You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasyf_aa.c 29 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublereal c_b6 = -1.;
  487. static integer c__1 = 1;
  488. static doublereal c_b8 = 1.;
  489. static doublereal c_b22 = 0.;
  490. /* > \brief \b DLASYF_AA */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DLASYF_AA + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasyf_
  497. aa.f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasyf_
  500. aa.f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasyf_
  503. aa.f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DLASYF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
  509. /* H, LDH, WORK ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER J1, M, NB, LDA, LDH */
  512. /* INTEGER IPIV( * ) */
  513. /* DOUBLE PRECISION A( LDA, * ), H( LDH, * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > DLATRF_AA factorizes a panel of a real symmetric matrix A using */
  520. /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
  521. /* > when UPLO is U, or a set of NB columns when UPLO is L. */
  522. /* > */
  523. /* > In order to factorize the panel, the Aasen's algorithm requires the */
  524. /* > last row, or column, of the previous panel. The first row, or column, */
  525. /* > of A is set to be the first row, or column, of an identity matrix, */
  526. /* > which is used to factorize the first panel. */
  527. /* > */
  528. /* > The resulting J-th row of U, or J-th column of L, is stored in the */
  529. /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
  530. /* > the diagonal and subdiagonal of A are overwritten by those of T. */
  531. /* > */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > = 'U': Upper triangle of A is stored; */
  539. /* > = 'L': Lower triangle of A is stored. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] J1 */
  543. /* > \verbatim */
  544. /* > J1 is INTEGER */
  545. /* > The location of the first row, or column, of the panel */
  546. /* > within the submatrix of A, passed to this routine, e.g., */
  547. /* > when called by DSYTRF_AA, for the first panel, J1 is 1, */
  548. /* > while for the remaining panels, J1 is 2. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] M */
  552. /* > \verbatim */
  553. /* > M is INTEGER */
  554. /* > The dimension of the submatrix. M >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] NB */
  558. /* > \verbatim */
  559. /* > NB is INTEGER */
  560. /* > The dimension of the panel to be facotorized. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] A */
  564. /* > \verbatim */
  565. /* > A is DOUBLE PRECISION array, dimension (LDA,M) for */
  566. /* > the first panel, while dimension (LDA,M+1) for the */
  567. /* > remaining panels. */
  568. /* > */
  569. /* > On entry, A contains the last row, or column, of */
  570. /* > the previous panel, and the trailing submatrix of A */
  571. /* > to be factorized, except for the first panel, only */
  572. /* > the panel is passed. */
  573. /* > */
  574. /* > On exit, the leading panel is factorized. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] LDA */
  578. /* > \verbatim */
  579. /* > LDA is INTEGER */
  580. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] IPIV */
  584. /* > \verbatim */
  585. /* > IPIV is INTEGER array, dimension (M) */
  586. /* > Details of the row and column interchanges, */
  587. /* > the row and column k were interchanged with the row and */
  588. /* > column IPIV(k). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in,out] H */
  592. /* > \verbatim */
  593. /* > H is DOUBLE PRECISION workspace, dimension (LDH,NB). */
  594. /* > */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDH */
  598. /* > \verbatim */
  599. /* > LDH is INTEGER */
  600. /* > The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] WORK */
  604. /* > \verbatim */
  605. /* > WORK is DOUBLE PRECISION workspace, dimension (M). */
  606. /* > \endverbatim */
  607. /* > */
  608. /* Authors: */
  609. /* ======== */
  610. /* > \author Univ. of Tennessee */
  611. /* > \author Univ. of California Berkeley */
  612. /* > \author Univ. of Colorado Denver */
  613. /* > \author NAG Ltd. */
  614. /* > \date November 2017 */
  615. /* > \ingroup doubleSYcomputational */
  616. /* ===================================================================== */
  617. /* Subroutine */ int dlasyf_aa_(char *uplo, integer *j1, integer *m, integer
  618. *nb, doublereal *a, integer *lda, integer *ipiv, doublereal *h__,
  619. integer *ldh, doublereal *work)
  620. {
  621. /* System generated locals */
  622. integer a_dim1, a_offset, h_dim1, h_offset, i__1;
  623. /* Local variables */
  624. integer j, k;
  625. doublereal alpha;
  626. extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
  627. integer *);
  628. extern logical lsame_(char *, char *);
  629. extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
  630. doublereal *, doublereal *, integer *, doublereal *, integer *,
  631. doublereal *, doublereal *, integer *), dcopy_(integer *,
  632. doublereal *, integer *, doublereal *, integer *), dswap_(integer
  633. *, doublereal *, integer *, doublereal *, integer *), daxpy_(
  634. integer *, doublereal *, doublereal *, integer *, doublereal *,
  635. integer *);
  636. integer i1, k1, i2, mj;
  637. extern integer idamax_(integer *, doublereal *, integer *);
  638. extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
  639. doublereal *, doublereal *, doublereal *, integer *);
  640. doublereal piv;
  641. /* -- LAPACK computational routine (version 3.8.0) -- */
  642. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  643. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  644. /* November 2017 */
  645. /* ===================================================================== */
  646. /* Parameter adjustments */
  647. a_dim1 = *lda;
  648. a_offset = 1 + a_dim1 * 1;
  649. a -= a_offset;
  650. --ipiv;
  651. h_dim1 = *ldh;
  652. h_offset = 1 + h_dim1 * 1;
  653. h__ -= h_offset;
  654. --work;
  655. /* Function Body */
  656. j = 1;
  657. /* K1 is the first column of the panel to be factorized */
  658. /* i.e., K1 is 2 for the first block column, and 1 for the rest of the blocks */
  659. k1 = 2 - *j1 + 1;
  660. if (lsame_(uplo, "U")) {
  661. /* ..................................................... */
  662. /* Factorize A as U**T*D*U using the upper triangle of A */
  663. /* ..................................................... */
  664. L10:
  665. if (j > f2cmin(*m,*nb)) {
  666. goto L20;
  667. }
  668. /* K is the column to be factorized */
  669. /* when being called from DSYTRF_AA, */
  670. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  671. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  672. k = *j1 + j - 1;
  673. if (j == *m) {
  674. /* Only need to compute T(J, J) */
  675. mj = 1;
  676. } else {
  677. mj = *m - j + 1;
  678. }
  679. /* H(J:M, J) := A(J, J:M) - H(J:M, 1:(J-1)) * L(J1:(J-1), J), */
  680. /* where H(J:M, J) has been initialized to be A(J, J:M) */
  681. if (k > 2) {
  682. /* K is the column to be factorized */
  683. /* > for the first block column, K is J, skipping the first two */
  684. /* columns */
  685. /* > for the rest of the columns, K is J+1, skipping only the */
  686. /* first column */
  687. i__1 = j - k1;
  688. dgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  689. ldh, &a[j * a_dim1 + 1], &c__1, &c_b8, &h__[j + j *
  690. h_dim1], &c__1);
  691. }
  692. /* Copy H(i:M, i) into WORK */
  693. dcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  694. if (j > k1) {
  695. /* Compute WORK := WORK - L(J-1, J:M) * T(J-1,J), */
  696. /* where A(J-1, J) stores T(J-1, J) and A(J-2, J:M) stores U(J-1, J:M) */
  697. alpha = -a[k - 1 + j * a_dim1];
  698. daxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
  699. }
  700. /* Set A(J, J) = T(J, J) */
  701. a[k + j * a_dim1] = work[1];
  702. if (j < *m) {
  703. /* Compute WORK(2:M) = T(J, J) L(J, (J+1):M) */
  704. /* where A(J, J) stores T(J, J) and A(J-1, (J+1):M) stores U(J, (J+1):M) */
  705. if (k > 1) {
  706. alpha = -a[k + j * a_dim1];
  707. i__1 = *m - j;
  708. daxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
  709. work[2], &c__1);
  710. }
  711. /* Find f2cmax(|WORK(2:M)|) */
  712. i__1 = *m - j;
  713. i2 = idamax_(&i__1, &work[2], &c__1) + 1;
  714. piv = work[i2];
  715. /* Apply symmetric pivot */
  716. if (i2 != 2 && piv != 0.) {
  717. /* Swap WORK(I1) and WORK(I2) */
  718. i1 = 2;
  719. work[i2] = work[i1];
  720. work[i1] = piv;
  721. /* Swap A(I1, I1+1:M) with A(I1+1:M, I2) */
  722. i1 = i1 + j - 1;
  723. i2 = i2 + j - 1;
  724. i__1 = i2 - i1 - 1;
  725. dswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
  726. j1 + i1 + i2 * a_dim1], &c__1);
  727. /* Swap A(I1, I2+1:M) with A(I2, I2+1:M) */
  728. if (i2 < *m) {
  729. i__1 = *m - i2;
  730. dswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
  731. a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
  732. }
  733. /* Swap A(I1, I1) with A(I2,I2) */
  734. piv = a[i1 + *j1 - 1 + i1 * a_dim1];
  735. a[*j1 + i1 - 1 + i1 * a_dim1] = a[*j1 + i2 - 1 + i2 * a_dim1];
  736. a[*j1 + i2 - 1 + i2 * a_dim1] = piv;
  737. /* Swap H(I1, 1:J1) with H(I2, 1:J1) */
  738. i__1 = i1 - 1;
  739. dswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  740. ipiv[i1] = i2;
  741. if (i1 > k1 - 1) {
  742. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  743. /* skipping the first column */
  744. i__1 = i1 - k1 + 1;
  745. dswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1
  746. + 1], &c__1);
  747. }
  748. } else {
  749. ipiv[j + 1] = j + 1;
  750. }
  751. /* Set A(J, J+1) = T(J, J+1) */
  752. a[k + (j + 1) * a_dim1] = work[2];
  753. if (j < *nb) {
  754. /* Copy A(J+1:M, J+1) into H(J:M, J), */
  755. i__1 = *m - j;
  756. dcopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 +
  757. (j + 1) * h_dim1], &c__1);
  758. }
  759. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  760. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  761. if (j < *m - 1) {
  762. if (a[k + (j + 1) * a_dim1] != 0.) {
  763. alpha = 1. / a[k + (j + 1) * a_dim1];
  764. i__1 = *m - j - 1;
  765. dcopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1],
  766. lda);
  767. i__1 = *m - j - 1;
  768. dscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
  769. } else {
  770. i__1 = *m - j - 1;
  771. dlaset_("Full", &c__1, &i__1, &c_b22, &c_b22, &a[k + (j +
  772. 2) * a_dim1], lda);
  773. }
  774. }
  775. }
  776. ++j;
  777. goto L10;
  778. L20:
  779. ;
  780. } else {
  781. /* ..................................................... */
  782. /* Factorize A as L*D*L**T using the lower triangle of A */
  783. /* ..................................................... */
  784. L30:
  785. if (j > f2cmin(*m,*nb)) {
  786. goto L40;
  787. }
  788. /* K is the column to be factorized */
  789. /* when being called from DSYTRF_AA, */
  790. /* > for the first block column, J1 is 1, hence J1+J-1 is J, */
  791. /* > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
  792. k = *j1 + j - 1;
  793. if (j == *m) {
  794. /* Only need to compute T(J, J) */
  795. mj = 1;
  796. } else {
  797. mj = *m - j + 1;
  798. }
  799. /* H(J:M, J) := A(J:M, J) - H(J:M, 1:(J-1)) * L(J, J1:(J-1))^T, */
  800. /* where H(J:M, J) has been initialized to be A(J:M, J) */
  801. if (k > 2) {
  802. /* K is the column to be factorized */
  803. /* > for the first block column, K is J, skipping the first two */
  804. /* columns */
  805. /* > for the rest of the columns, K is J+1, skipping only the */
  806. /* first column */
  807. i__1 = j - k1;
  808. dgemv_("No transpose", &mj, &i__1, &c_b6, &h__[j + k1 * h_dim1],
  809. ldh, &a[j + a_dim1], lda, &c_b8, &h__[j + j * h_dim1], &
  810. c__1);
  811. }
  812. /* Copy H(J:M, J) into WORK */
  813. dcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
  814. if (j > k1) {
  815. /* Compute WORK := WORK - L(J:M, J-1) * T(J-1,J), */
  816. /* where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
  817. alpha = -a[j + (k - 1) * a_dim1];
  818. daxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
  819. c__1);
  820. }
  821. /* Set A(J, J) = T(J, J) */
  822. a[j + k * a_dim1] = work[1];
  823. if (j < *m) {
  824. /* Compute WORK(2:M) = T(J, J) L((J+1):M, J) */
  825. /* where A(J, J) = T(J, J) and A((J+1):M, J-1) = L((J+1):M, J) */
  826. if (k > 1) {
  827. alpha = -a[j + k * a_dim1];
  828. i__1 = *m - j;
  829. daxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
  830. work[2], &c__1);
  831. }
  832. /* Find f2cmax(|WORK(2:M)|) */
  833. i__1 = *m - j;
  834. i2 = idamax_(&i__1, &work[2], &c__1) + 1;
  835. piv = work[i2];
  836. /* Apply symmetric pivot */
  837. if (i2 != 2 && piv != 0.) {
  838. /* Swap WORK(I1) and WORK(I2) */
  839. i1 = 2;
  840. work[i2] = work[i1];
  841. work[i1] = piv;
  842. /* Swap A(I1+1:M, I1) with A(I2, I1+1:M) */
  843. i1 = i1 + j - 1;
  844. i2 = i2 + j - 1;
  845. i__1 = i2 - i1 - 1;
  846. dswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
  847. i2 + (*j1 + i1) * a_dim1], lda);
  848. /* Swap A(I2+1:M, I1) with A(I2+1:M, I2) */
  849. if (i2 < *m) {
  850. i__1 = *m - i2;
  851. dswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
  852. &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
  853. }
  854. /* Swap A(I1, I1) with A(I2, I2) */
  855. piv = a[i1 + (*j1 + i1 - 1) * a_dim1];
  856. a[i1 + (*j1 + i1 - 1) * a_dim1] = a[i2 + (*j1 + i2 - 1) *
  857. a_dim1];
  858. a[i2 + (*j1 + i2 - 1) * a_dim1] = piv;
  859. /* Swap H(I1, I1:J1) with H(I2, I2:J1) */
  860. i__1 = i1 - 1;
  861. dswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
  862. ipiv[i1] = i2;
  863. if (i1 > k1 - 1) {
  864. /* Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
  865. /* skipping the first column */
  866. i__1 = i1 - k1 + 1;
  867. dswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
  868. }
  869. } else {
  870. ipiv[j + 1] = j + 1;
  871. }
  872. /* Set A(J+1, J) = T(J+1, J) */
  873. a[j + 1 + k * a_dim1] = work[2];
  874. if (j < *nb) {
  875. /* Copy A(J+1:M, J+1) into H(J+1:M, J), */
  876. i__1 = *m - j;
  877. dcopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1
  878. + (j + 1) * h_dim1], &c__1);
  879. }
  880. /* Compute L(J+2, J+1) = WORK( 3:M ) / T(J, J+1), */
  881. /* where A(J, J+1) = T(J, J+1) and A(J+2:M, J) = L(J+2:M, J+1) */
  882. if (j < *m - 1) {
  883. if (a[j + 1 + k * a_dim1] != 0.) {
  884. alpha = 1. / a[j + 1 + k * a_dim1];
  885. i__1 = *m - j - 1;
  886. dcopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
  887. c__1);
  888. i__1 = *m - j - 1;
  889. dscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
  890. } else {
  891. i__1 = *m - j - 1;
  892. dlaset_("Full", &i__1, &c__1, &c_b22, &c_b22, &a[j + 2 +
  893. k * a_dim1], lda);
  894. }
  895. }
  896. }
  897. ++j;
  898. goto L30;
  899. L40:
  900. ;
  901. }
  902. return 0;
  903. /* End of DLASYF_AA */
  904. } /* dlasyf_aa__ */