You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slamswlq.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__0 = 0;
  487. /* > \brief \b SLAMSWLQ */
  488. /* Definition: */
  489. /* =========== */
  490. /* SUBROUTINE SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, */
  491. /* $ LDT, C, LDC, WORK, LWORK, INFO ) */
  492. /* CHARACTER SIDE, TRANS */
  493. /* INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC */
  494. /* DOUBLE A( LDA, * ), WORK( * ), C(LDC, * ), */
  495. /* $ T( LDT, * ) */
  496. /* > \par Purpose: */
  497. /* ============= */
  498. /* > */
  499. /* > \verbatim */
  500. /* > */
  501. /* > SLAMSWLQ overwrites the general real M-by-N matrix C with */
  502. /* > */
  503. /* > */
  504. /* > SIDE = 'L' SIDE = 'R' */
  505. /* > TRANS = 'N': Q * C C * Q */
  506. /* > TRANS = 'T': Q**T * C C * Q**T */
  507. /* > where Q is a real orthogonal matrix defined as the product of blocked */
  508. /* > elementary reflectors computed by short wide LQ */
  509. /* > factorization (SLASWLQ) */
  510. /* > \endverbatim */
  511. /* Arguments: */
  512. /* ========== */
  513. /* > \param[in] SIDE */
  514. /* > \verbatim */
  515. /* > SIDE is CHARACTER*1 */
  516. /* > = 'L': apply Q or Q**T from the Left; */
  517. /* > = 'R': apply Q or Q**T from the Right. */
  518. /* > \endverbatim */
  519. /* > */
  520. /* > \param[in] TRANS */
  521. /* > \verbatim */
  522. /* > TRANS is CHARACTER*1 */
  523. /* > = 'N': No transpose, apply Q; */
  524. /* > = 'T': Transpose, apply Q**T. */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > \param[in] M */
  528. /* > \verbatim */
  529. /* > M is INTEGER */
  530. /* > The number of rows of the matrix C. M >=0. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] N */
  534. /* > \verbatim */
  535. /* > N is INTEGER */
  536. /* > The number of columns of the matrix C. N >= M. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] K */
  540. /* > \verbatim */
  541. /* > K is INTEGER */
  542. /* > The number of elementary reflectors whose product defines */
  543. /* > the matrix Q. */
  544. /* > M >= K >= 0; */
  545. /* > */
  546. /* > \endverbatim */
  547. /* > \param[in] MB */
  548. /* > \verbatim */
  549. /* > MB is INTEGER */
  550. /* > The row block size to be used in the blocked QR. */
  551. /* > M >= MB >= 1 */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] NB */
  555. /* > \verbatim */
  556. /* > NB is INTEGER */
  557. /* > The column block size to be used in the blocked QR. */
  558. /* > NB > M. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] NB */
  562. /* > \verbatim */
  563. /* > NB is INTEGER */
  564. /* > The block size to be used in the blocked QR. */
  565. /* > MB > M. */
  566. /* > */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] A */
  570. /* > \verbatim */
  571. /* > A is REAL array, dimension */
  572. /* > (LDA,M) if SIDE = 'L', */
  573. /* > (LDA,N) if SIDE = 'R' */
  574. /* > The i-th row must contain the vector which defines the blocked */
  575. /* > elementary reflector H(i), for i = 1,2,...,k, as returned by */
  576. /* > SLASWLQ in the first k rows of its array argument A. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] LDA */
  580. /* > \verbatim */
  581. /* > LDA is INTEGER */
  582. /* > The leading dimension of the array A. */
  583. /* > If SIDE = 'L', LDA >= f2cmax(1,M); */
  584. /* > if SIDE = 'R', LDA >= f2cmax(1,N). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] T */
  588. /* > \verbatim */
  589. /* > T is REAL array, dimension */
  590. /* > ( M * Number of blocks(CEIL(N-K/NB-K)), */
  591. /* > The blocked upper triangular block reflectors stored in compact form */
  592. /* > as a sequence of upper triangular blocks. See below */
  593. /* > for further details. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDT */
  597. /* > \verbatim */
  598. /* > LDT is INTEGER */
  599. /* > The leading dimension of the array T. LDT >= MB. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] C */
  603. /* > \verbatim */
  604. /* > C is REAL array, dimension (LDC,N) */
  605. /* > On entry, the M-by-N matrix C. */
  606. /* > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDC */
  610. /* > \verbatim */
  611. /* > LDC is INTEGER */
  612. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] WORK */
  616. /* > \verbatim */
  617. /* > (workspace) REAL array, dimension (MAX(1,LWORK)) */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] LWORK */
  621. /* > \verbatim */
  622. /* > LWORK is INTEGER */
  623. /* > The dimension of the array WORK. */
  624. /* > If SIDE = 'L', LWORK >= f2cmax(1,NB) * MB; */
  625. /* > if SIDE = 'R', LWORK >= f2cmax(1,M) * MB. */
  626. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  627. /* > only calculates the optimal size of the WORK array, returns */
  628. /* > this value as the first entry of the WORK array, and no error */
  629. /* > message related to LWORK is issued by XERBLA. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] INFO */
  633. /* > \verbatim */
  634. /* > INFO is INTEGER */
  635. /* > = 0: successful exit */
  636. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  637. /* > \endverbatim */
  638. /* Authors: */
  639. /* ======== */
  640. /* > \author Univ. of Tennessee */
  641. /* > \author Univ. of California Berkeley */
  642. /* > \author Univ. of Colorado Denver */
  643. /* > \author NAG Ltd. */
  644. /* > \par Further Details: */
  645. /* ===================== */
  646. /* > */
  647. /* > \verbatim */
  648. /* > Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations, */
  649. /* > representing Q as a product of other orthogonal matrices */
  650. /* > Q = Q(1) * Q(2) * . . . * Q(k) */
  651. /* > where each Q(i) zeros out upper diagonal entries of a block of NB rows of A: */
  652. /* > Q(1) zeros out the upper diagonal entries of rows 1:NB of A */
  653. /* > Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A */
  654. /* > Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A */
  655. /* > . . . */
  656. /* > */
  657. /* > Q(1) is computed by GELQT, which represents Q(1) by Householder vectors */
  658. /* > stored under the diagonal of rows 1:MB of A, and by upper triangular */
  659. /* > block reflectors, stored in array T(1:LDT,1:N). */
  660. /* > For more information see Further Details in GELQT. */
  661. /* > */
  662. /* > Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors */
  663. /* > stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular */
  664. /* > block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M). */
  665. /* > The last Q(k) may use fewer rows. */
  666. /* > For more information see Further Details in TPQRT. */
  667. /* > */
  668. /* > For more details of the overall algorithm, see the description of */
  669. /* > Sequential TSQR in Section 2.2 of [1]. */
  670. /* > */
  671. /* > [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations, */
  672. /* > J. Demmel, L. Grigori, M. Hoemmen, J. Langou, */
  673. /* > SIAM J. Sci. Comput, vol. 34, no. 1, 2012 */
  674. /* > \endverbatim */
  675. /* > */
  676. /* ===================================================================== */
  677. /* Subroutine */ int slamswlq_(char *side, char *trans, integer *m, integer *
  678. n, integer *k, integer *mb, integer *nb, real *a, integer *lda, real *
  679. t, integer *ldt, real *c__, integer *ldc, real *work, integer *lwork,
  680. integer *info)
  681. {
  682. /* System generated locals */
  683. integer a_dim1, a_offset, c_dim1, c_offset, t_dim1, t_offset, i__1, i__2,
  684. i__3;
  685. /* Local variables */
  686. logical left, tran;
  687. integer i__;
  688. extern logical lsame_(char *, char *);
  689. logical right;
  690. integer ii, kk, lw;
  691. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  692. logical notran, lquery;
  693. integer ctr;
  694. extern /* Subroutine */ int sgemlqt_(char *, char *, integer *, integer *,
  695. integer *, integer *, real *, integer *, real *, integer *, real
  696. *, integer *, real *, integer *), stpmlqt_(char *,
  697. char *, integer *, integer *, integer *, integer *, integer *,
  698. real *, integer *, real *, integer *, real *, integer *, real *,
  699. integer *, real *, integer *);
  700. /* -- LAPACK computational routine (version 3.7.1) -- */
  701. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  702. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  703. /* June 2017 */
  704. /* ===================================================================== */
  705. /* Test the input arguments */
  706. /* Parameter adjustments */
  707. a_dim1 = *lda;
  708. a_offset = 1 + a_dim1 * 1;
  709. a -= a_offset;
  710. t_dim1 = *ldt;
  711. t_offset = 1 + t_dim1 * 1;
  712. t -= t_offset;
  713. c_dim1 = *ldc;
  714. c_offset = 1 + c_dim1 * 1;
  715. c__ -= c_offset;
  716. --work;
  717. /* Function Body */
  718. lquery = *lwork < 0;
  719. notran = lsame_(trans, "N");
  720. tran = lsame_(trans, "T");
  721. left = lsame_(side, "L");
  722. right = lsame_(side, "R");
  723. if (left) {
  724. lw = *n * *mb;
  725. } else {
  726. lw = *m * *mb;
  727. }
  728. *info = 0;
  729. if (! left && ! right) {
  730. *info = -1;
  731. } else if (! tran && ! notran) {
  732. *info = -2;
  733. } else if (*m < 0) {
  734. *info = -3;
  735. } else if (*n < 0) {
  736. *info = -4;
  737. } else if (*k < 0) {
  738. *info = -5;
  739. } else if (*lda < f2cmax(1,*k)) {
  740. *info = -9;
  741. } else if (*ldt < f2cmax(1,*mb)) {
  742. *info = -11;
  743. } else if (*ldc < f2cmax(1,*m)) {
  744. *info = -13;
  745. } else if (*lwork < f2cmax(1,lw) && ! lquery) {
  746. *info = -15;
  747. }
  748. if (*info != 0) {
  749. i__1 = -(*info);
  750. xerbla_("SLAMSWLQ", &i__1, (ftnlen)8);
  751. work[1] = (real) lw;
  752. return 0;
  753. } else if (lquery) {
  754. work[1] = (real) lw;
  755. return 0;
  756. }
  757. /* Quick return if possible */
  758. /* Computing MIN */
  759. i__1 = f2cmin(*m,*n);
  760. if (f2cmin(i__1,*k) == 0) {
  761. return 0;
  762. }
  763. /* Computing MAX */
  764. i__1 = f2cmax(*m,*n);
  765. if (*nb <= *k || *nb >= f2cmax(i__1,*k)) {
  766. sgemlqt_(side, trans, m, n, k, mb, &a[a_offset], lda, &t[t_offset],
  767. ldt, &c__[c_offset], ldc, &work[1], info);
  768. return 0;
  769. }
  770. if (left && tran) {
  771. /* Multiply Q to the last block of C */
  772. kk = (*m - *k) % (*nb - *k);
  773. ctr = (*m - *k) / (*nb - *k);
  774. if (kk > 0) {
  775. ii = *m - kk + 1;
  776. stpmlqt_("L", "T", &kk, n, k, &c__0, mb, &a[ii * a_dim1 + 1], lda,
  777. &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1],
  778. ldc, &c__[ii + c_dim1], ldc, &work[1], info);
  779. } else {
  780. ii = *m + 1;
  781. }
  782. i__1 = *nb + 1;
  783. i__2 = -(*nb - *k);
  784. for (i__ = ii - (*nb - *k); i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__
  785. += i__2) {
  786. /* Multiply Q to the current block of C (1:M,I:I+NB) */
  787. --ctr;
  788. i__3 = *nb - *k;
  789. stpmlqt_("L", "T", &i__3, n, k, &c__0, mb, &a[i__ * a_dim1 + 1],
  790. lda, &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 +
  791. 1], ldc, &c__[i__ + c_dim1], ldc, &work[1], info);
  792. }
  793. /* Multiply Q to the first block of C (1:M,1:NB) */
  794. sgemlqt_("L", "T", nb, n, k, mb, &a[a_dim1 + 1], lda, &t[t_offset],
  795. ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
  796. } else if (left && notran) {
  797. /* Multiply Q to the first block of C */
  798. kk = (*m - *k) % (*nb - *k);
  799. ii = *m - kk + 1;
  800. ctr = 1;
  801. sgemlqt_("L", "N", nb, n, k, mb, &a[a_dim1 + 1], lda, &t[t_offset],
  802. ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
  803. i__2 = ii - *nb + *k;
  804. i__1 = *nb - *k;
  805. for (i__ = *nb + 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1)
  806. {
  807. /* Multiply Q to the current block of C (I:I+NB,1:N) */
  808. i__3 = *nb - *k;
  809. stpmlqt_("L", "N", &i__3, n, k, &c__0, mb, &a[i__ * a_dim1 + 1],
  810. lda, &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 +
  811. 1], ldc, &c__[i__ + c_dim1], ldc, &work[1], info);
  812. ++ctr;
  813. }
  814. if (ii <= *m) {
  815. /* Multiply Q to the last block of C */
  816. stpmlqt_("L", "N", &kk, n, k, &c__0, mb, &a[ii * a_dim1 + 1], lda,
  817. &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1],
  818. ldc, &c__[ii + c_dim1], ldc, &work[1], info);
  819. }
  820. } else if (right && notran) {
  821. /* Multiply Q to the last block of C */
  822. kk = (*n - *k) % (*nb - *k);
  823. ctr = (*n - *k) / (*nb - *k);
  824. if (kk > 0) {
  825. ii = *n - kk + 1;
  826. stpmlqt_("R", "N", m, &kk, k, &c__0, mb, &a[ii * a_dim1 + 1], lda,
  827. &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1],
  828. ldc, &c__[ii * c_dim1 + 1], ldc, &work[1], info);
  829. } else {
  830. ii = *n + 1;
  831. }
  832. i__1 = *nb + 1;
  833. i__2 = -(*nb - *k);
  834. for (i__ = ii - (*nb - *k); i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__
  835. += i__2) {
  836. /* Multiply Q to the current block of C (1:M,I:I+MB) */
  837. --ctr;
  838. i__3 = *nb - *k;
  839. stpmlqt_("R", "N", m, &i__3, k, &c__0, mb, &a[i__ * a_dim1 + 1],
  840. lda, &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 +
  841. 1], ldc, &c__[i__ * c_dim1 + 1], ldc, &work[1], info);
  842. }
  843. /* Multiply Q to the first block of C (1:M,1:MB) */
  844. sgemlqt_("R", "N", m, nb, k, mb, &a[a_dim1 + 1], lda, &t[t_offset],
  845. ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
  846. } else if (right && tran) {
  847. /* Multiply Q to the first block of C */
  848. kk = (*n - *k) % (*nb - *k);
  849. ii = *n - kk + 1;
  850. ctr = 1;
  851. sgemlqt_("R", "T", m, nb, k, mb, &a[a_dim1 + 1], lda, &t[t_offset],
  852. ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
  853. i__2 = ii - *nb + *k;
  854. i__1 = *nb - *k;
  855. for (i__ = *nb + 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1)
  856. {
  857. /* Multiply Q to the current block of C (1:M,I:I+MB) */
  858. i__3 = *nb - *k;
  859. stpmlqt_("R", "T", m, &i__3, k, &c__0, mb, &a[i__ * a_dim1 + 1],
  860. lda, &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 +
  861. 1], ldc, &c__[i__ * c_dim1 + 1], ldc, &work[1], info);
  862. ++ctr;
  863. }
  864. if (ii <= *n) {
  865. /* Multiply Q to the last block of C */
  866. stpmlqt_("R", "T", m, &kk, k, &c__0, mb, &a[ii * a_dim1 + 1], lda,
  867. &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1],
  868. ldc, &c__[ii * c_dim1 + 1], ldc, &work[1], info);
  869. }
  870. }
  871. work[1] = (real) lw;
  872. return 0;
  873. /* End of SLAMSWLQ */
  874. } /* slamswlq_ */