You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhetf2_rook.c 49 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b ZHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bound
  488. ed Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm). */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZHETF2_ROOK + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetf2_
  495. rook.f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetf2_
  498. rook.f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetf2_
  501. rook.f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZHETF2_ROOK( UPLO, N, A, LDA, IPIV, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, LDA, N */
  509. /* INTEGER IPIV( * ) */
  510. /* COMPLEX*16 A( LDA, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > ZHETF2_ROOK computes the factorization of a complex Hermitian matrix A */
  517. /* > using the bounded Bunch-Kaufman ("rook") diagonal pivoting method: */
  518. /* > */
  519. /* > A = U*D*U**H or A = L*D*L**H */
  520. /* > */
  521. /* > where U (or L) is a product of permutation and unit upper (lower) */
  522. /* > triangular matrices, U**H is the conjugate transpose of U, and D is */
  523. /* > Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  524. /* > */
  525. /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] UPLO */
  530. /* > \verbatim */
  531. /* > UPLO is CHARACTER*1 */
  532. /* > Specifies whether the upper or lower triangular part of the */
  533. /* > Hermitian matrix A is stored: */
  534. /* > = 'U': Upper triangular */
  535. /* > = 'L': Lower triangular */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix A. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in,out] A */
  545. /* > \verbatim */
  546. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  547. /* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
  548. /* > n-by-n upper triangular part of A contains the upper */
  549. /* > triangular part of the matrix A, and the strictly lower */
  550. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  551. /* > leading n-by-n lower triangular part of A contains the lower */
  552. /* > triangular part of the matrix A, and the strictly upper */
  553. /* > triangular part of A is not referenced. */
  554. /* > */
  555. /* > On exit, the block diagonal matrix D and the multipliers used */
  556. /* > to obtain the factor U or L (see below for further details). */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] LDA */
  560. /* > \verbatim */
  561. /* > LDA is INTEGER */
  562. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] IPIV */
  566. /* > \verbatim */
  567. /* > IPIV is INTEGER array, dimension (N) */
  568. /* > Details of the interchanges and the block structure of D. */
  569. /* > */
  570. /* > If UPLO = 'U': */
  571. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  572. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  573. /* > */
  574. /* > If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
  575. /* > columns k and -IPIV(k) were interchanged and rows and */
  576. /* > columns k-1 and -IPIV(k-1) were inerchaged, */
  577. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  578. /* > */
  579. /* > If UPLO = 'L': */
  580. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) */
  581. /* > were interchanged and D(k,k) is a 1-by-1 diagonal block. */
  582. /* > */
  583. /* > If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
  584. /* > columns k and -IPIV(k) were interchanged and rows and */
  585. /* > columns k+1 and -IPIV(k+1) were inerchaged, */
  586. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] INFO */
  590. /* > \verbatim */
  591. /* > INFO is INTEGER */
  592. /* > = 0: successful exit */
  593. /* > < 0: if INFO = -k, the k-th argument had an illegal value */
  594. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  595. /* > has been completed, but the block diagonal matrix D is */
  596. /* > exactly singular, and division by zero will occur if it */
  597. /* > is used to solve a system of equations. */
  598. /* > \endverbatim */
  599. /* Authors: */
  600. /* ======== */
  601. /* > \author Univ. of Tennessee */
  602. /* > \author Univ. of California Berkeley */
  603. /* > \author Univ. of Colorado Denver */
  604. /* > \author NAG Ltd. */
  605. /* > \date November 2013 */
  606. /* > \ingroup complex16HEcomputational */
  607. /* > \par Further Details: */
  608. /* ===================== */
  609. /* > */
  610. /* > \verbatim */
  611. /* > */
  612. /* > If UPLO = 'U', then A = U*D*U**H, where */
  613. /* > U = P(n)*U(n)* ... *P(k)U(k)* ..., */
  614. /* > i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
  615. /* > 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  616. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  617. /* > defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
  618. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  619. /* > */
  620. /* > ( I v 0 ) k-s */
  621. /* > U(k) = ( 0 I 0 ) s */
  622. /* > ( 0 0 I ) n-k */
  623. /* > k-s s n-k */
  624. /* > */
  625. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
  626. /* > If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
  627. /* > and A(k,k), and v overwrites A(1:k-2,k-1:k). */
  628. /* > */
  629. /* > If UPLO = 'L', then A = L*D*L**H, where */
  630. /* > L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
  631. /* > i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
  632. /* > n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
  633. /* > and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
  634. /* > defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
  635. /* > that if the diagonal block D(k) is of order s (s = 1 or 2), then */
  636. /* > */
  637. /* > ( I 0 0 ) k-1 */
  638. /* > L(k) = ( 0 I 0 ) s */
  639. /* > ( 0 v I ) n-k-s+1 */
  640. /* > k-1 s n-k-s+1 */
  641. /* > */
  642. /* > If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
  643. /* > If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
  644. /* > and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
  645. /* > \endverbatim */
  646. /* > \par Contributors: */
  647. /* ================== */
  648. /* > */
  649. /* > \verbatim */
  650. /* > */
  651. /* > November 2013, Igor Kozachenko, */
  652. /* > Computer Science Division, */
  653. /* > University of California, Berkeley */
  654. /* > */
  655. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  656. /* > School of Mathematics, */
  657. /* > University of Manchester */
  658. /* > */
  659. /* > 01-01-96 - Based on modifications by */
  660. /* > J. Lewis, Boeing Computer Services Company */
  661. /* > A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
  662. /* > \endverbatim */
  663. /* ===================================================================== */
  664. /* Subroutine */ int zhetf2_rook_(char *uplo, integer *n, doublecomplex *a,
  665. integer *lda, integer *ipiv, integer *info)
  666. {
  667. /* System generated locals */
  668. integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
  669. doublereal d__1, d__2;
  670. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8;
  671. /* Local variables */
  672. logical done;
  673. integer imax, jmax;
  674. extern /* Subroutine */ int zher_(char *, integer *, doublereal *,
  675. doublecomplex *, integer *, doublecomplex *, integer *);
  676. doublereal d__;
  677. integer i__, j, k, p;
  678. doublecomplex t;
  679. doublereal alpha;
  680. extern logical lsame_(char *, char *);
  681. doublereal dtemp, sfmin;
  682. integer itemp, kstep;
  683. logical upper;
  684. doublereal r1;
  685. extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *,
  686. doublecomplex *, integer *);
  687. extern doublereal dlapy2_(doublereal *, doublereal *);
  688. doublereal d11;
  689. doublecomplex d12;
  690. doublereal d22;
  691. doublecomplex d21;
  692. integer ii, kk;
  693. extern doublereal dlamch_(char *);
  694. integer kp;
  695. doublereal absakk;
  696. doublecomplex wk;
  697. doublereal tt;
  698. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), zdscal_(
  699. integer *, doublereal *, doublecomplex *, integer *);
  700. doublereal colmax;
  701. extern integer izamax_(integer *, doublecomplex *, integer *);
  702. doublereal rowmax;
  703. doublecomplex wkm1, wkp1;
  704. /* -- LAPACK computational routine (version 3.5.0) -- */
  705. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  706. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  707. /* November 2013 */
  708. /* ====================================================================== */
  709. /* Test the input parameters. */
  710. /* Parameter adjustments */
  711. a_dim1 = *lda;
  712. a_offset = 1 + a_dim1 * 1;
  713. a -= a_offset;
  714. --ipiv;
  715. /* Function Body */
  716. *info = 0;
  717. upper = lsame_(uplo, "U");
  718. if (! upper && ! lsame_(uplo, "L")) {
  719. *info = -1;
  720. } else if (*n < 0) {
  721. *info = -2;
  722. } else if (*lda < f2cmax(1,*n)) {
  723. *info = -4;
  724. }
  725. if (*info != 0) {
  726. i__1 = -(*info);
  727. xerbla_("ZHETF2_ROOK", &i__1, (ftnlen)11);
  728. return 0;
  729. }
  730. /* Initialize ALPHA for use in choosing pivot block size. */
  731. alpha = (sqrt(17.) + 1.) / 8.;
  732. /* Compute machine safe minimum */
  733. sfmin = dlamch_("S");
  734. if (upper) {
  735. /* Factorize A as U*D*U**H using the upper triangle of A */
  736. /* K is the main loop index, decreasing from N to 1 in steps of */
  737. /* 1 or 2 */
  738. k = *n;
  739. L10:
  740. /* If K < 1, exit from loop */
  741. if (k < 1) {
  742. goto L70;
  743. }
  744. kstep = 1;
  745. p = k;
  746. /* Determine rows and columns to be interchanged and whether */
  747. /* a 1-by-1 or 2-by-2 pivot block will be used */
  748. i__1 = k + k * a_dim1;
  749. absakk = (d__1 = a[i__1].r, abs(d__1));
  750. /* IMAX is the row-index of the largest off-diagonal element in */
  751. /* column K, and COLMAX is its absolute value. */
  752. /* Determine both COLMAX and IMAX. */
  753. if (k > 1) {
  754. i__1 = k - 1;
  755. imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
  756. i__1 = imax + k * a_dim1;
  757. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  758. k * a_dim1]), abs(d__2));
  759. } else {
  760. colmax = 0.;
  761. }
  762. if (f2cmax(absakk,colmax) == 0.) {
  763. /* Column K is zero or underflow: set INFO and continue */
  764. if (*info == 0) {
  765. *info = k;
  766. }
  767. kp = k;
  768. i__1 = k + k * a_dim1;
  769. i__2 = k + k * a_dim1;
  770. d__1 = a[i__2].r;
  771. a[i__1].r = d__1, a[i__1].i = 0.;
  772. } else {
  773. /* ============================================================ */
  774. /* BEGIN pivot search */
  775. /* Case(1) */
  776. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  777. /* (used to handle NaN and Inf) */
  778. if (! (absakk < alpha * colmax)) {
  779. /* no interchange, use 1-by-1 pivot block */
  780. kp = k;
  781. } else {
  782. done = FALSE_;
  783. /* Loop until pivot found */
  784. L12:
  785. /* BEGIN pivot search loop body */
  786. /* JMAX is the column-index of the largest off-diagonal */
  787. /* element in row IMAX, and ROWMAX is its absolute value. */
  788. /* Determine both ROWMAX and JMAX. */
  789. if (imax != k) {
  790. i__1 = k - imax;
  791. jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) *
  792. a_dim1], lda);
  793. i__1 = imax + jmax * a_dim1;
  794. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  795. a[imax + jmax * a_dim1]), abs(d__2));
  796. } else {
  797. rowmax = 0.;
  798. }
  799. if (imax > 1) {
  800. i__1 = imax - 1;
  801. itemp = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
  802. i__1 = itemp + imax * a_dim1;
  803. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  804. itemp + imax * a_dim1]), abs(d__2));
  805. if (dtemp > rowmax) {
  806. rowmax = dtemp;
  807. jmax = itemp;
  808. }
  809. }
  810. /* Case(2) */
  811. /* Equivalent to testing for */
  812. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  813. /* (used to handle NaN and Inf) */
  814. i__1 = imax + imax * a_dim1;
  815. if (! ((d__1 = a[i__1].r, abs(d__1)) < alpha * rowmax)) {
  816. /* interchange rows and columns K and IMAX, */
  817. /* use 1-by-1 pivot block */
  818. kp = imax;
  819. done = TRUE_;
  820. /* Case(3) */
  821. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  822. /* (used to handle NaN and Inf) */
  823. } else if (p == jmax || rowmax <= colmax) {
  824. /* interchange rows and columns K-1 and IMAX, */
  825. /* use 2-by-2 pivot block */
  826. kp = imax;
  827. kstep = 2;
  828. done = TRUE_;
  829. /* Case(4) */
  830. } else {
  831. /* Pivot not found: set params and repeat */
  832. p = imax;
  833. colmax = rowmax;
  834. imax = jmax;
  835. }
  836. /* END pivot search loop body */
  837. if (! done) {
  838. goto L12;
  839. }
  840. }
  841. /* END pivot search */
  842. /* ============================================================ */
  843. /* KK is the column of A where pivoting step stopped */
  844. kk = k - kstep + 1;
  845. /* For only a 2x2 pivot, interchange rows and columns K and P */
  846. /* in the leading submatrix A(1:k,1:k) */
  847. if (kstep == 2 && p != k) {
  848. /* (1) Swap columnar parts */
  849. if (p > 1) {
  850. i__1 = p - 1;
  851. zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 +
  852. 1], &c__1);
  853. }
  854. /* (2) Swap and conjugate middle parts */
  855. i__1 = k - 1;
  856. for (j = p + 1; j <= i__1; ++j) {
  857. d_cnjg(&z__1, &a[j + k * a_dim1]);
  858. t.r = z__1.r, t.i = z__1.i;
  859. i__2 = j + k * a_dim1;
  860. d_cnjg(&z__1, &a[p + j * a_dim1]);
  861. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  862. i__2 = p + j * a_dim1;
  863. a[i__2].r = t.r, a[i__2].i = t.i;
  864. /* L14: */
  865. }
  866. /* (3) Swap and conjugate corner elements at row-col interserction */
  867. i__1 = p + k * a_dim1;
  868. d_cnjg(&z__1, &a[p + k * a_dim1]);
  869. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  870. /* (4) Swap diagonal elements at row-col intersection */
  871. i__1 = k + k * a_dim1;
  872. r1 = a[i__1].r;
  873. i__1 = k + k * a_dim1;
  874. i__2 = p + p * a_dim1;
  875. d__1 = a[i__2].r;
  876. a[i__1].r = d__1, a[i__1].i = 0.;
  877. i__1 = p + p * a_dim1;
  878. a[i__1].r = r1, a[i__1].i = 0.;
  879. }
  880. /* For both 1x1 and 2x2 pivots, interchange rows and */
  881. /* columns KK and KP in the leading submatrix A(1:k,1:k) */
  882. if (kp != kk) {
  883. /* (1) Swap columnar parts */
  884. if (kp > 1) {
  885. i__1 = kp - 1;
  886. zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  887. + 1], &c__1);
  888. }
  889. /* (2) Swap and conjugate middle parts */
  890. i__1 = kk - 1;
  891. for (j = kp + 1; j <= i__1; ++j) {
  892. d_cnjg(&z__1, &a[j + kk * a_dim1]);
  893. t.r = z__1.r, t.i = z__1.i;
  894. i__2 = j + kk * a_dim1;
  895. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  896. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  897. i__2 = kp + j * a_dim1;
  898. a[i__2].r = t.r, a[i__2].i = t.i;
  899. /* L15: */
  900. }
  901. /* (3) Swap and conjugate corner elements at row-col interserction */
  902. i__1 = kp + kk * a_dim1;
  903. d_cnjg(&z__1, &a[kp + kk * a_dim1]);
  904. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  905. /* (4) Swap diagonal elements at row-col intersection */
  906. i__1 = kk + kk * a_dim1;
  907. r1 = a[i__1].r;
  908. i__1 = kk + kk * a_dim1;
  909. i__2 = kp + kp * a_dim1;
  910. d__1 = a[i__2].r;
  911. a[i__1].r = d__1, a[i__1].i = 0.;
  912. i__1 = kp + kp * a_dim1;
  913. a[i__1].r = r1, a[i__1].i = 0.;
  914. if (kstep == 2) {
  915. /* (*) Make sure that diagonal element of pivot is real */
  916. i__1 = k + k * a_dim1;
  917. i__2 = k + k * a_dim1;
  918. d__1 = a[i__2].r;
  919. a[i__1].r = d__1, a[i__1].i = 0.;
  920. /* (5) Swap row elements */
  921. i__1 = k - 1 + k * a_dim1;
  922. t.r = a[i__1].r, t.i = a[i__1].i;
  923. i__1 = k - 1 + k * a_dim1;
  924. i__2 = kp + k * a_dim1;
  925. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  926. i__1 = kp + k * a_dim1;
  927. a[i__1].r = t.r, a[i__1].i = t.i;
  928. }
  929. } else {
  930. /* (*) Make sure that diagonal element of pivot is real */
  931. i__1 = k + k * a_dim1;
  932. i__2 = k + k * a_dim1;
  933. d__1 = a[i__2].r;
  934. a[i__1].r = d__1, a[i__1].i = 0.;
  935. if (kstep == 2) {
  936. i__1 = k - 1 + (k - 1) * a_dim1;
  937. i__2 = k - 1 + (k - 1) * a_dim1;
  938. d__1 = a[i__2].r;
  939. a[i__1].r = d__1, a[i__1].i = 0.;
  940. }
  941. }
  942. /* Update the leading submatrix */
  943. if (kstep == 1) {
  944. /* 1-by-1 pivot block D(k): column k now holds */
  945. /* W(k) = U(k)*D(k) */
  946. /* where U(k) is the k-th column of U */
  947. if (k > 1) {
  948. /* Perform a rank-1 update of A(1:k-1,1:k-1) and */
  949. /* store U(k) in column k */
  950. i__1 = k + k * a_dim1;
  951. if ((d__1 = a[i__1].r, abs(d__1)) >= sfmin) {
  952. /* Perform a rank-1 update of A(1:k-1,1:k-1) as */
  953. /* A := A - U(k)*D(k)*U(k)**T */
  954. /* = A - W(k)*1/D(k)*W(k)**T */
  955. i__1 = k + k * a_dim1;
  956. d11 = 1. / a[i__1].r;
  957. i__1 = k - 1;
  958. d__1 = -d11;
  959. zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &
  960. a[a_offset], lda);
  961. /* Store U(k) in column k */
  962. i__1 = k - 1;
  963. zdscal_(&i__1, &d11, &a[k * a_dim1 + 1], &c__1);
  964. } else {
  965. /* Store L(k) in column K */
  966. i__1 = k + k * a_dim1;
  967. d11 = a[i__1].r;
  968. i__1 = k - 1;
  969. for (ii = 1; ii <= i__1; ++ii) {
  970. i__2 = ii + k * a_dim1;
  971. i__3 = ii + k * a_dim1;
  972. z__1.r = a[i__3].r / d11, z__1.i = a[i__3].i /
  973. d11;
  974. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  975. /* L16: */
  976. }
  977. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  978. /* A := A - U(k)*D(k)*U(k)**T */
  979. /* = A - W(k)*(1/D(k))*W(k)**T */
  980. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  981. i__1 = k - 1;
  982. d__1 = -d11;
  983. zher_(uplo, &i__1, &d__1, &a[k * a_dim1 + 1], &c__1, &
  984. a[a_offset], lda);
  985. }
  986. }
  987. } else {
  988. /* 2-by-2 pivot block D(k): columns k and k-1 now hold */
  989. /* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
  990. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  991. /* of U */
  992. /* Perform a rank-2 update of A(1:k-2,1:k-2) as */
  993. /* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
  994. /* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T */
  995. /* and store L(k) and L(k+1) in columns k and k+1 */
  996. if (k > 2) {
  997. /* D = |A12| */
  998. i__1 = k - 1 + k * a_dim1;
  999. d__1 = a[i__1].r;
  1000. d__2 = d_imag(&a[k - 1 + k * a_dim1]);
  1001. d__ = dlapy2_(&d__1, &d__2);
  1002. i__1 = k + k * a_dim1;
  1003. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1004. d11 = z__1.r;
  1005. i__1 = k - 1 + (k - 1) * a_dim1;
  1006. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1007. d22 = z__1.r;
  1008. i__1 = k - 1 + k * a_dim1;
  1009. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1010. d12.r = z__1.r, d12.i = z__1.i;
  1011. tt = 1. / (d11 * d22 - 1.);
  1012. for (j = k - 2; j >= 1; --j) {
  1013. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1014. i__1 = j + (k - 1) * a_dim1;
  1015. z__3.r = d11 * a[i__1].r, z__3.i = d11 * a[i__1].i;
  1016. d_cnjg(&z__5, &d12);
  1017. i__2 = j + k * a_dim1;
  1018. z__4.r = z__5.r * a[i__2].r - z__5.i * a[i__2].i,
  1019. z__4.i = z__5.r * a[i__2].i + z__5.i * a[i__2]
  1020. .r;
  1021. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1022. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1023. wkm1.r = z__1.r, wkm1.i = z__1.i;
  1024. i__1 = j + k * a_dim1;
  1025. z__3.r = d22 * a[i__1].r, z__3.i = d22 * a[i__1].i;
  1026. i__2 = j + (k - 1) * a_dim1;
  1027. z__4.r = d12.r * a[i__2].r - d12.i * a[i__2].i,
  1028. z__4.i = d12.r * a[i__2].i + d12.i * a[i__2]
  1029. .r;
  1030. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1031. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1032. wk.r = z__1.r, wk.i = z__1.i;
  1033. /* Perform a rank-2 update of A(1:k-2,1:k-2) */
  1034. for (i__ = j; i__ >= 1; --i__) {
  1035. i__1 = i__ + j * a_dim1;
  1036. i__2 = i__ + j * a_dim1;
  1037. i__3 = i__ + k * a_dim1;
  1038. z__4.r = a[i__3].r / d__, z__4.i = a[i__3].i /
  1039. d__;
  1040. d_cnjg(&z__5, &wk);
  1041. z__3.r = z__4.r * z__5.r - z__4.i * z__5.i,
  1042. z__3.i = z__4.r * z__5.i + z__4.i *
  1043. z__5.r;
  1044. z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i -
  1045. z__3.i;
  1046. i__4 = i__ + (k - 1) * a_dim1;
  1047. z__7.r = a[i__4].r / d__, z__7.i = a[i__4].i /
  1048. d__;
  1049. d_cnjg(&z__8, &wkm1);
  1050. z__6.r = z__7.r * z__8.r - z__7.i * z__8.i,
  1051. z__6.i = z__7.r * z__8.i + z__7.i *
  1052. z__8.r;
  1053. z__1.r = z__2.r - z__6.r, z__1.i = z__2.i -
  1054. z__6.i;
  1055. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1056. /* L20: */
  1057. }
  1058. /* Store U(k) and U(k-1) in cols k and k-1 for row J */
  1059. i__1 = j + k * a_dim1;
  1060. z__1.r = wk.r / d__, z__1.i = wk.i / d__;
  1061. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1062. i__1 = j + (k - 1) * a_dim1;
  1063. z__1.r = wkm1.r / d__, z__1.i = wkm1.i / d__;
  1064. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1065. /* (*) Make sure that diagonal element of pivot is real */
  1066. i__1 = j + j * a_dim1;
  1067. i__2 = j + j * a_dim1;
  1068. d__1 = a[i__2].r;
  1069. z__1.r = d__1, z__1.i = 0.;
  1070. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1071. /* L30: */
  1072. }
  1073. }
  1074. }
  1075. }
  1076. /* Store details of the interchanges in IPIV */
  1077. if (kstep == 1) {
  1078. ipiv[k] = kp;
  1079. } else {
  1080. ipiv[k] = -p;
  1081. ipiv[k - 1] = -kp;
  1082. }
  1083. /* Decrease K and return to the start of the main loop */
  1084. k -= kstep;
  1085. goto L10;
  1086. } else {
  1087. /* Factorize A as L*D*L**H using the lower triangle of A */
  1088. /* K is the main loop index, increasing from 1 to N in steps of */
  1089. /* 1 or 2 */
  1090. k = 1;
  1091. L40:
  1092. /* If K > N, exit from loop */
  1093. if (k > *n) {
  1094. goto L70;
  1095. }
  1096. kstep = 1;
  1097. p = k;
  1098. /* Determine rows and columns to be interchanged and whether */
  1099. /* a 1-by-1 or 2-by-2 pivot block will be used */
  1100. i__1 = k + k * a_dim1;
  1101. absakk = (d__1 = a[i__1].r, abs(d__1));
  1102. /* IMAX is the row-index of the largest off-diagonal element in */
  1103. /* column K, and COLMAX is its absolute value. */
  1104. /* Determine both COLMAX and IMAX. */
  1105. if (k < *n) {
  1106. i__1 = *n - k;
  1107. imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
  1108. i__1 = imax + k * a_dim1;
  1109. colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax +
  1110. k * a_dim1]), abs(d__2));
  1111. } else {
  1112. colmax = 0.;
  1113. }
  1114. if (f2cmax(absakk,colmax) == 0.) {
  1115. /* Column K is zero or underflow: set INFO and continue */
  1116. if (*info == 0) {
  1117. *info = k;
  1118. }
  1119. kp = k;
  1120. i__1 = k + k * a_dim1;
  1121. i__2 = k + k * a_dim1;
  1122. d__1 = a[i__2].r;
  1123. a[i__1].r = d__1, a[i__1].i = 0.;
  1124. } else {
  1125. /* ============================================================ */
  1126. /* BEGIN pivot search */
  1127. /* Case(1) */
  1128. /* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
  1129. /* (used to handle NaN and Inf) */
  1130. if (! (absakk < alpha * colmax)) {
  1131. /* no interchange, use 1-by-1 pivot block */
  1132. kp = k;
  1133. } else {
  1134. done = FALSE_;
  1135. /* Loop until pivot found */
  1136. L42:
  1137. /* BEGIN pivot search loop body */
  1138. /* JMAX is the column-index of the largest off-diagonal */
  1139. /* element in row IMAX, and ROWMAX is its absolute value. */
  1140. /* Determine both ROWMAX and JMAX. */
  1141. if (imax != k) {
  1142. i__1 = imax - k;
  1143. jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda);
  1144. i__1 = imax + jmax * a_dim1;
  1145. rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&
  1146. a[imax + jmax * a_dim1]), abs(d__2));
  1147. } else {
  1148. rowmax = 0.;
  1149. }
  1150. if (imax < *n) {
  1151. i__1 = *n - imax;
  1152. itemp = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1]
  1153. , &c__1);
  1154. i__1 = itemp + imax * a_dim1;
  1155. dtemp = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
  1156. itemp + imax * a_dim1]), abs(d__2));
  1157. if (dtemp > rowmax) {
  1158. rowmax = dtemp;
  1159. jmax = itemp;
  1160. }
  1161. }
  1162. /* Case(2) */
  1163. /* Equivalent to testing for */
  1164. /* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX */
  1165. /* (used to handle NaN and Inf) */
  1166. i__1 = imax + imax * a_dim1;
  1167. if (! ((d__1 = a[i__1].r, abs(d__1)) < alpha * rowmax)) {
  1168. /* interchange rows and columns K and IMAX, */
  1169. /* use 1-by-1 pivot block */
  1170. kp = imax;
  1171. done = TRUE_;
  1172. /* Case(3) */
  1173. /* Equivalent to testing for ROWMAX.EQ.COLMAX, */
  1174. /* (used to handle NaN and Inf) */
  1175. } else if (p == jmax || rowmax <= colmax) {
  1176. /* interchange rows and columns K+1 and IMAX, */
  1177. /* use 2-by-2 pivot block */
  1178. kp = imax;
  1179. kstep = 2;
  1180. done = TRUE_;
  1181. /* Case(4) */
  1182. } else {
  1183. /* Pivot not found: set params and repeat */
  1184. p = imax;
  1185. colmax = rowmax;
  1186. imax = jmax;
  1187. }
  1188. /* END pivot search loop body */
  1189. if (! done) {
  1190. goto L42;
  1191. }
  1192. }
  1193. /* END pivot search */
  1194. /* ============================================================ */
  1195. /* KK is the column of A where pivoting step stopped */
  1196. kk = k + kstep - 1;
  1197. /* For only a 2x2 pivot, interchange rows and columns K and P */
  1198. /* in the trailing submatrix A(k:n,k:n) */
  1199. if (kstep == 2 && p != k) {
  1200. /* (1) Swap columnar parts */
  1201. if (p < *n) {
  1202. i__1 = *n - p;
  1203. zswap_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + 1 + p
  1204. * a_dim1], &c__1);
  1205. }
  1206. /* (2) Swap and conjugate middle parts */
  1207. i__1 = p - 1;
  1208. for (j = k + 1; j <= i__1; ++j) {
  1209. d_cnjg(&z__1, &a[j + k * a_dim1]);
  1210. t.r = z__1.r, t.i = z__1.i;
  1211. i__2 = j + k * a_dim1;
  1212. d_cnjg(&z__1, &a[p + j * a_dim1]);
  1213. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1214. i__2 = p + j * a_dim1;
  1215. a[i__2].r = t.r, a[i__2].i = t.i;
  1216. /* L44: */
  1217. }
  1218. /* (3) Swap and conjugate corner elements at row-col interserction */
  1219. i__1 = p + k * a_dim1;
  1220. d_cnjg(&z__1, &a[p + k * a_dim1]);
  1221. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1222. /* (4) Swap diagonal elements at row-col intersection */
  1223. i__1 = k + k * a_dim1;
  1224. r1 = a[i__1].r;
  1225. i__1 = k + k * a_dim1;
  1226. i__2 = p + p * a_dim1;
  1227. d__1 = a[i__2].r;
  1228. a[i__1].r = d__1, a[i__1].i = 0.;
  1229. i__1 = p + p * a_dim1;
  1230. a[i__1].r = r1, a[i__1].i = 0.;
  1231. }
  1232. /* For both 1x1 and 2x2 pivots, interchange rows and */
  1233. /* columns KK and KP in the trailing submatrix A(k:n,k:n) */
  1234. if (kp != kk) {
  1235. /* (1) Swap columnar parts */
  1236. if (kp < *n) {
  1237. i__1 = *n - kp;
  1238. zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1239. + kp * a_dim1], &c__1);
  1240. }
  1241. /* (2) Swap and conjugate middle parts */
  1242. i__1 = kp - 1;
  1243. for (j = kk + 1; j <= i__1; ++j) {
  1244. d_cnjg(&z__1, &a[j + kk * a_dim1]);
  1245. t.r = z__1.r, t.i = z__1.i;
  1246. i__2 = j + kk * a_dim1;
  1247. d_cnjg(&z__1, &a[kp + j * a_dim1]);
  1248. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1249. i__2 = kp + j * a_dim1;
  1250. a[i__2].r = t.r, a[i__2].i = t.i;
  1251. /* L45: */
  1252. }
  1253. /* (3) Swap and conjugate corner elements at row-col interserction */
  1254. i__1 = kp + kk * a_dim1;
  1255. d_cnjg(&z__1, &a[kp + kk * a_dim1]);
  1256. a[i__1].r = z__1.r, a[i__1].i = z__1.i;
  1257. /* (4) Swap diagonal elements at row-col intersection */
  1258. i__1 = kk + kk * a_dim1;
  1259. r1 = a[i__1].r;
  1260. i__1 = kk + kk * a_dim1;
  1261. i__2 = kp + kp * a_dim1;
  1262. d__1 = a[i__2].r;
  1263. a[i__1].r = d__1, a[i__1].i = 0.;
  1264. i__1 = kp + kp * a_dim1;
  1265. a[i__1].r = r1, a[i__1].i = 0.;
  1266. if (kstep == 2) {
  1267. /* (*) Make sure that diagonal element of pivot is real */
  1268. i__1 = k + k * a_dim1;
  1269. i__2 = k + k * a_dim1;
  1270. d__1 = a[i__2].r;
  1271. a[i__1].r = d__1, a[i__1].i = 0.;
  1272. /* (5) Swap row elements */
  1273. i__1 = k + 1 + k * a_dim1;
  1274. t.r = a[i__1].r, t.i = a[i__1].i;
  1275. i__1 = k + 1 + k * a_dim1;
  1276. i__2 = kp + k * a_dim1;
  1277. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1278. i__1 = kp + k * a_dim1;
  1279. a[i__1].r = t.r, a[i__1].i = t.i;
  1280. }
  1281. } else {
  1282. /* (*) Make sure that diagonal element of pivot is real */
  1283. i__1 = k + k * a_dim1;
  1284. i__2 = k + k * a_dim1;
  1285. d__1 = a[i__2].r;
  1286. a[i__1].r = d__1, a[i__1].i = 0.;
  1287. if (kstep == 2) {
  1288. i__1 = k + 1 + (k + 1) * a_dim1;
  1289. i__2 = k + 1 + (k + 1) * a_dim1;
  1290. d__1 = a[i__2].r;
  1291. a[i__1].r = d__1, a[i__1].i = 0.;
  1292. }
  1293. }
  1294. /* Update the trailing submatrix */
  1295. if (kstep == 1) {
  1296. /* 1-by-1 pivot block D(k): column k of A now holds */
  1297. /* W(k) = L(k)*D(k), */
  1298. /* where L(k) is the k-th column of L */
  1299. if (k < *n) {
  1300. /* Perform a rank-1 update of A(k+1:n,k+1:n) and */
  1301. /* store L(k) in column k */
  1302. /* Handle division by a small number */
  1303. i__1 = k + k * a_dim1;
  1304. if ((d__1 = a[i__1].r, abs(d__1)) >= sfmin) {
  1305. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1306. /* A := A - L(k)*D(k)*L(k)**T */
  1307. /* = A - W(k)*(1/D(k))*W(k)**T */
  1308. i__1 = k + k * a_dim1;
  1309. d11 = 1. / a[i__1].r;
  1310. i__1 = *n - k;
  1311. d__1 = -d11;
  1312. zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &
  1313. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1314. /* Store L(k) in column k */
  1315. i__1 = *n - k;
  1316. zdscal_(&i__1, &d11, &a[k + 1 + k * a_dim1], &c__1);
  1317. } else {
  1318. /* Store L(k) in column k */
  1319. i__1 = k + k * a_dim1;
  1320. d11 = a[i__1].r;
  1321. i__1 = *n;
  1322. for (ii = k + 1; ii <= i__1; ++ii) {
  1323. i__2 = ii + k * a_dim1;
  1324. i__3 = ii + k * a_dim1;
  1325. z__1.r = a[i__3].r / d11, z__1.i = a[i__3].i /
  1326. d11;
  1327. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1328. /* L46: */
  1329. }
  1330. /* Perform a rank-1 update of A(k+1:n,k+1:n) as */
  1331. /* A := A - L(k)*D(k)*L(k)**T */
  1332. /* = A - W(k)*(1/D(k))*W(k)**T */
  1333. /* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T */
  1334. i__1 = *n - k;
  1335. d__1 = -d11;
  1336. zher_(uplo, &i__1, &d__1, &a[k + 1 + k * a_dim1], &
  1337. c__1, &a[k + 1 + (k + 1) * a_dim1], lda);
  1338. }
  1339. }
  1340. } else {
  1341. /* 2-by-2 pivot block D(k): columns k and k+1 now hold */
  1342. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1343. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1344. /* of L */
  1345. /* Perform a rank-2 update of A(k+2:n,k+2:n) as */
  1346. /* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T */
  1347. /* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T */
  1348. /* and store L(k) and L(k+1) in columns k and k+1 */
  1349. if (k < *n - 1) {
  1350. /* D = |A21| */
  1351. i__1 = k + 1 + k * a_dim1;
  1352. d__1 = a[i__1].r;
  1353. d__2 = d_imag(&a[k + 1 + k * a_dim1]);
  1354. d__ = dlapy2_(&d__1, &d__2);
  1355. i__1 = k + 1 + (k + 1) * a_dim1;
  1356. d11 = a[i__1].r / d__;
  1357. i__1 = k + k * a_dim1;
  1358. d22 = a[i__1].r / d__;
  1359. i__1 = k + 1 + k * a_dim1;
  1360. z__1.r = a[i__1].r / d__, z__1.i = a[i__1].i / d__;
  1361. d21.r = z__1.r, d21.i = z__1.i;
  1362. tt = 1. / (d11 * d22 - 1.);
  1363. i__1 = *n;
  1364. for (j = k + 2; j <= i__1; ++j) {
  1365. /* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J */
  1366. i__2 = j + k * a_dim1;
  1367. z__3.r = d11 * a[i__2].r, z__3.i = d11 * a[i__2].i;
  1368. i__3 = j + (k + 1) * a_dim1;
  1369. z__4.r = d21.r * a[i__3].r - d21.i * a[i__3].i,
  1370. z__4.i = d21.r * a[i__3].i + d21.i * a[i__3]
  1371. .r;
  1372. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1373. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1374. wk.r = z__1.r, wk.i = z__1.i;
  1375. i__2 = j + (k + 1) * a_dim1;
  1376. z__3.r = d22 * a[i__2].r, z__3.i = d22 * a[i__2].i;
  1377. d_cnjg(&z__5, &d21);
  1378. i__3 = j + k * a_dim1;
  1379. z__4.r = z__5.r * a[i__3].r - z__5.i * a[i__3].i,
  1380. z__4.i = z__5.r * a[i__3].i + z__5.i * a[i__3]
  1381. .r;
  1382. z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
  1383. z__1.r = tt * z__2.r, z__1.i = tt * z__2.i;
  1384. wkp1.r = z__1.r, wkp1.i = z__1.i;
  1385. /* Perform a rank-2 update of A(k+2:n,k+2:n) */
  1386. i__2 = *n;
  1387. for (i__ = j; i__ <= i__2; ++i__) {
  1388. i__3 = i__ + j * a_dim1;
  1389. i__4 = i__ + j * a_dim1;
  1390. i__5 = i__ + k * a_dim1;
  1391. z__4.r = a[i__5].r / d__, z__4.i = a[i__5].i /
  1392. d__;
  1393. d_cnjg(&z__5, &wk);
  1394. z__3.r = z__4.r * z__5.r - z__4.i * z__5.i,
  1395. z__3.i = z__4.r * z__5.i + z__4.i *
  1396. z__5.r;
  1397. z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i -
  1398. z__3.i;
  1399. i__6 = i__ + (k + 1) * a_dim1;
  1400. z__7.r = a[i__6].r / d__, z__7.i = a[i__6].i /
  1401. d__;
  1402. d_cnjg(&z__8, &wkp1);
  1403. z__6.r = z__7.r * z__8.r - z__7.i * z__8.i,
  1404. z__6.i = z__7.r * z__8.i + z__7.i *
  1405. z__8.r;
  1406. z__1.r = z__2.r - z__6.r, z__1.i = z__2.i -
  1407. z__6.i;
  1408. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  1409. /* L50: */
  1410. }
  1411. /* Store L(k) and L(k+1) in cols k and k+1 for row J */
  1412. i__2 = j + k * a_dim1;
  1413. z__1.r = wk.r / d__, z__1.i = wk.i / d__;
  1414. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1415. i__2 = j + (k + 1) * a_dim1;
  1416. z__1.r = wkp1.r / d__, z__1.i = wkp1.i / d__;
  1417. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1418. /* (*) Make sure that diagonal element of pivot is real */
  1419. i__2 = j + j * a_dim1;
  1420. i__3 = j + j * a_dim1;
  1421. d__1 = a[i__3].r;
  1422. z__1.r = d__1, z__1.i = 0.;
  1423. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1424. /* L60: */
  1425. }
  1426. }
  1427. }
  1428. }
  1429. /* Store details of the interchanges in IPIV */
  1430. if (kstep == 1) {
  1431. ipiv[k] = kp;
  1432. } else {
  1433. ipiv[k] = -p;
  1434. ipiv[k + 1] = -kp;
  1435. }
  1436. /* Increase K and return to the start of the main loop */
  1437. k += kstep;
  1438. goto L40;
  1439. }
  1440. L70:
  1441. return 0;
  1442. /* End of ZHETF2_ROOK */
  1443. } /* zhetf2_rook__ */