|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
-
- /* > \brief <b> ZPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices</b> */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZPPSVX + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zppsvx.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zppsvx.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zppsvx.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZPPSVX( FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, */
- /* X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO ) */
-
- /* CHARACTER EQUED, FACT, UPLO */
- /* INTEGER INFO, LDB, LDX, N, NRHS */
- /* DOUBLE PRECISION RCOND */
- /* DOUBLE PRECISION BERR( * ), FERR( * ), RWORK( * ), S( * ) */
- /* COMPLEX*16 AFP( * ), AP( * ), B( LDB, * ), WORK( * ), */
- /* $ X( LDX, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZPPSVX uses the Cholesky factorization A = U**H * U or A = L * L**H to */
- /* > compute the solution to a complex system of linear equations */
- /* > A * X = B, */
- /* > where A is an N-by-N Hermitian positive definite matrix stored in */
- /* > packed format and X and B are N-by-NRHS matrices. */
- /* > */
- /* > Error bounds on the solution and a condition estimate are also */
- /* > provided. */
- /* > \endverbatim */
-
- /* > \par Description: */
- /* ================= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The following steps are performed: */
- /* > */
- /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
- /* > the system: */
- /* > diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
- /* > Whether or not the system will be equilibrated depends on the */
- /* > scaling of the matrix A, but if equilibration is used, A is */
- /* > overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
- /* > */
- /* > 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
- /* > factor the matrix A (after equilibration if FACT = 'E') as */
- /* > A = U**H * U , if UPLO = 'U', or */
- /* > A = L * L**H, if UPLO = 'L', */
- /* > where U is an upper triangular matrix, L is a lower triangular */
- /* > matrix, and **H indicates conjugate transpose. */
- /* > */
- /* > 3. If the leading i-by-i principal minor is not positive definite, */
- /* > then the routine returns with INFO = i. Otherwise, the factored */
- /* > form of A is used to estimate the condition number of the matrix */
- /* > A. If the reciprocal of the condition number is less than machine */
- /* > precision, INFO = N+1 is returned as a warning, but the routine */
- /* > still goes on to solve for X and compute error bounds as */
- /* > described below. */
- /* > */
- /* > 4. The system of equations is solved for X using the factored form */
- /* > of A. */
- /* > */
- /* > 5. Iterative refinement is applied to improve the computed solution */
- /* > matrix and calculate error bounds and backward error estimates */
- /* > for it. */
- /* > */
- /* > 6. If equilibration was used, the matrix X is premultiplied by */
- /* > diag(S) so that it solves the original system before */
- /* > equilibration. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] FACT */
- /* > \verbatim */
- /* > FACT is CHARACTER*1 */
- /* > Specifies whether or not the factored form of the matrix A is */
- /* > supplied on entry, and if not, whether the matrix A should be */
- /* > equilibrated before it is factored. */
- /* > = 'F': On entry, AFP contains the factored form of A. */
- /* > If EQUED = 'Y', the matrix A has been equilibrated */
- /* > with scaling factors given by S. AP and AFP will not */
- /* > be modified. */
- /* > = 'N': The matrix A will be copied to AFP and factored. */
- /* > = 'E': The matrix A will be equilibrated if necessary, then */
- /* > copied to AFP and factored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] UPLO */
- /* > \verbatim */
- /* > UPLO is CHARACTER*1 */
- /* > = 'U': Upper triangle of A is stored; */
- /* > = 'L': Lower triangle of A is stored. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of linear equations, i.e., the order of the */
- /* > matrix A. N >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NRHS */
- /* > \verbatim */
- /* > NRHS is INTEGER */
- /* > The number of right hand sides, i.e., the number of columns */
- /* > of the matrices B and X. NRHS >= 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AP */
- /* > \verbatim */
- /* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
- /* > On entry, the upper or lower triangle of the Hermitian matrix */
- /* > A, packed columnwise in a linear array, except if FACT = 'F' */
- /* > and EQUED = 'Y', then A must contain the equilibrated matrix */
- /* > diag(S)*A*diag(S). The j-th column of A is stored in the */
- /* > array AP as follows: */
- /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
- /* > See below for further details. A is not modified if */
- /* > FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
- /* > */
- /* > On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
- /* > diag(S)*A*diag(S). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] AFP */
- /* > \verbatim */
- /* > AFP is COMPLEX*16 array, dimension (N*(N+1)/2) */
- /* > If FACT = 'F', then AFP is an input argument and on entry */
- /* > contains the triangular factor U or L from the Cholesky */
- /* > factorization A = U**H*U or A = L*L**H, in the same storage */
- /* > format as A. If EQUED .ne. 'N', then AFP is the factored */
- /* > form of the equilibrated matrix A. */
- /* > */
- /* > If FACT = 'N', then AFP is an output argument and on exit */
- /* > returns the triangular factor U or L from the Cholesky */
- /* > factorization A = U**H * U or A = L * L**H of the original */
- /* > matrix A. */
- /* > */
- /* > If FACT = 'E', then AFP is an output argument and on exit */
- /* > returns the triangular factor U or L from the Cholesky */
- /* > factorization A = U**H * U or A = L * L**H of the equilibrated */
- /* > matrix A (see the description of AP for the form of the */
- /* > equilibrated matrix). */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] EQUED */
- /* > \verbatim */
- /* > EQUED is CHARACTER*1 */
- /* > Specifies the form of equilibration that was done. */
- /* > = 'N': No equilibration (always true if FACT = 'N'). */
- /* > = 'Y': Equilibration was done, i.e., A has been replaced by */
- /* > diag(S) * A * diag(S). */
- /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
- /* > output argument. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] S */
- /* > \verbatim */
- /* > S is DOUBLE PRECISION array, dimension (N) */
- /* > The scale factors for A; not accessed if EQUED = 'N'. S is */
- /* > an input argument if FACT = 'F'; otherwise, S is an output */
- /* > argument. If FACT = 'F' and EQUED = 'Y', each element of S */
- /* > must be positive. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
- /* > On entry, the N-by-NRHS right hand side matrix B. */
- /* > On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
- /* > B is overwritten by diag(S) * B. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is COMPLEX*16 array, dimension (LDX,NRHS) */
- /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
- /* > the original system of equations. Note that if EQUED = 'Y', */
- /* > A and B are modified on exit, and the solution to the */
- /* > equilibrated system is inv(diag(S))*X. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RCOND */
- /* > \verbatim */
- /* > RCOND is DOUBLE PRECISION */
- /* > The estimate of the reciprocal condition number of the matrix */
- /* > A after equilibration (if done). If RCOND is less than the */
- /* > machine precision (in particular, if RCOND = 0), the matrix */
- /* > is singular to working precision. This condition is */
- /* > indicated by a return code of INFO > 0. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] FERR */
- /* > \verbatim */
- /* > FERR is DOUBLE PRECISION array, dimension (NRHS) */
- /* > The estimated forward error bound for each solution vector */
- /* > X(j) (the j-th column of the solution matrix X). */
- /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* > is an estimated upper bound for the magnitude of the largest */
- /* > element in (X(j) - XTRUE) divided by the magnitude of the */
- /* > largest element in X(j). The estimate is as reliable as */
- /* > the estimate for RCOND, and is almost always a slight */
- /* > overestimate of the true error. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] BERR */
- /* > \verbatim */
- /* > BERR is DOUBLE PRECISION array, dimension (NRHS) */
- /* > The componentwise relative backward error of each solution */
- /* > vector X(j) (i.e., the smallest relative change in */
- /* > any element of A or B that makes X(j) an exact solution). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] WORK */
- /* > \verbatim */
- /* > WORK is COMPLEX*16 array, dimension (2*N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] RWORK */
- /* > \verbatim */
- /* > RWORK is DOUBLE PRECISION array, dimension (N) */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > > 0: if INFO = i, and i is */
- /* > <= N: the leading minor of order i of A is */
- /* > not positive definite, so the factorization */
- /* > could not be completed, and the solution has not */
- /* > been computed. RCOND = 0 is returned. */
- /* > = N+1: U is nonsingular, but RCOND is less than machine */
- /* > precision, meaning that the matrix is singular */
- /* > to working precision. Nevertheless, the */
- /* > solution and error bounds are computed because */
- /* > there are a number of situations where the */
- /* > computed solution can be more accurate than the */
- /* > value of RCOND would suggest. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date April 2012 */
-
- /* > \ingroup complex16OTHERsolve */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The packed storage scheme is illustrated by the following example */
- /* > when N = 4, UPLO = 'U': */
- /* > */
- /* > Two-dimensional storage of the Hermitian matrix A: */
- /* > */
- /* > a11 a12 a13 a14 */
- /* > a22 a23 a24 */
- /* > a33 a34 (aij = conjg(aji)) */
- /* > a44 */
- /* > */
- /* > Packed storage of the upper triangle of A: */
- /* > */
- /* > AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ int zppsvx_(char *fact, char *uplo, integer *n, integer *
- nrhs, doublecomplex *ap, doublecomplex *afp, char *equed, doublereal *
- s, doublecomplex *b, integer *ldb, doublecomplex *x, integer *ldx,
- doublereal *rcond, doublereal *ferr, doublereal *berr, doublecomplex *
- work, doublereal *rwork, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2;
- doublecomplex z__1;
-
- /* Local variables */
- doublereal amax, smin, smax;
- integer i__, j;
- extern logical lsame_(char *, char *);
- doublereal scond, anorm;
- logical equil, rcequ;
- extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
- doublecomplex *, integer *);
- extern doublereal dlamch_(char *);
- logical nofact;
- extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
- doublereal bignum;
- integer infequ;
- extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *,
- doublereal *);
- extern /* Subroutine */ int zlaqhp_(char *, integer *, doublecomplex *,
- doublereal *, doublereal *, doublereal *, char *),
- zlacpy_(char *, integer *, integer *, doublecomplex *, integer *,
- doublecomplex *, integer *), zppcon_(char *, integer *,
- doublecomplex *, doublereal *, doublereal *, doublecomplex *,
- doublereal *, integer *);
- doublereal smlnum;
- extern /* Subroutine */ int zppequ_(char *, integer *, doublecomplex *,
- doublereal *, doublereal *, doublereal *, integer *),
- zpprfs_(char *, integer *, integer *, doublecomplex *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublereal *, doublereal *, doublecomplex *,
- doublereal *, integer *), zpptrf_(char *, integer *,
- doublecomplex *, integer *), zpptrs_(char *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *, integer *);
-
-
- /* -- LAPACK driver routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* April 2012 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- --ap;
- --afp;
- --s;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- --rwork;
-
- /* Function Body */
- *info = 0;
- nofact = lsame_(fact, "N");
- equil = lsame_(fact, "E");
- if (nofact || equil) {
- *(unsigned char *)equed = 'N';
- rcequ = FALSE_;
- } else {
- rcequ = lsame_(equed, "Y");
- smlnum = dlamch_("Safe minimum");
- bignum = 1. / smlnum;
- }
-
- /* Test the input parameters. */
-
- if (! nofact && ! equil && ! lsame_(fact, "F")) {
- *info = -1;
- } else if (! lsame_(uplo, "U") && ! lsame_(uplo,
- "L")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 0) {
- *info = -4;
- } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
- equed, "N"))) {
- *info = -7;
- } else {
- if (rcequ) {
- smin = bignum;
- smax = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- d__1 = smin, d__2 = s[j];
- smin = f2cmin(d__1,d__2);
- /* Computing MAX */
- d__1 = smax, d__2 = s[j];
- smax = f2cmax(d__1,d__2);
- /* L10: */
- }
- if (smin <= 0.) {
- *info = -8;
- } else if (*n > 0) {
- scond = f2cmax(smin,smlnum) / f2cmin(smax,bignum);
- } else {
- scond = 1.;
- }
- }
- if (*info == 0) {
- if (*ldb < f2cmax(1,*n)) {
- *info = -10;
- } else if (*ldx < f2cmax(1,*n)) {
- *info = -12;
- }
- }
- }
-
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("ZPPSVX", &i__1, (ftnlen)6);
- return 0;
- }
-
- if (equil) {
-
- /* Compute row and column scalings to equilibrate the matrix A. */
-
- zppequ_(uplo, n, &ap[1], &s[1], &scond, &amax, &infequ);
- if (infequ == 0) {
-
- /* Equilibrate the matrix. */
-
- zlaqhp_(uplo, n, &ap[1], &s[1], &scond, &amax, equed);
- rcequ = lsame_(equed, "Y");
- }
- }
-
- /* Scale the right-hand side. */
-
- if (rcequ) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__;
- i__5 = i__ + j * b_dim1;
- z__1.r = s[i__4] * b[i__5].r, z__1.i = s[i__4] * b[i__5].i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L20: */
- }
- /* L30: */
- }
- }
-
- if (nofact || equil) {
-
- /* Compute the Cholesky factorization A = U**H * U or A = L * L**H. */
-
- i__1 = *n * (*n + 1) / 2;
- zcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
- zpptrf_(uplo, n, &afp[1], info);
-
- /* Return if INFO is non-zero. */
-
- if (*info > 0) {
- *rcond = 0.;
- return 0;
- }
- }
-
- /* Compute the norm of the matrix A. */
-
- anorm = zlanhp_("I", uplo, n, &ap[1], &rwork[1]);
-
- /* Compute the reciprocal of the condition number of A. */
-
- zppcon_(uplo, n, &afp[1], &anorm, rcond, &work[1], &rwork[1], info);
-
- /* Compute the solution matrix X. */
-
- zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
- zpptrs_(uplo, n, nrhs, &afp[1], &x[x_offset], ldx, info);
-
- /* Use iterative refinement to improve the computed solution and */
- /* compute error bounds and backward error estimates for it. */
-
- zpprfs_(uplo, n, nrhs, &ap[1], &afp[1], &b[b_offset], ldb, &x[x_offset],
- ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info);
-
- /* Transform the solution matrix X to a solution of the original */
- /* system. */
-
- if (rcequ) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- i__3 = i__ + j * x_dim1;
- i__4 = i__;
- i__5 = i__ + j * x_dim1;
- z__1.r = s[i__4] * x[i__5].r, z__1.i = s[i__4] * x[i__5].i;
- x[i__3].r = z__1.r, x[i__3].i = z__1.i;
- /* L40: */
- }
- /* L50: */
- }
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- ferr[j] /= scond;
- /* L60: */
- }
- }
-
- /* Set INFO = N+1 if the matrix is singular to working precision. */
-
- if (*rcond < dlamch_("Epsilon")) {
- *info = *n + 1;
- }
-
- return 0;
-
- /* End of ZPPSVX */
-
- } /* zppsvx_ */
-
|