You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytri_rook.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. static doublecomplex c_b2 = {0.,0.};
  488. static integer c__1 = 1;
  489. /* > \brief \b ZSYTRI_ROOK */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZSYTRI_ROOK + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytri_
  496. rook.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytri_
  499. rook.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytri_
  502. rook.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, LDA, N */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX*16 A( LDA, * ), WORK( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZSYTRI_ROOK computes the inverse of a complex symmetric */
  518. /* > matrix A using the factorization A = U*D*U**T or A = L*D*L**T */
  519. /* > computed by ZSYTRF_ROOK. */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] UPLO */
  524. /* > \verbatim */
  525. /* > UPLO is CHARACTER*1 */
  526. /* > Specifies whether the details of the factorization are stored */
  527. /* > as an upper or lower triangular matrix. */
  528. /* > = 'U': Upper triangular, form is A = U*D*U**T; */
  529. /* > = 'L': Lower triangular, form is A = L*D*L**T. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] N */
  533. /* > \verbatim */
  534. /* > N is INTEGER */
  535. /* > The order of the matrix A. N >= 0. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in,out] A */
  539. /* > \verbatim */
  540. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  541. /* > On entry, the block diagonal matrix D and the multipliers */
  542. /* > used to obtain the factor U or L as computed by ZSYTRF_ROOK. */
  543. /* > */
  544. /* > On exit, if INFO = 0, the (symmetric) inverse of the original */
  545. /* > matrix. If UPLO = 'U', the upper triangular part of the */
  546. /* > inverse is formed and the part of A below the diagonal is not */
  547. /* > referenced; if UPLO = 'L' the lower triangular part of the */
  548. /* > inverse is formed and the part of A above the diagonal is */
  549. /* > not referenced. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] LDA */
  553. /* > \verbatim */
  554. /* > LDA is INTEGER */
  555. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] IPIV */
  559. /* > \verbatim */
  560. /* > IPIV is INTEGER array, dimension (N) */
  561. /* > Details of the interchanges and the block structure of D */
  562. /* > as determined by ZSYTRF_ROOK. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] WORK */
  566. /* > \verbatim */
  567. /* > WORK is COMPLEX*16 array, dimension (N) */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[out] INFO */
  571. /* > \verbatim */
  572. /* > INFO is INTEGER */
  573. /* > = 0: successful exit */
  574. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  575. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  576. /* > inverse could not be computed. */
  577. /* > \endverbatim */
  578. /* Authors: */
  579. /* ======== */
  580. /* > \author Univ. of Tennessee */
  581. /* > \author Univ. of California Berkeley */
  582. /* > \author Univ. of Colorado Denver */
  583. /* > \author NAG Ltd. */
  584. /* > \date December 2016 */
  585. /* > \ingroup complex16SYcomputational */
  586. /* > \par Contributors: */
  587. /* ================== */
  588. /* > */
  589. /* > \verbatim */
  590. /* > */
  591. /* > December 2016, Igor Kozachenko, */
  592. /* > Computer Science Division, */
  593. /* > University of California, Berkeley */
  594. /* > */
  595. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  596. /* > School of Mathematics, */
  597. /* > University of Manchester */
  598. /* > */
  599. /* > \endverbatim */
  600. /* ===================================================================== */
  601. /* Subroutine */ int zsytri_rook_(char *uplo, integer *n, doublecomplex *a,
  602. integer *lda, integer *ipiv, doublecomplex *work, integer *info)
  603. {
  604. /* System generated locals */
  605. integer a_dim1, a_offset, i__1, i__2, i__3;
  606. doublecomplex z__1, z__2, z__3;
  607. /* Local variables */
  608. doublecomplex temp, akkp1, d__;
  609. integer k;
  610. doublecomplex t;
  611. extern logical lsame_(char *, char *);
  612. integer kstep;
  613. logical upper;
  614. extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
  615. doublecomplex *, integer *);
  616. extern /* Double Complex */ VOID zdotu_(doublecomplex *, integer *,
  617. doublecomplex *, integer *, doublecomplex *, integer *);
  618. extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
  619. doublecomplex *, integer *), zsymv_(char *, integer *,
  620. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  621. integer *, doublecomplex *, doublecomplex *, integer *);
  622. doublecomplex ak;
  623. integer kp;
  624. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  625. doublecomplex akp1;
  626. /* -- LAPACK computational routine (version 3.7.0) -- */
  627. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  628. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  629. /* December 2016 */
  630. /* ===================================================================== */
  631. /* Test the input parameters. */
  632. /* Parameter adjustments */
  633. a_dim1 = *lda;
  634. a_offset = 1 + a_dim1 * 1;
  635. a -= a_offset;
  636. --ipiv;
  637. --work;
  638. /* Function Body */
  639. *info = 0;
  640. upper = lsame_(uplo, "U");
  641. if (! upper && ! lsame_(uplo, "L")) {
  642. *info = -1;
  643. } else if (*n < 0) {
  644. *info = -2;
  645. } else if (*lda < f2cmax(1,*n)) {
  646. *info = -4;
  647. }
  648. if (*info != 0) {
  649. i__1 = -(*info);
  650. xerbla_("ZSYTRI_ROOK", &i__1, (ftnlen)11);
  651. return 0;
  652. }
  653. /* Quick return if possible */
  654. if (*n == 0) {
  655. return 0;
  656. }
  657. /* Check that the diagonal matrix D is nonsingular. */
  658. if (upper) {
  659. /* Upper triangular storage: examine D from bottom to top */
  660. for (*info = *n; *info >= 1; --(*info)) {
  661. i__1 = *info + *info * a_dim1;
  662. if (ipiv[*info] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) {
  663. return 0;
  664. }
  665. /* L10: */
  666. }
  667. } else {
  668. /* Lower triangular storage: examine D from top to bottom. */
  669. i__1 = *n;
  670. for (*info = 1; *info <= i__1; ++(*info)) {
  671. i__2 = *info + *info * a_dim1;
  672. if (ipiv[*info] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) {
  673. return 0;
  674. }
  675. /* L20: */
  676. }
  677. }
  678. *info = 0;
  679. if (upper) {
  680. /* Compute inv(A) from the factorization A = U*D*U**T. */
  681. /* K is the main loop index, increasing from 1 to N in steps of */
  682. /* 1 or 2, depending on the size of the diagonal blocks. */
  683. k = 1;
  684. L30:
  685. /* If K > N, exit from loop. */
  686. if (k > *n) {
  687. goto L40;
  688. }
  689. if (ipiv[k] > 0) {
  690. /* 1 x 1 diagonal block */
  691. /* Invert the diagonal block. */
  692. i__1 = k + k * a_dim1;
  693. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  694. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  695. /* Compute column K of the inverse. */
  696. if (k > 1) {
  697. i__1 = k - 1;
  698. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  699. i__1 = k - 1;
  700. z__1.r = -1., z__1.i = 0.;
  701. zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  702. &c_b2, &a[k * a_dim1 + 1], &c__1);
  703. i__1 = k + k * a_dim1;
  704. i__2 = k + k * a_dim1;
  705. i__3 = k - 1;
  706. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  707. c__1);
  708. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  709. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  710. }
  711. kstep = 1;
  712. } else {
  713. /* 2 x 2 diagonal block */
  714. /* Invert the diagonal block. */
  715. i__1 = k + (k + 1) * a_dim1;
  716. t.r = a[i__1].r, t.i = a[i__1].i;
  717. z_div(&z__1, &a[k + k * a_dim1], &t);
  718. ak.r = z__1.r, ak.i = z__1.i;
  719. z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &t);
  720. akp1.r = z__1.r, akp1.i = z__1.i;
  721. z_div(&z__1, &a[k + (k + 1) * a_dim1], &t);
  722. akkp1.r = z__1.r, akkp1.i = z__1.i;
  723. z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i +
  724. ak.i * akp1.r;
  725. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  726. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i
  727. * z__2.r;
  728. d__.r = z__1.r, d__.i = z__1.i;
  729. i__1 = k + k * a_dim1;
  730. z_div(&z__1, &akp1, &d__);
  731. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  732. i__1 = k + 1 + (k + 1) * a_dim1;
  733. z_div(&z__1, &ak, &d__);
  734. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  735. i__1 = k + (k + 1) * a_dim1;
  736. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  737. z_div(&z__1, &z__2, &d__);
  738. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  739. /* Compute columns K and K+1 of the inverse. */
  740. if (k > 1) {
  741. i__1 = k - 1;
  742. zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  743. i__1 = k - 1;
  744. z__1.r = -1., z__1.i = 0.;
  745. zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  746. &c_b2, &a[k * a_dim1 + 1], &c__1);
  747. i__1 = k + k * a_dim1;
  748. i__2 = k + k * a_dim1;
  749. i__3 = k - 1;
  750. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  751. c__1);
  752. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  753. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  754. i__1 = k + (k + 1) * a_dim1;
  755. i__2 = k + (k + 1) * a_dim1;
  756. i__3 = k - 1;
  757. zdotu_(&z__2, &i__3, &a[k * a_dim1 + 1], &c__1, &a[(k + 1) *
  758. a_dim1 + 1], &c__1);
  759. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  760. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  761. i__1 = k - 1;
  762. zcopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], &
  763. c__1);
  764. i__1 = k - 1;
  765. z__1.r = -1., z__1.i = 0.;
  766. zsymv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
  767. &c_b2, &a[(k + 1) * a_dim1 + 1], &c__1);
  768. i__1 = k + 1 + (k + 1) * a_dim1;
  769. i__2 = k + 1 + (k + 1) * a_dim1;
  770. i__3 = k - 1;
  771. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[(k + 1) * a_dim1 + 1]
  772. , &c__1);
  773. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  774. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  775. }
  776. kstep = 2;
  777. }
  778. if (kstep == 1) {
  779. /* Interchange rows and columns K and IPIV(K) in the leading */
  780. /* submatrix A(1:k+1,1:k+1) */
  781. kp = ipiv[k];
  782. if (kp != k) {
  783. if (kp > 1) {
  784. i__1 = kp - 1;
  785. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  786. 1], &c__1);
  787. }
  788. i__1 = k - kp - 1;
  789. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  790. * a_dim1], lda);
  791. i__1 = k + k * a_dim1;
  792. temp.r = a[i__1].r, temp.i = a[i__1].i;
  793. i__1 = k + k * a_dim1;
  794. i__2 = kp + kp * a_dim1;
  795. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  796. i__1 = kp + kp * a_dim1;
  797. a[i__1].r = temp.r, a[i__1].i = temp.i;
  798. }
  799. } else {
  800. /* Interchange rows and columns K and K+1 with -IPIV(K) and */
  801. /* -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1) */
  802. kp = -ipiv[k];
  803. if (kp != k) {
  804. if (kp > 1) {
  805. i__1 = kp - 1;
  806. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  807. 1], &c__1);
  808. }
  809. i__1 = k - kp - 1;
  810. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  811. * a_dim1], lda);
  812. i__1 = k + k * a_dim1;
  813. temp.r = a[i__1].r, temp.i = a[i__1].i;
  814. i__1 = k + k * a_dim1;
  815. i__2 = kp + kp * a_dim1;
  816. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  817. i__1 = kp + kp * a_dim1;
  818. a[i__1].r = temp.r, a[i__1].i = temp.i;
  819. i__1 = k + (k + 1) * a_dim1;
  820. temp.r = a[i__1].r, temp.i = a[i__1].i;
  821. i__1 = k + (k + 1) * a_dim1;
  822. i__2 = kp + (k + 1) * a_dim1;
  823. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  824. i__1 = kp + (k + 1) * a_dim1;
  825. a[i__1].r = temp.r, a[i__1].i = temp.i;
  826. }
  827. ++k;
  828. kp = -ipiv[k];
  829. if (kp != k) {
  830. if (kp > 1) {
  831. i__1 = kp - 1;
  832. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  833. 1], &c__1);
  834. }
  835. i__1 = k - kp - 1;
  836. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + (kp + 1)
  837. * a_dim1], lda);
  838. i__1 = k + k * a_dim1;
  839. temp.r = a[i__1].r, temp.i = a[i__1].i;
  840. i__1 = k + k * a_dim1;
  841. i__2 = kp + kp * a_dim1;
  842. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  843. i__1 = kp + kp * a_dim1;
  844. a[i__1].r = temp.r, a[i__1].i = temp.i;
  845. }
  846. }
  847. ++k;
  848. goto L30;
  849. L40:
  850. ;
  851. } else {
  852. /* Compute inv(A) from the factorization A = L*D*L**T. */
  853. /* K is the main loop index, increasing from 1 to N in steps of */
  854. /* 1 or 2, depending on the size of the diagonal blocks. */
  855. k = *n;
  856. L50:
  857. /* If K < 1, exit from loop. */
  858. if (k < 1) {
  859. goto L60;
  860. }
  861. if (ipiv[k] > 0) {
  862. /* 1 x 1 diagonal block */
  863. /* Invert the diagonal block. */
  864. i__1 = k + k * a_dim1;
  865. z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
  866. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  867. /* Compute column K of the inverse. */
  868. if (k < *n) {
  869. i__1 = *n - k;
  870. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  871. i__1 = *n - k;
  872. z__1.r = -1., z__1.i = 0.;
  873. zsymv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  874. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  875. i__1 = k + k * a_dim1;
  876. i__2 = k + k * a_dim1;
  877. i__3 = *n - k;
  878. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  879. &c__1);
  880. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  881. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  882. }
  883. kstep = 1;
  884. } else {
  885. /* 2 x 2 diagonal block */
  886. /* Invert the diagonal block. */
  887. i__1 = k + (k - 1) * a_dim1;
  888. t.r = a[i__1].r, t.i = a[i__1].i;
  889. z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &t);
  890. ak.r = z__1.r, ak.i = z__1.i;
  891. z_div(&z__1, &a[k + k * a_dim1], &t);
  892. akp1.r = z__1.r, akp1.i = z__1.i;
  893. z_div(&z__1, &a[k + (k - 1) * a_dim1], &t);
  894. akkp1.r = z__1.r, akkp1.i = z__1.i;
  895. z__3.r = ak.r * akp1.r - ak.i * akp1.i, z__3.i = ak.r * akp1.i +
  896. ak.i * akp1.r;
  897. z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
  898. z__1.r = t.r * z__2.r - t.i * z__2.i, z__1.i = t.r * z__2.i + t.i
  899. * z__2.r;
  900. d__.r = z__1.r, d__.i = z__1.i;
  901. i__1 = k - 1 + (k - 1) * a_dim1;
  902. z_div(&z__1, &akp1, &d__);
  903. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  904. i__1 = k + k * a_dim1;
  905. z_div(&z__1, &ak, &d__);
  906. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  907. i__1 = k + (k - 1) * a_dim1;
  908. z__2.r = -akkp1.r, z__2.i = -akkp1.i;
  909. z_div(&z__1, &z__2, &d__);
  910. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  911. /* Compute columns K-1 and K of the inverse. */
  912. if (k < *n) {
  913. i__1 = *n - k;
  914. zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  915. i__1 = *n - k;
  916. z__1.r = -1., z__1.i = 0.;
  917. zsymv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  918. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  919. i__1 = k + k * a_dim1;
  920. i__2 = k + k * a_dim1;
  921. i__3 = *n - k;
  922. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  923. &c__1);
  924. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  925. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  926. i__1 = k + (k - 1) * a_dim1;
  927. i__2 = k + (k - 1) * a_dim1;
  928. i__3 = *n - k;
  929. zdotu_(&z__2, &i__3, &a[k + 1 + k * a_dim1], &c__1, &a[k + 1
  930. + (k - 1) * a_dim1], &c__1);
  931. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  932. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  933. i__1 = *n - k;
  934. zcopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], &
  935. c__1);
  936. i__1 = *n - k;
  937. z__1.r = -1., z__1.i = 0.;
  938. zsymv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  939. &work[1], &c__1, &c_b2, &a[k + 1 + (k - 1) * a_dim1],
  940. &c__1);
  941. i__1 = k - 1 + (k - 1) * a_dim1;
  942. i__2 = k - 1 + (k - 1) * a_dim1;
  943. i__3 = *n - k;
  944. zdotu_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + (k - 1) *
  945. a_dim1], &c__1);
  946. z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
  947. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  948. }
  949. kstep = 2;
  950. }
  951. if (kstep == 1) {
  952. /* Interchange rows and columns K and IPIV(K) in the trailing */
  953. /* submatrix A(k-1:n,k-1:n) */
  954. kp = ipiv[k];
  955. if (kp != k) {
  956. if (kp < *n) {
  957. i__1 = *n - kp;
  958. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  959. kp * a_dim1], &c__1);
  960. }
  961. i__1 = kp - k - 1;
  962. zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  963. a_dim1], lda);
  964. i__1 = k + k * a_dim1;
  965. temp.r = a[i__1].r, temp.i = a[i__1].i;
  966. i__1 = k + k * a_dim1;
  967. i__2 = kp + kp * a_dim1;
  968. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  969. i__1 = kp + kp * a_dim1;
  970. a[i__1].r = temp.r, a[i__1].i = temp.i;
  971. }
  972. } else {
  973. /* Interchange rows and columns K and K-1 with -IPIV(K) and */
  974. /* -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n) */
  975. kp = -ipiv[k];
  976. if (kp != k) {
  977. if (kp < *n) {
  978. i__1 = *n - kp;
  979. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  980. kp * a_dim1], &c__1);
  981. }
  982. i__1 = kp - k - 1;
  983. zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  984. a_dim1], lda);
  985. i__1 = k + k * a_dim1;
  986. temp.r = a[i__1].r, temp.i = a[i__1].i;
  987. i__1 = k + k * a_dim1;
  988. i__2 = kp + kp * a_dim1;
  989. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  990. i__1 = kp + kp * a_dim1;
  991. a[i__1].r = temp.r, a[i__1].i = temp.i;
  992. i__1 = k + (k - 1) * a_dim1;
  993. temp.r = a[i__1].r, temp.i = a[i__1].i;
  994. i__1 = k + (k - 1) * a_dim1;
  995. i__2 = kp + (k - 1) * a_dim1;
  996. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  997. i__1 = kp + (k - 1) * a_dim1;
  998. a[i__1].r = temp.r, a[i__1].i = temp.i;
  999. }
  1000. --k;
  1001. kp = -ipiv[k];
  1002. if (kp != k) {
  1003. if (kp < *n) {
  1004. i__1 = *n - kp;
  1005. zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  1006. kp * a_dim1], &c__1);
  1007. }
  1008. i__1 = kp - k - 1;
  1009. zswap_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &a[kp + (k + 1) *
  1010. a_dim1], lda);
  1011. i__1 = k + k * a_dim1;
  1012. temp.r = a[i__1].r, temp.i = a[i__1].i;
  1013. i__1 = k + k * a_dim1;
  1014. i__2 = kp + kp * a_dim1;
  1015. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1016. i__1 = kp + kp * a_dim1;
  1017. a[i__1].r = temp.r, a[i__1].i = temp.i;
  1018. }
  1019. }
  1020. --k;
  1021. goto L50;
  1022. L60:
  1023. ;
  1024. }
  1025. return 0;
  1026. /* End of ZSYTRI_ROOK */
  1027. } /* zsytri_rook__ */