = nb;
  998. for (k = iv; k <= i__1; ++k) {
  999. ii = izamax_(n, &work[(nb + k) * *n + 1], &c__1);
  1000. /* REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) ) */
  1001. remax = 1. / z_abs(&work[ii + (nb + k) * *n]);
  1002. zdscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
  1003. }
  1004. i__1 = nb - iv + 1;
  1005. zlacpy_("F", n, &i__1, &work[(nb + iv) * *n + 1], n, &vr[
  1006. ki * vr_dim1 + 1], ldvr);
  1007. iv = nb;
  1008. } else {
  1009. --iv;
  1010. }
  1011. }
  1012. /* Restore the original diagonal elements of T. */
  1013. i__1 = ki - 1;
  1014. for (k = 1; k <= i__1; ++k) {
  1015. i__3 = k + k * t_dim1;
  1016. i__4 = k;
  1017. t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
  1018. /* L70: */
  1019. }
  1020. --is;
  1021. L80:
  1022. ;
  1023. }
  1024. }
  1025. if (leftv) {
  1026. /* ============================================================ */
  1027. /* Compute left eigenvectors. */
  1028. /* IV is index of column in current block. */
  1029. /* Non-blocked version always uses IV=1; */
  1030. /* blocked version starts with IV=1, goes up to NB. */
  1031. /* (Note the "0-th" column is used to store the original diagonal.) */
  1032. iv = 1;
  1033. is = 1;
  1034. i__1 = *n;
  1035. for (ki = 1; ki <= i__1; ++ki) {
  1036. if (somev) {
  1037. if (! select[ki]) {
  1038. goto L130;
  1039. }
  1040. }
  1041. /* Computing MAX */
  1042. d__1 = ulp * z_abs(&t[ki + ki * t_dim1]);
  1043. smin = f2cmax(d__1,smlnum);
  1044. /* SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM ) */
  1045. /* -------------------------------------------------------- */
  1046. /* Complex left eigenvector */
  1047. i__3 = ki + iv * *n;
  1048. work[i__3].r = 1., work[i__3].i = 0.;
  1049. /* Form right-hand side. */
  1050. i__3 = *n;
  1051. for (k = ki + 1; k <= i__3; ++k) {
  1052. i__4 = k + iv * *n;
  1053. d_cnjg(&z__2, &t[ki + k * t_dim1]);
  1054. z__1.r = -z__2.r, z__1.i = -z__2.i;
  1055. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1056. /* L90: */
  1057. }
  1058. /* Solve conjugate-transposed triangular system: */
  1059. /* [ T(KI+1:N,KI+1:N) - T(KI,KI) ]**H * X = SCALE*WORK. */
  1060. i__3 = *n;
  1061. for (k = ki + 1; k <= i__3; ++k) {
  1062. i__4 = k + k * t_dim1;
  1063. i__5 = k + k * t_dim1;
  1064. i__6 = ki + ki * t_dim1;
  1065. z__1.r = t[i__5].r - t[i__6].r, z__1.i = t[i__5].i - t[i__6]
  1066. .i;
  1067. t[i__4].r = z__1.r, t[i__4].i = z__1.i;
  1068. /* IF( CABS1( T( K, K ) ).LT.SMIN ) */
  1069. if (z_abs(&t[k + k * t_dim1]) < smin) {
  1070. i__4 = k + k * t_dim1;
  1071. t[i__4].r = smin, t[i__4].i = 0.;
  1072. }
  1073. /* L100: */
  1074. }
  1075. if (ki < *n) {
  1076. i__3 = *n - ki;
  1077. zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
  1078. i__3, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki +
  1079. 1 + iv * *n], &scale, &rwork[1], info);
  1080. i__3 = ki + iv * *n;
  1081. work[i__3].r = scale, work[i__3].i = 0.;
  1082. }
  1083. /* Copy the vector x or Q*x to VL and normalize. */
  1084. if (! over) {
  1085. /* ------------------------------ */
  1086. /* no back-transform: copy x to VL and normalize. */
  1087. i__3 = *n - ki + 1;
  1088. zcopy_(&i__3, &work[ki + iv * *n], &c__1, &vl[ki + is *
  1089. vl_dim1], &c__1);
  1090. i__3 = *n - ki + 1;
  1091. ii = izamax_(&i__3, &vl[ki + is * vl_dim1], &c__1) + ki - 1;
  1092. /* REMAX = ONE / CABS1( VL( II, IS ) ) */
  1093. remax = 1. / z_abs(&vl[ii + is * vl_dim1]);
  1094. i__3 = *n - ki + 1;
  1095. zdscal_(&i__3, &remax, &vl[ki + is * vl_dim1], &c__1);
  1096. i__3 = ki - 1;
  1097. for (k = 1; k <= i__3; ++k) {
  1098. i__4 = k + is * vl_dim1;
  1099. vl[i__4].r = 0., vl[i__4].i = 0.;
  1100. /* L110: */
  1101. }
  1102. } else if (nb == 1) {
  1103. /* ------------------------------ */
  1104. /* version 1: back-transform each vector with GEMV, Q*x. */
  1105. if (ki < *n) {
  1106. i__3 = *n - ki;
  1107. z__1.r = scale, z__1.i = 0.;
  1108. zgemv_("N", n, &i__3, &c_b2, &vl[(ki + 1) * vl_dim1 + 1],
  1109. ldvl, &work[ki + 1 + iv * *n], &c__1, &z__1, &vl[
  1110. ki * vl_dim1 + 1], &c__1);
  1111. }
  1112. ii = izamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
  1113. /* REMAX = ONE / CABS1( VL( II, KI ) ) */
  1114. remax = 1. / z_abs(&vl[ii + ki * vl_dim1]);
  1115. zdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
  1116. } else {
  1117. /* ------------------------------ */
  1118. /* version 2: back-transform block of vectors with GEMM */
  1119. /* zero out above vector */
  1120. /* could go from KI-NV+1 to KI-1 */
  1121. i__3 = ki - 1;
  1122. for (k = 1; k <= i__3; ++k) {
  1123. i__4 = k + iv * *n;
  1124. work[i__4].r = 0., work[i__4].i = 0.;
  1125. }
  1126. /* Columns 1:IV of work are valid vectors. */
  1127. /* When the number of vectors stored reaches NB, */
  1128. /* or if this was last vector, do the GEMM */
  1129. if (iv == nb || ki == *n) {
  1130. i__3 = *n - ki + iv;
  1131. zgemm_("N", "N", n, &iv, &i__3, &c_b2, &vl[(ki - iv + 1) *
  1132. vl_dim1 + 1], ldvl, &work[ki - iv + 1 + *n], n, &
  1133. c_b1, &work[(nb + 1) * *n + 1], n);
  1134. /* normalize vectors */
  1135. i__3 = iv;
  1136. for (k = 1; k <= i__3; ++k) {
  1137. ii = izamax_(n, &work[(nb + k) * *n + 1], &c__1);
  1138. /* REMAX = ONE / CABS1( WORK( II + (NB+K)*N ) ) */
  1139. remax = 1. / z_abs(&work[ii + (nb + k) * *n]);
  1140. zdscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
  1141. }
  1142. zlacpy_("F", n, &iv, &work[(nb + 1) * *n + 1], n, &vl[(ki
  1143. - iv + 1) * vl_dim1 + 1], ldvl);
  1144. iv = 1;
  1145. } else {
  1146. ++iv;
  1147. }
  1148. }
  1149. /* Restore the original diagonal elements of T. */
  1150. i__3 = *n;
  1151. for (k = ki + 1; k <= i__3; ++k) {
  1152. i__4 = k + k * t_dim1;
  1153. i__5 = k;
  1154. t[i__4].r = work[i__5].r, t[i__4].i = work[i__5].i;
  1155. /* L120: */
  1156. }
  1157. ++is;
  1158. L130:
  1159. ;
  1160. }
  1161. }
  1162. return 0;
  1163. /* End of ZTREVC3 */
  1164. } /* ztrevc3_ */