You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgesvd.c 144 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__6 = 6;
  487. static integer c__0 = 0;
  488. static integer c__2 = 2;
  489. static integer c_n1 = -1;
  490. static doublereal c_b57 = 0.;
  491. static integer c__1 = 1;
  492. static doublereal c_b79 = 1.;
  493. /* > \brief <b> DGESVD computes the singular value decomposition (SVD) for GE matrices</b> */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download DGESVD + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvd.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvd.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvd.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, */
  512. /* WORK, LWORK, INFO ) */
  513. /* CHARACTER JOBU, JOBVT */
  514. /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */
  515. /* DOUBLE PRECISION A( LDA, * ), S( * ), U( LDU, * ), */
  516. /* $ VT( LDVT, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > DGESVD computes the singular value decomposition (SVD) of a real */
  523. /* > M-by-N matrix A, optionally computing the left and/or right singular */
  524. /* > vectors. The SVD is written */
  525. /* > */
  526. /* > A = U * SIGMA * transpose(V) */
  527. /* > */
  528. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  529. /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
  530. /* > V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
  531. /* > are the singular values of A; they are real and non-negative, and */
  532. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  533. /* > U and V are the left and right singular vectors of A. */
  534. /* > */
  535. /* > Note that the routine returns V**T, not V. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] JOBU */
  540. /* > \verbatim */
  541. /* > JOBU is CHARACTER*1 */
  542. /* > Specifies options for computing all or part of the matrix U: */
  543. /* > = 'A': all M columns of U are returned in array U: */
  544. /* > = 'S': the first f2cmin(m,n) columns of U (the left singular */
  545. /* > vectors) are returned in the array U; */
  546. /* > = 'O': the first f2cmin(m,n) columns of U (the left singular */
  547. /* > vectors) are overwritten on the array A; */
  548. /* > = 'N': no columns of U (no left singular vectors) are */
  549. /* > computed. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] JOBVT */
  553. /* > \verbatim */
  554. /* > JOBVT is CHARACTER*1 */
  555. /* > Specifies options for computing all or part of the matrix */
  556. /* > V**T: */
  557. /* > = 'A': all N rows of V**T are returned in the array VT; */
  558. /* > = 'S': the first f2cmin(m,n) rows of V**T (the right singular */
  559. /* > vectors) are returned in the array VT; */
  560. /* > = 'O': the first f2cmin(m,n) rows of V**T (the right singular */
  561. /* > vectors) are overwritten on the array A; */
  562. /* > = 'N': no rows of V**T (no right singular vectors) are */
  563. /* > computed. */
  564. /* > */
  565. /* > JOBVT and JOBU cannot both be 'O'. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] M */
  569. /* > \verbatim */
  570. /* > M is INTEGER */
  571. /* > The number of rows of the input matrix A. M >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] N */
  575. /* > \verbatim */
  576. /* > N is INTEGER */
  577. /* > The number of columns of the input matrix A. N >= 0. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in,out] A */
  581. /* > \verbatim */
  582. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  583. /* > On entry, the M-by-N matrix A. */
  584. /* > On exit, */
  585. /* > if JOBU = 'O', A is overwritten with the first f2cmin(m,n) */
  586. /* > columns of U (the left singular vectors, */
  587. /* > stored columnwise); */
  588. /* > if JOBVT = 'O', A is overwritten with the first f2cmin(m,n) */
  589. /* > rows of V**T (the right singular vectors, */
  590. /* > stored rowwise); */
  591. /* > if JOBU .ne. 'O' and JOBVT .ne. 'O', the contents of A */
  592. /* > are destroyed. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDA */
  596. /* > \verbatim */
  597. /* > LDA is INTEGER */
  598. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] S */
  602. /* > \verbatim */
  603. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  604. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] U */
  608. /* > \verbatim */
  609. /* > U is DOUBLE PRECISION array, dimension (LDU,UCOL) */
  610. /* > (LDU,M) if JOBU = 'A' or (LDU,f2cmin(M,N)) if JOBU = 'S'. */
  611. /* > If JOBU = 'A', U contains the M-by-M orthogonal matrix U; */
  612. /* > if JOBU = 'S', U contains the first f2cmin(m,n) columns of U */
  613. /* > (the left singular vectors, stored columnwise); */
  614. /* > if JOBU = 'N' or 'O', U is not referenced. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[in] LDU */
  618. /* > \verbatim */
  619. /* > LDU is INTEGER */
  620. /* > The leading dimension of the array U. LDU >= 1; if */
  621. /* > JOBU = 'S' or 'A', LDU >= M. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] VT */
  625. /* > \verbatim */
  626. /* > VT is DOUBLE PRECISION array, dimension (LDVT,N) */
  627. /* > If JOBVT = 'A', VT contains the N-by-N orthogonal matrix */
  628. /* > V**T; */
  629. /* > if JOBVT = 'S', VT contains the first f2cmin(m,n) rows of */
  630. /* > V**T (the right singular vectors, stored rowwise); */
  631. /* > if JOBVT = 'N' or 'O', VT is not referenced. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] LDVT */
  635. /* > \verbatim */
  636. /* > LDVT is INTEGER */
  637. /* > The leading dimension of the array VT. LDVT >= 1; if */
  638. /* > JOBVT = 'A', LDVT >= N; if JOBVT = 'S', LDVT >= f2cmin(M,N). */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] WORK */
  642. /* > \verbatim */
  643. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  644. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  645. /* > if INFO > 0, WORK(2:MIN(M,N)) contains the unconverged */
  646. /* > superdiagonal elements of an upper bidiagonal matrix B */
  647. /* > whose diagonal is in S (not necessarily sorted). B */
  648. /* > satisfies A = U * B * VT, so it has the same singular values */
  649. /* > as A, and singular vectors related by U and VT. */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LWORK */
  653. /* > \verbatim */
  654. /* > LWORK is INTEGER */
  655. /* > The dimension of the array WORK. */
  656. /* > LWORK >= MAX(1,5*MIN(M,N)) for the paths (see comments inside code): */
  657. /* > - PATH 1 (M much larger than N, JOBU='N') */
  658. /* > - PATH 1t (N much larger than M, JOBVT='N') */
  659. /* > LWORK >= MAX(1,3*MIN(M,N) + MAX(M,N),5*MIN(M,N)) for the other paths */
  660. /* > For good performance, LWORK should generally be larger. */
  661. /* > */
  662. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  663. /* > only calculates the optimal size of the WORK array, returns */
  664. /* > this value as the first entry of the WORK array, and no error */
  665. /* > message related to LWORK is issued by XERBLA. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] INFO */
  669. /* > \verbatim */
  670. /* > INFO is INTEGER */
  671. /* > = 0: successful exit. */
  672. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  673. /* > > 0: if DBDSQR did not converge, INFO specifies how many */
  674. /* > superdiagonals of an intermediate bidiagonal form B */
  675. /* > did not converge to zero. See the description of WORK */
  676. /* > above for details. */
  677. /* > \endverbatim */
  678. /* Authors: */
  679. /* ======== */
  680. /* > \author Univ. of Tennessee */
  681. /* > \author Univ. of California Berkeley */
  682. /* > \author Univ. of Colorado Denver */
  683. /* > \author NAG Ltd. */
  684. /* > \date April 2012 */
  685. /* > \ingroup doubleGEsing */
  686. /* ===================================================================== */
  687. /* Subroutine */ int dgesvd_(char *jobu, char *jobvt, integer *m, integer *n,
  688. doublereal *a, integer *lda, doublereal *s, doublereal *u, integer *
  689. ldu, doublereal *vt, integer *ldvt, doublereal *work, integer *lwork,
  690. integer *info)
  691. {
  692. /* System generated locals */
  693. address a__1[2];
  694. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1[2],
  695. i__2, i__3, i__4;
  696. char ch__1[2];
  697. /* Local variables */
  698. integer iscl;
  699. doublereal anrm;
  700. integer ierr, itau, ncvt, nrvt, lwork_dgebrd__, lwork_dgelqf__,
  701. lwork_dgeqrf__, i__;
  702. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  703. integer *, doublereal *, doublereal *, integer *, doublereal *,
  704. integer *, doublereal *, doublereal *, integer *);
  705. extern logical lsame_(char *, char *);
  706. integer chunk, minmn, wrkbl, itaup, itauq, mnthr, iwork;
  707. logical wntua, wntva, wntun, wntuo, wntvn, wntvo, wntus, wntvs;
  708. integer ie;
  709. extern /* Subroutine */ int dgebrd_(integer *, integer *, doublereal *,
  710. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  711. doublereal *, integer *, integer *);
  712. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  713. integer *, doublereal *, integer *, doublereal *);
  714. integer ir, bdspac, iu;
  715. extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
  716. integer *, doublereal *, doublereal *, integer *, integer *),
  717. dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  718. integer *, integer *, doublereal *, integer *, integer *),
  719. dgeqrf_(integer *, integer *, doublereal *, integer *,
  720. doublereal *, doublereal *, integer *, integer *), dlacpy_(char *,
  721. integer *, integer *, doublereal *, integer *, doublereal *,
  722. integer *), dlaset_(char *, integer *, integer *,
  723. doublereal *, doublereal *, doublereal *, integer *),
  724. dbdsqr_(char *, integer *, integer *, integer *, integer *,
  725. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  726. integer *, doublereal *, integer *, doublereal *, integer *), dorgbr_(char *, integer *, integer *, integer *,
  727. doublereal *, integer *, doublereal *, doublereal *, integer *,
  728. integer *);
  729. doublereal bignum;
  730. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  731. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  732. integer *, integer *, ftnlen, ftnlen);
  733. extern /* Subroutine */ int dormbr_(char *, char *, char *, integer *,
  734. integer *, integer *, doublereal *, integer *, doublereal *,
  735. doublereal *, integer *, doublereal *, integer *, integer *), dorglq_(integer *, integer *, integer *,
  736. doublereal *, integer *, doublereal *, doublereal *, integer *,
  737. integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
  738. integer *, doublereal *, doublereal *, integer *, integer *);
  739. integer ldwrkr, minwrk, ldwrku, maxwrk;
  740. doublereal smlnum;
  741. logical lquery, wntuas, wntvas;
  742. integer lwork_dorgbr_p__, lwork_dorgbr_q__, lwork_dorglq_m__,
  743. lwork_dorglq_n__, lwork_dorgqr_m__, lwork_dorgqr_n__, blk, ncu;
  744. doublereal dum[1], eps;
  745. integer nru;
  746. /* -- LAPACK driver routine (version 3.7.0) -- */
  747. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  748. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  749. /* April 2012 */
  750. /* ===================================================================== */
  751. /* Test the input arguments */
  752. /* Parameter adjustments */
  753. a_dim1 = *lda;
  754. a_offset = 1 + a_dim1 * 1;
  755. a -= a_offset;
  756. --s;
  757. u_dim1 = *ldu;
  758. u_offset = 1 + u_dim1 * 1;
  759. u -= u_offset;
  760. vt_dim1 = *ldvt;
  761. vt_offset = 1 + vt_dim1 * 1;
  762. vt -= vt_offset;
  763. --work;
  764. /* Function Body */
  765. *info = 0;
  766. minmn = f2cmin(*m,*n);
  767. wntua = lsame_(jobu, "A");
  768. wntus = lsame_(jobu, "S");
  769. wntuas = wntua || wntus;
  770. wntuo = lsame_(jobu, "O");
  771. wntun = lsame_(jobu, "N");
  772. wntva = lsame_(jobvt, "A");
  773. wntvs = lsame_(jobvt, "S");
  774. wntvas = wntva || wntvs;
  775. wntvo = lsame_(jobvt, "O");
  776. wntvn = lsame_(jobvt, "N");
  777. lquery = *lwork == -1;
  778. if (! (wntua || wntus || wntuo || wntun)) {
  779. *info = -1;
  780. } else if (! (wntva || wntvs || wntvo || wntvn) || wntvo && wntuo) {
  781. *info = -2;
  782. } else if (*m < 0) {
  783. *info = -3;
  784. } else if (*n < 0) {
  785. *info = -4;
  786. } else if (*lda < f2cmax(1,*m)) {
  787. *info = -6;
  788. } else if (*ldu < 1 || wntuas && *ldu < *m) {
  789. *info = -9;
  790. } else if (*ldvt < 1 || wntva && *ldvt < *n || wntvs && *ldvt < minmn) {
  791. *info = -11;
  792. }
  793. /* Compute workspace */
  794. /* (Note: Comments in the code beginning "Workspace:" describe the */
  795. /* minimal amount of workspace needed at that point in the code, */
  796. /* as well as the preferred amount for good performance. */
  797. /* NB refers to the optimal block size for the immediately */
  798. /* following subroutine, as returned by ILAENV.) */
  799. if (*info == 0) {
  800. minwrk = 1;
  801. maxwrk = 1;
  802. if (*m >= *n && minmn > 0) {
  803. /* Compute space needed for DBDSQR */
  804. /* Writing concatenation */
  805. i__1[0] = 1, a__1[0] = jobu;
  806. i__1[1] = 1, a__1[1] = jobvt;
  807. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  808. mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
  809. ftnlen)6, (ftnlen)2);
  810. bdspac = *n * 5;
  811. /* Compute space needed for DGEQRF */
  812. dgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr);
  813. lwork_dgeqrf__ = (integer) dum[0];
  814. /* Compute space needed for DORGQR */
  815. dorgqr_(m, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr);
  816. lwork_dorgqr_n__ = (integer) dum[0];
  817. dorgqr_(m, m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr);
  818. lwork_dorgqr_m__ = (integer) dum[0];
  819. /* Compute space needed for DGEBRD */
  820. dgebrd_(n, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1,
  821. &ierr);
  822. lwork_dgebrd__ = (integer) dum[0];
  823. /* Compute space needed for DORGBR P */
  824. dorgbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr);
  825. lwork_dorgbr_p__ = (integer) dum[0];
  826. /* Compute space needed for DORGBR Q */
  827. dorgbr_("Q", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr);
  828. lwork_dorgbr_q__ = (integer) dum[0];
  829. if (*m >= mnthr) {
  830. if (wntun) {
  831. /* Path 1 (M much larger than N, JOBU='N') */
  832. maxwrk = *n + lwork_dgeqrf__;
  833. /* Computing MAX */
  834. i__2 = maxwrk, i__3 = *n * 3 + lwork_dgebrd__;
  835. maxwrk = f2cmax(i__2,i__3);
  836. if (wntvo || wntvas) {
  837. /* Computing MAX */
  838. i__2 = maxwrk, i__3 = *n * 3 + lwork_dorgbr_p__;
  839. maxwrk = f2cmax(i__2,i__3);
  840. }
  841. maxwrk = f2cmax(maxwrk,bdspac);
  842. /* Computing MAX */
  843. i__2 = *n << 2;
  844. minwrk = f2cmax(i__2,bdspac);
  845. } else if (wntuo && wntvn) {
  846. /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */
  847. wrkbl = *n + lwork_dgeqrf__;
  848. /* Computing MAX */
  849. i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__;
  850. wrkbl = f2cmax(i__2,i__3);
  851. /* Computing MAX */
  852. i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__;
  853. wrkbl = f2cmax(i__2,i__3);
  854. /* Computing MAX */
  855. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__;
  856. wrkbl = f2cmax(i__2,i__3);
  857. wrkbl = f2cmax(wrkbl,bdspac);
  858. /* Computing MAX */
  859. i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n + *n;
  860. maxwrk = f2cmax(i__2,i__3);
  861. /* Computing MAX */
  862. i__2 = *n * 3 + *m;
  863. minwrk = f2cmax(i__2,bdspac);
  864. } else if (wntuo && wntvas) {
  865. /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or */
  866. /* 'A') */
  867. wrkbl = *n + lwork_dgeqrf__;
  868. /* Computing MAX */
  869. i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__;
  870. wrkbl = f2cmax(i__2,i__3);
  871. /* Computing MAX */
  872. i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__;
  873. wrkbl = f2cmax(i__2,i__3);
  874. /* Computing MAX */
  875. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__;
  876. wrkbl = f2cmax(i__2,i__3);
  877. /* Computing MAX */
  878. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__;
  879. wrkbl = f2cmax(i__2,i__3);
  880. wrkbl = f2cmax(wrkbl,bdspac);
  881. /* Computing MAX */
  882. i__2 = *n * *n + wrkbl, i__3 = *n * *n + *m * *n + *n;
  883. maxwrk = f2cmax(i__2,i__3);
  884. /* Computing MAX */
  885. i__2 = *n * 3 + *m;
  886. minwrk = f2cmax(i__2,bdspac);
  887. } else if (wntus && wntvn) {
  888. /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */
  889. wrkbl = *n + lwork_dgeqrf__;
  890. /* Computing MAX */
  891. i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__;
  892. wrkbl = f2cmax(i__2,i__3);
  893. /* Computing MAX */
  894. i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__;
  895. wrkbl = f2cmax(i__2,i__3);
  896. /* Computing MAX */
  897. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__;
  898. wrkbl = f2cmax(i__2,i__3);
  899. wrkbl = f2cmax(wrkbl,bdspac);
  900. maxwrk = *n * *n + wrkbl;
  901. /* Computing MAX */
  902. i__2 = *n * 3 + *m;
  903. minwrk = f2cmax(i__2,bdspac);
  904. } else if (wntus && wntvo) {
  905. /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */
  906. wrkbl = *n + lwork_dgeqrf__;
  907. /* Computing MAX */
  908. i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__;
  909. wrkbl = f2cmax(i__2,i__3);
  910. /* Computing MAX */
  911. i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__;
  912. wrkbl = f2cmax(i__2,i__3);
  913. /* Computing MAX */
  914. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__;
  915. wrkbl = f2cmax(i__2,i__3);
  916. /* Computing MAX */
  917. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__;
  918. wrkbl = f2cmax(i__2,i__3);
  919. wrkbl = f2cmax(wrkbl,bdspac);
  920. maxwrk = (*n << 1) * *n + wrkbl;
  921. /* Computing MAX */
  922. i__2 = *n * 3 + *m;
  923. minwrk = f2cmax(i__2,bdspac);
  924. } else if (wntus && wntvas) {
  925. /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' or */
  926. /* 'A') */
  927. wrkbl = *n + lwork_dgeqrf__;
  928. /* Computing MAX */
  929. i__2 = wrkbl, i__3 = *n + lwork_dorgqr_n__;
  930. wrkbl = f2cmax(i__2,i__3);
  931. /* Computing MAX */
  932. i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__;
  933. wrkbl = f2cmax(i__2,i__3);
  934. /* Computing MAX */
  935. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__;
  936. wrkbl = f2cmax(i__2,i__3);
  937. /* Computing MAX */
  938. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__;
  939. wrkbl = f2cmax(i__2,i__3);
  940. wrkbl = f2cmax(wrkbl,bdspac);
  941. maxwrk = *n * *n + wrkbl;
  942. /* Computing MAX */
  943. i__2 = *n * 3 + *m;
  944. minwrk = f2cmax(i__2,bdspac);
  945. } else if (wntua && wntvn) {
  946. /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */
  947. wrkbl = *n + lwork_dgeqrf__;
  948. /* Computing MAX */
  949. i__2 = wrkbl, i__3 = *n + lwork_dorgqr_m__;
  950. wrkbl = f2cmax(i__2,i__3);
  951. /* Computing MAX */
  952. i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__;
  953. wrkbl = f2cmax(i__2,i__3);
  954. /* Computing MAX */
  955. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__;
  956. wrkbl = f2cmax(i__2,i__3);
  957. wrkbl = f2cmax(wrkbl,bdspac);
  958. maxwrk = *n * *n + wrkbl;
  959. /* Computing MAX */
  960. i__2 = *n * 3 + *m;
  961. minwrk = f2cmax(i__2,bdspac);
  962. } else if (wntua && wntvo) {
  963. /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */
  964. wrkbl = *n + lwork_dgeqrf__;
  965. /* Computing MAX */
  966. i__2 = wrkbl, i__3 = *n + lwork_dorgqr_m__;
  967. wrkbl = f2cmax(i__2,i__3);
  968. /* Computing MAX */
  969. i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__;
  970. wrkbl = f2cmax(i__2,i__3);
  971. /* Computing MAX */
  972. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__;
  973. wrkbl = f2cmax(i__2,i__3);
  974. /* Computing MAX */
  975. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__;
  976. wrkbl = f2cmax(i__2,i__3);
  977. wrkbl = f2cmax(wrkbl,bdspac);
  978. maxwrk = (*n << 1) * *n + wrkbl;
  979. /* Computing MAX */
  980. i__2 = *n * 3 + *m;
  981. minwrk = f2cmax(i__2,bdspac);
  982. } else if (wntua && wntvas) {
  983. /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' or */
  984. /* 'A') */
  985. wrkbl = *n + lwork_dgeqrf__;
  986. /* Computing MAX */
  987. i__2 = wrkbl, i__3 = *n + lwork_dorgqr_m__;
  988. wrkbl = f2cmax(i__2,i__3);
  989. /* Computing MAX */
  990. i__2 = wrkbl, i__3 = *n * 3 + lwork_dgebrd__;
  991. wrkbl = f2cmax(i__2,i__3);
  992. /* Computing MAX */
  993. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_q__;
  994. wrkbl = f2cmax(i__2,i__3);
  995. /* Computing MAX */
  996. i__2 = wrkbl, i__3 = *n * 3 + lwork_dorgbr_p__;
  997. wrkbl = f2cmax(i__2,i__3);
  998. wrkbl = f2cmax(wrkbl,bdspac);
  999. maxwrk = *n * *n + wrkbl;
  1000. /* Computing MAX */
  1001. i__2 = *n * 3 + *m;
  1002. minwrk = f2cmax(i__2,bdspac);
  1003. }
  1004. } else {
  1005. /* Path 10 (M at least N, but not much larger) */
  1006. dgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &
  1007. c_n1, &ierr);
  1008. lwork_dgebrd__ = (integer) dum[0];
  1009. maxwrk = *n * 3 + lwork_dgebrd__;
  1010. if (wntus || wntuo) {
  1011. dorgbr_("Q", m, n, n, &a[a_offset], lda, dum, dum, &c_n1,
  1012. &ierr);
  1013. lwork_dorgbr_q__ = (integer) dum[0];
  1014. /* Computing MAX */
  1015. i__2 = maxwrk, i__3 = *n * 3 + lwork_dorgbr_q__;
  1016. maxwrk = f2cmax(i__2,i__3);
  1017. }
  1018. if (wntua) {
  1019. dorgbr_("Q", m, m, n, &a[a_offset], lda, dum, dum, &c_n1,
  1020. &ierr);
  1021. lwork_dorgbr_q__ = (integer) dum[0];
  1022. /* Computing MAX */
  1023. i__2 = maxwrk, i__3 = *n * 3 + lwork_dorgbr_q__;
  1024. maxwrk = f2cmax(i__2,i__3);
  1025. }
  1026. if (! wntvn) {
  1027. /* Computing MAX */
  1028. i__2 = maxwrk, i__3 = *n * 3 + lwork_dorgbr_p__;
  1029. maxwrk = f2cmax(i__2,i__3);
  1030. }
  1031. maxwrk = f2cmax(maxwrk,bdspac);
  1032. /* Computing MAX */
  1033. i__2 = *n * 3 + *m;
  1034. minwrk = f2cmax(i__2,bdspac);
  1035. }
  1036. } else if (minmn > 0) {
  1037. /* Compute space needed for DBDSQR */
  1038. /* Writing concatenation */
  1039. i__1[0] = 1, a__1[0] = jobu;
  1040. i__1[1] = 1, a__1[1] = jobvt;
  1041. s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
  1042. mnthr = ilaenv_(&c__6, "DGESVD", ch__1, m, n, &c__0, &c__0, (
  1043. ftnlen)6, (ftnlen)2);
  1044. bdspac = *m * 5;
  1045. /* Compute space needed for DGELQF */
  1046. dgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, &ierr);
  1047. lwork_dgelqf__ = (integer) dum[0];
  1048. /* Compute space needed for DORGLQ */
  1049. dorglq_(n, n, m, dum, n, dum, dum, &c_n1, &ierr);
  1050. lwork_dorglq_n__ = (integer) dum[0];
  1051. dorglq_(m, n, m, &a[a_offset], lda, dum, dum, &c_n1, &ierr);
  1052. lwork_dorglq_m__ = (integer) dum[0];
  1053. /* Compute space needed for DGEBRD */
  1054. dgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1,
  1055. &ierr);
  1056. lwork_dgebrd__ = (integer) dum[0];
  1057. /* Compute space needed for DORGBR P */
  1058. dorgbr_("P", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr);
  1059. lwork_dorgbr_p__ = (integer) dum[0];
  1060. /* Compute space needed for DORGBR Q */
  1061. dorgbr_("Q", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr);
  1062. lwork_dorgbr_q__ = (integer) dum[0];
  1063. if (*n >= mnthr) {
  1064. if (wntvn) {
  1065. /* Path 1t(N much larger than M, JOBVT='N') */
  1066. maxwrk = *m + lwork_dgelqf__;
  1067. /* Computing MAX */
  1068. i__2 = maxwrk, i__3 = *m * 3 + lwork_dgebrd__;
  1069. maxwrk = f2cmax(i__2,i__3);
  1070. if (wntuo || wntuas) {
  1071. /* Computing MAX */
  1072. i__2 = maxwrk, i__3 = *m * 3 + lwork_dorgbr_q__;
  1073. maxwrk = f2cmax(i__2,i__3);
  1074. }
  1075. maxwrk = f2cmax(maxwrk,bdspac);
  1076. /* Computing MAX */
  1077. i__2 = *m << 2;
  1078. minwrk = f2cmax(i__2,bdspac);
  1079. } else if (wntvo && wntun) {
  1080. /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */
  1081. wrkbl = *m + lwork_dgelqf__;
  1082. /* Computing MAX */
  1083. i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__;
  1084. wrkbl = f2cmax(i__2,i__3);
  1085. /* Computing MAX */
  1086. i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__;
  1087. wrkbl = f2cmax(i__2,i__3);
  1088. /* Computing MAX */
  1089. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__;
  1090. wrkbl = f2cmax(i__2,i__3);
  1091. wrkbl = f2cmax(wrkbl,bdspac);
  1092. /* Computing MAX */
  1093. i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n + *m;
  1094. maxwrk = f2cmax(i__2,i__3);
  1095. /* Computing MAX */
  1096. i__2 = *m * 3 + *n;
  1097. minwrk = f2cmax(i__2,bdspac);
  1098. } else if (wntvo && wntuas) {
  1099. /* Path 3t(N much larger than M, JOBU='S' or 'A', */
  1100. /* JOBVT='O') */
  1101. wrkbl = *m + lwork_dgelqf__;
  1102. /* Computing MAX */
  1103. i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__;
  1104. wrkbl = f2cmax(i__2,i__3);
  1105. /* Computing MAX */
  1106. i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__;
  1107. wrkbl = f2cmax(i__2,i__3);
  1108. /* Computing MAX */
  1109. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__;
  1110. wrkbl = f2cmax(i__2,i__3);
  1111. /* Computing MAX */
  1112. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__;
  1113. wrkbl = f2cmax(i__2,i__3);
  1114. wrkbl = f2cmax(wrkbl,bdspac);
  1115. /* Computing MAX */
  1116. i__2 = *m * *m + wrkbl, i__3 = *m * *m + *m * *n + *m;
  1117. maxwrk = f2cmax(i__2,i__3);
  1118. /* Computing MAX */
  1119. i__2 = *m * 3 + *n;
  1120. minwrk = f2cmax(i__2,bdspac);
  1121. } else if (wntvs && wntun) {
  1122. /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */
  1123. wrkbl = *m + lwork_dgelqf__;
  1124. /* Computing MAX */
  1125. i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__;
  1126. wrkbl = f2cmax(i__2,i__3);
  1127. /* Computing MAX */
  1128. i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__;
  1129. wrkbl = f2cmax(i__2,i__3);
  1130. /* Computing MAX */
  1131. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__;
  1132. wrkbl = f2cmax(i__2,i__3);
  1133. wrkbl = f2cmax(wrkbl,bdspac);
  1134. maxwrk = *m * *m + wrkbl;
  1135. /* Computing MAX */
  1136. i__2 = *m * 3 + *n;
  1137. minwrk = f2cmax(i__2,bdspac);
  1138. } else if (wntvs && wntuo) {
  1139. /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */
  1140. wrkbl = *m + lwork_dgelqf__;
  1141. /* Computing MAX */
  1142. i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__;
  1143. wrkbl = f2cmax(i__2,i__3);
  1144. /* Computing MAX */
  1145. i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__;
  1146. wrkbl = f2cmax(i__2,i__3);
  1147. /* Computing MAX */
  1148. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__;
  1149. wrkbl = f2cmax(i__2,i__3);
  1150. /* Computing MAX */
  1151. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__;
  1152. wrkbl = f2cmax(i__2,i__3);
  1153. wrkbl = f2cmax(wrkbl,bdspac);
  1154. maxwrk = (*m << 1) * *m + wrkbl;
  1155. /* Computing MAX */
  1156. i__2 = *m * 3 + *n;
  1157. minwrk = f2cmax(i__2,bdspac);
  1158. } else if (wntvs && wntuas) {
  1159. /* Path 6t(N much larger than M, JOBU='S' or 'A', */
  1160. /* JOBVT='S') */
  1161. wrkbl = *m + lwork_dgelqf__;
  1162. /* Computing MAX */
  1163. i__2 = wrkbl, i__3 = *m + lwork_dorglq_m__;
  1164. wrkbl = f2cmax(i__2,i__3);
  1165. /* Computing MAX */
  1166. i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__;
  1167. wrkbl = f2cmax(i__2,i__3);
  1168. /* Computing MAX */
  1169. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__;
  1170. wrkbl = f2cmax(i__2,i__3);
  1171. /* Computing MAX */
  1172. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__;
  1173. wrkbl = f2cmax(i__2,i__3);
  1174. wrkbl = f2cmax(wrkbl,bdspac);
  1175. maxwrk = *m * *m + wrkbl;
  1176. /* Computing MAX */
  1177. i__2 = *m * 3 + *n;
  1178. minwrk = f2cmax(i__2,bdspac);
  1179. } else if (wntva && wntun) {
  1180. /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */
  1181. wrkbl = *m + lwork_dgelqf__;
  1182. /* Computing MAX */
  1183. i__2 = wrkbl, i__3 = *m + lwork_dorglq_n__;
  1184. wrkbl = f2cmax(i__2,i__3);
  1185. /* Computing MAX */
  1186. i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__;
  1187. wrkbl = f2cmax(i__2,i__3);
  1188. /* Computing MAX */
  1189. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__;
  1190. wrkbl = f2cmax(i__2,i__3);
  1191. wrkbl = f2cmax(wrkbl,bdspac);
  1192. maxwrk = *m * *m + wrkbl;
  1193. /* Computing MAX */
  1194. i__2 = *m * 3 + *n;
  1195. minwrk = f2cmax(i__2,bdspac);
  1196. } else if (wntva && wntuo) {
  1197. /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */
  1198. wrkbl = *m + lwork_dgelqf__;
  1199. /* Computing MAX */
  1200. i__2 = wrkbl, i__3 = *m + lwork_dorglq_n__;
  1201. wrkbl = f2cmax(i__2,i__3);
  1202. /* Computing MAX */
  1203. i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__;
  1204. wrkbl = f2cmax(i__2,i__3);
  1205. /* Computing MAX */
  1206. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__;
  1207. wrkbl = f2cmax(i__2,i__3);
  1208. /* Computing MAX */
  1209. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__;
  1210. wrkbl = f2cmax(i__2,i__3);
  1211. wrkbl = f2cmax(wrkbl,bdspac);
  1212. maxwrk = (*m << 1) * *m + wrkbl;
  1213. /* Computing MAX */
  1214. i__2 = *m * 3 + *n;
  1215. minwrk = f2cmax(i__2,bdspac);
  1216. } else if (wntva && wntuas) {
  1217. /* Path 9t(N much larger than M, JOBU='S' or 'A', */
  1218. /* JOBVT='A') */
  1219. wrkbl = *m + lwork_dgelqf__;
  1220. /* Computing MAX */
  1221. i__2 = wrkbl, i__3 = *m + lwork_dorglq_n__;
  1222. wrkbl = f2cmax(i__2,i__3);
  1223. /* Computing MAX */
  1224. i__2 = wrkbl, i__3 = *m * 3 + lwork_dgebrd__;
  1225. wrkbl = f2cmax(i__2,i__3);
  1226. /* Computing MAX */
  1227. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_p__;
  1228. wrkbl = f2cmax(i__2,i__3);
  1229. /* Computing MAX */
  1230. i__2 = wrkbl, i__3 = *m * 3 + lwork_dorgbr_q__;
  1231. wrkbl = f2cmax(i__2,i__3);
  1232. wrkbl = f2cmax(wrkbl,bdspac);
  1233. maxwrk = *m * *m + wrkbl;
  1234. /* Computing MAX */
  1235. i__2 = *m * 3 + *n;
  1236. minwrk = f2cmax(i__2,bdspac);
  1237. }
  1238. } else {
  1239. /* Path 10t(N greater than M, but not much larger) */
  1240. dgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &
  1241. c_n1, &ierr);
  1242. lwork_dgebrd__ = (integer) dum[0];
  1243. maxwrk = *m * 3 + lwork_dgebrd__;
  1244. if (wntvs || wntvo) {
  1245. /* Compute space needed for DORGBR P */
  1246. dorgbr_("P", m, n, m, &a[a_offset], n, dum, dum, &c_n1, &
  1247. ierr);
  1248. lwork_dorgbr_p__ = (integer) dum[0];
  1249. /* Computing MAX */
  1250. i__2 = maxwrk, i__3 = *m * 3 + lwork_dorgbr_p__;
  1251. maxwrk = f2cmax(i__2,i__3);
  1252. }
  1253. if (wntva) {
  1254. dorgbr_("P", n, n, m, &a[a_offset], n, dum, dum, &c_n1, &
  1255. ierr);
  1256. lwork_dorgbr_p__ = (integer) dum[0];
  1257. /* Computing MAX */
  1258. i__2 = maxwrk, i__3 = *m * 3 + lwork_dorgbr_p__;
  1259. maxwrk = f2cmax(i__2,i__3);
  1260. }
  1261. if (! wntun) {
  1262. /* Computing MAX */
  1263. i__2 = maxwrk, i__3 = *m * 3 + lwork_dorgbr_q__;
  1264. maxwrk = f2cmax(i__2,i__3);
  1265. }
  1266. maxwrk = f2cmax(maxwrk,bdspac);
  1267. /* Computing MAX */
  1268. i__2 = *m * 3 + *n;
  1269. minwrk = f2cmax(i__2,bdspac);
  1270. }
  1271. }
  1272. maxwrk = f2cmax(maxwrk,minwrk);
  1273. work[1] = (doublereal) maxwrk;
  1274. if (*lwork < minwrk && ! lquery) {
  1275. *info = -13;
  1276. }
  1277. }
  1278. if (*info != 0) {
  1279. i__2 = -(*info);
  1280. xerbla_("DGESVD", &i__2, (ftnlen)6);
  1281. return 0;
  1282. } else if (lquery) {
  1283. return 0;
  1284. }
  1285. /* Quick return if possible */
  1286. if (*m == 0 || *n == 0) {
  1287. return 0;
  1288. }
  1289. /* Get machine constants */
  1290. eps = dlamch_("P");
  1291. smlnum = sqrt(dlamch_("S")) / eps;
  1292. bignum = 1. / smlnum;
  1293. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1294. anrm = dlange_("M", m, n, &a[a_offset], lda, dum);
  1295. iscl = 0;
  1296. if (anrm > 0. && anrm < smlnum) {
  1297. iscl = 1;
  1298. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
  1299. ierr);
  1300. } else if (anrm > bignum) {
  1301. iscl = 1;
  1302. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
  1303. ierr);
  1304. }
  1305. if (*m >= *n) {
  1306. /* A has at least as many rows as columns. If A has sufficiently */
  1307. /* more rows than columns, first reduce using the QR */
  1308. /* decomposition (if sufficient workspace available) */
  1309. if (*m >= mnthr) {
  1310. if (wntun) {
  1311. /* Path 1 (M much larger than N, JOBU='N') */
  1312. /* No left singular vectors to be computed */
  1313. itau = 1;
  1314. iwork = itau + *n;
  1315. /* Compute A=Q*R */
  1316. /* (Workspace: need 2*N, prefer N + N*NB) */
  1317. i__2 = *lwork - iwork + 1;
  1318. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &
  1319. i__2, &ierr);
  1320. /* Zero out below R */
  1321. if (*n > 1) {
  1322. i__2 = *n - 1;
  1323. i__3 = *n - 1;
  1324. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[a_dim1 + 2],
  1325. lda);
  1326. }
  1327. ie = 1;
  1328. itauq = ie + *n;
  1329. itaup = itauq + *n;
  1330. iwork = itaup + *n;
  1331. /* Bidiagonalize R in A */
  1332. /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */
  1333. i__2 = *lwork - iwork + 1;
  1334. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  1335. itauq], &work[itaup], &work[iwork], &i__2, &ierr);
  1336. ncvt = 0;
  1337. if (wntvo || wntvas) {
  1338. /* If right singular vectors desired, generate P'. */
  1339. /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */
  1340. i__2 = *lwork - iwork + 1;
  1341. dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &
  1342. work[iwork], &i__2, &ierr);
  1343. ncvt = *n;
  1344. }
  1345. iwork = ie + *n;
  1346. /* Perform bidiagonal QR iteration, computing right */
  1347. /* singular vectors of A in A if desired */
  1348. /* (Workspace: need BDSPAC) */
  1349. dbdsqr_("U", n, &ncvt, &c__0, &c__0, &s[1], &work[ie], &a[
  1350. a_offset], lda, dum, &c__1, dum, &c__1, &work[iwork],
  1351. info);
  1352. /* If right singular vectors desired in VT, copy them there */
  1353. if (wntvas) {
  1354. dlacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset],
  1355. ldvt);
  1356. }
  1357. } else if (wntuo && wntvn) {
  1358. /* Path 2 (M much larger than N, JOBU='O', JOBVT='N') */
  1359. /* N left singular vectors to be overwritten on A and */
  1360. /* no right singular vectors to be computed */
  1361. /* Computing MAX */
  1362. i__2 = *n << 2;
  1363. if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) {
  1364. /* Sufficient workspace for a fast algorithm */
  1365. ir = 1;
  1366. /* Computing MAX */
  1367. i__2 = wrkbl, i__3 = *lda * *n + *n;
  1368. if (*lwork >= f2cmax(i__2,i__3) + *lda * *n) {
  1369. /* WORK(IU) is LDA by N, WORK(IR) is LDA by N */
  1370. ldwrku = *lda;
  1371. ldwrkr = *lda;
  1372. } else /* if(complicated condition) */ {
  1373. /* Computing MAX */
  1374. i__2 = wrkbl, i__3 = *lda * *n + *n;
  1375. if (*lwork >= f2cmax(i__2,i__3) + *n * *n) {
  1376. /* WORK(IU) is LDA by N, WORK(IR) is N by N */
  1377. ldwrku = *lda;
  1378. ldwrkr = *n;
  1379. } else {
  1380. /* WORK(IU) is LDWRKU by N, WORK(IR) is N by N */
  1381. ldwrku = (*lwork - *n * *n - *n) / *n;
  1382. ldwrkr = *n;
  1383. }
  1384. }
  1385. itau = ir + ldwrkr * *n;
  1386. iwork = itau + *n;
  1387. /* Compute A=Q*R */
  1388. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  1389. i__2 = *lwork - iwork + 1;
  1390. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
  1391. , &i__2, &ierr);
  1392. /* Copy R to WORK(IR) and zero out below it */
  1393. dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  1394. i__2 = *n - 1;
  1395. i__3 = *n - 1;
  1396. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir + 1],
  1397. &ldwrkr);
  1398. /* Generate Q in A */
  1399. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  1400. i__2 = *lwork - iwork + 1;
  1401. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
  1402. iwork], &i__2, &ierr);
  1403. ie = itau;
  1404. itauq = ie + *n;
  1405. itaup = itauq + *n;
  1406. iwork = itaup + *n;
  1407. /* Bidiagonalize R in WORK(IR) */
  1408. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */
  1409. i__2 = *lwork - iwork + 1;
  1410. dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  1411. itauq], &work[itaup], &work[iwork], &i__2, &ierr);
  1412. /* Generate left vectors bidiagonalizing R */
  1413. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */
  1414. i__2 = *lwork - iwork + 1;
  1415. dorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], &
  1416. work[iwork], &i__2, &ierr);
  1417. iwork = ie + *n;
  1418. /* Perform bidiagonal QR iteration, computing left */
  1419. /* singular vectors of R in WORK(IR) */
  1420. /* (Workspace: need N*N + BDSPAC) */
  1421. dbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie], dum, &
  1422. c__1, &work[ir], &ldwrkr, dum, &c__1, &work[iwork]
  1423. , info);
  1424. iu = ie + *n;
  1425. /* Multiply Q in A by left singular vectors of R in */
  1426. /* WORK(IR), storing result in WORK(IU) and copying to A */
  1427. /* (Workspace: need N*N + 2*N, prefer N*N + M*N + N) */
  1428. i__2 = *m;
  1429. i__3 = ldwrku;
  1430. for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1431. i__3) {
  1432. /* Computing MIN */
  1433. i__4 = *m - i__ + 1;
  1434. chunk = f2cmin(i__4,ldwrku);
  1435. dgemm_("N", "N", &chunk, n, n, &c_b79, &a[i__ +
  1436. a_dim1], lda, &work[ir], &ldwrkr, &c_b57, &
  1437. work[iu], &ldwrku);
  1438. dlacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ +
  1439. a_dim1], lda);
  1440. /* L10: */
  1441. }
  1442. } else {
  1443. /* Insufficient workspace for a fast algorithm */
  1444. ie = 1;
  1445. itauq = ie + *n;
  1446. itaup = itauq + *n;
  1447. iwork = itaup + *n;
  1448. /* Bidiagonalize A */
  1449. /* (Workspace: need 3*N + M, prefer 3*N + (M + N)*NB) */
  1450. i__3 = *lwork - iwork + 1;
  1451. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  1452. itauq], &work[itaup], &work[iwork], &i__3, &ierr);
  1453. /* Generate left vectors bidiagonalizing A */
  1454. /* (Workspace: need 4*N, prefer 3*N + N*NB) */
  1455. i__3 = *lwork - iwork + 1;
  1456. dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
  1457. work[iwork], &i__3, &ierr);
  1458. iwork = ie + *n;
  1459. /* Perform bidiagonal QR iteration, computing left */
  1460. /* singular vectors of A in A */
  1461. /* (Workspace: need BDSPAC) */
  1462. dbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie], dum, &
  1463. c__1, &a[a_offset], lda, dum, &c__1, &work[iwork],
  1464. info);
  1465. }
  1466. } else if (wntuo && wntvas) {
  1467. /* Path 3 (M much larger than N, JOBU='O', JOBVT='S' or 'A') */
  1468. /* N left singular vectors to be overwritten on A and */
  1469. /* N right singular vectors to be computed in VT */
  1470. /* Computing MAX */
  1471. i__3 = *n << 2;
  1472. if (*lwork >= *n * *n + f2cmax(i__3,bdspac)) {
  1473. /* Sufficient workspace for a fast algorithm */
  1474. ir = 1;
  1475. /* Computing MAX */
  1476. i__3 = wrkbl, i__2 = *lda * *n + *n;
  1477. if (*lwork >= f2cmax(i__3,i__2) + *lda * *n) {
  1478. /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */
  1479. ldwrku = *lda;
  1480. ldwrkr = *lda;
  1481. } else /* if(complicated condition) */ {
  1482. /* Computing MAX */
  1483. i__3 = wrkbl, i__2 = *lda * *n + *n;
  1484. if (*lwork >= f2cmax(i__3,i__2) + *n * *n) {
  1485. /* WORK(IU) is LDA by N and WORK(IR) is N by N */
  1486. ldwrku = *lda;
  1487. ldwrkr = *n;
  1488. } else {
  1489. /* WORK(IU) is LDWRKU by N and WORK(IR) is N by N */
  1490. ldwrku = (*lwork - *n * *n - *n) / *n;
  1491. ldwrkr = *n;
  1492. }
  1493. }
  1494. itau = ir + ldwrkr * *n;
  1495. iwork = itau + *n;
  1496. /* Compute A=Q*R */
  1497. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  1498. i__3 = *lwork - iwork + 1;
  1499. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
  1500. , &i__3, &ierr);
  1501. /* Copy R to VT, zeroing out below it */
  1502. dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset],
  1503. ldvt);
  1504. if (*n > 1) {
  1505. i__3 = *n - 1;
  1506. i__2 = *n - 1;
  1507. dlaset_("L", &i__3, &i__2, &c_b57, &c_b57, &vt[
  1508. vt_dim1 + 2], ldvt);
  1509. }
  1510. /* Generate Q in A */
  1511. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  1512. i__3 = *lwork - iwork + 1;
  1513. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
  1514. iwork], &i__3, &ierr);
  1515. ie = itau;
  1516. itauq = ie + *n;
  1517. itaup = itauq + *n;
  1518. iwork = itaup + *n;
  1519. /* Bidiagonalize R in VT, copying result to WORK(IR) */
  1520. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */
  1521. i__3 = *lwork - iwork + 1;
  1522. dgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], &
  1523. work[itauq], &work[itaup], &work[iwork], &i__3, &
  1524. ierr);
  1525. dlacpy_("L", n, n, &vt[vt_offset], ldvt, &work[ir], &
  1526. ldwrkr);
  1527. /* Generate left vectors bidiagonalizing R in WORK(IR) */
  1528. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */
  1529. i__3 = *lwork - iwork + 1;
  1530. dorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq], &
  1531. work[iwork], &i__3, &ierr);
  1532. /* Generate right vectors bidiagonalizing R in VT */
  1533. /* (Workspace: need N*N + 4*N-1, prefer N*N + 3*N + (N-1)*NB) */
  1534. i__3 = *lwork - iwork + 1;
  1535. dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup],
  1536. &work[iwork], &i__3, &ierr);
  1537. iwork = ie + *n;
  1538. /* Perform bidiagonal QR iteration, computing left */
  1539. /* singular vectors of R in WORK(IR) and computing right */
  1540. /* singular vectors of R in VT */
  1541. /* (Workspace: need N*N + BDSPAC) */
  1542. dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[
  1543. vt_offset], ldvt, &work[ir], &ldwrkr, dum, &c__1,
  1544. &work[iwork], info);
  1545. iu = ie + *n;
  1546. /* Multiply Q in A by left singular vectors of R in */
  1547. /* WORK(IR), storing result in WORK(IU) and copying to A */
  1548. /* (Workspace: need N*N + 2*N, prefer N*N + M*N + N) */
  1549. i__3 = *m;
  1550. i__2 = ldwrku;
  1551. for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ +=
  1552. i__2) {
  1553. /* Computing MIN */
  1554. i__4 = *m - i__ + 1;
  1555. chunk = f2cmin(i__4,ldwrku);
  1556. dgemm_("N", "N", &chunk, n, n, &c_b79, &a[i__ +
  1557. a_dim1], lda, &work[ir], &ldwrkr, &c_b57, &
  1558. work[iu], &ldwrku);
  1559. dlacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ +
  1560. a_dim1], lda);
  1561. /* L20: */
  1562. }
  1563. } else {
  1564. /* Insufficient workspace for a fast algorithm */
  1565. itau = 1;
  1566. iwork = itau + *n;
  1567. /* Compute A=Q*R */
  1568. /* (Workspace: need 2*N, prefer N + N*NB) */
  1569. i__2 = *lwork - iwork + 1;
  1570. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
  1571. , &i__2, &ierr);
  1572. /* Copy R to VT, zeroing out below it */
  1573. dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset],
  1574. ldvt);
  1575. if (*n > 1) {
  1576. i__2 = *n - 1;
  1577. i__3 = *n - 1;
  1578. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[
  1579. vt_dim1 + 2], ldvt);
  1580. }
  1581. /* Generate Q in A */
  1582. /* (Workspace: need 2*N, prefer N + N*NB) */
  1583. i__2 = *lwork - iwork + 1;
  1584. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[
  1585. iwork], &i__2, &ierr);
  1586. ie = itau;
  1587. itauq = ie + *n;
  1588. itaup = itauq + *n;
  1589. iwork = itaup + *n;
  1590. /* Bidiagonalize R in VT */
  1591. /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */
  1592. i__2 = *lwork - iwork + 1;
  1593. dgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie], &
  1594. work[itauq], &work[itaup], &work[iwork], &i__2, &
  1595. ierr);
  1596. /* Multiply Q in A by left vectors bidiagonalizing R */
  1597. /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */
  1598. i__2 = *lwork - iwork + 1;
  1599. dormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt, &
  1600. work[itauq], &a[a_offset], lda, &work[iwork], &
  1601. i__2, &ierr);
  1602. /* Generate right vectors bidiagonalizing R in VT */
  1603. /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */
  1604. i__2 = *lwork - iwork + 1;
  1605. dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup],
  1606. &work[iwork], &i__2, &ierr);
  1607. iwork = ie + *n;
  1608. /* Perform bidiagonal QR iteration, computing left */
  1609. /* singular vectors of A in A and computing right */
  1610. /* singular vectors of A in VT */
  1611. /* (Workspace: need BDSPAC) */
  1612. dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[
  1613. vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, &
  1614. work[iwork], info);
  1615. }
  1616. } else if (wntus) {
  1617. if (wntvn) {
  1618. /* Path 4 (M much larger than N, JOBU='S', JOBVT='N') */
  1619. /* N left singular vectors to be computed in U and */
  1620. /* no right singular vectors to be computed */
  1621. /* Computing MAX */
  1622. i__2 = *n << 2;
  1623. if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) {
  1624. /* Sufficient workspace for a fast algorithm */
  1625. ir = 1;
  1626. if (*lwork >= wrkbl + *lda * *n) {
  1627. /* WORK(IR) is LDA by N */
  1628. ldwrkr = *lda;
  1629. } else {
  1630. /* WORK(IR) is N by N */
  1631. ldwrkr = *n;
  1632. }
  1633. itau = ir + ldwrkr * *n;
  1634. iwork = itau + *n;
  1635. /* Compute A=Q*R */
  1636. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  1637. i__2 = *lwork - iwork + 1;
  1638. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  1639. iwork], &i__2, &ierr);
  1640. /* Copy R to WORK(IR), zeroing out below it */
  1641. dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &
  1642. ldwrkr);
  1643. i__2 = *n - 1;
  1644. i__3 = *n - 1;
  1645. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir +
  1646. 1], &ldwrkr);
  1647. /* Generate Q in A */
  1648. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  1649. i__2 = *lwork - iwork + 1;
  1650. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &
  1651. work[iwork], &i__2, &ierr);
  1652. ie = itau;
  1653. itauq = ie + *n;
  1654. itaup = itauq + *n;
  1655. iwork = itaup + *n;
  1656. /* Bidiagonalize R in WORK(IR) */
  1657. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */
  1658. i__2 = *lwork - iwork + 1;
  1659. dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &
  1660. work[itauq], &work[itaup], &work[iwork], &
  1661. i__2, &ierr);
  1662. /* Generate left vectors bidiagonalizing R in WORK(IR) */
  1663. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */
  1664. i__2 = *lwork - iwork + 1;
  1665. dorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq]
  1666. , &work[iwork], &i__2, &ierr);
  1667. iwork = ie + *n;
  1668. /* Perform bidiagonal QR iteration, computing left */
  1669. /* singular vectors of R in WORK(IR) */
  1670. /* (Workspace: need N*N + BDSPAC) */
  1671. dbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie],
  1672. dum, &c__1, &work[ir], &ldwrkr, dum, &c__1, &
  1673. work[iwork], info);
  1674. /* Multiply Q in A by left singular vectors of R in */
  1675. /* WORK(IR), storing result in U */
  1676. /* (Workspace: need N*N) */
  1677. dgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, &
  1678. work[ir], &ldwrkr, &c_b57, &u[u_offset], ldu);
  1679. } else {
  1680. /* Insufficient workspace for a fast algorithm */
  1681. itau = 1;
  1682. iwork = itau + *n;
  1683. /* Compute A=Q*R, copying result to U */
  1684. /* (Workspace: need 2*N, prefer N + N*NB) */
  1685. i__2 = *lwork - iwork + 1;
  1686. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  1687. iwork], &i__2, &ierr);
  1688. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  1689. ldu);
  1690. /* Generate Q in U */
  1691. /* (Workspace: need 2*N, prefer N + N*NB) */
  1692. i__2 = *lwork - iwork + 1;
  1693. dorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
  1694. work[iwork], &i__2, &ierr);
  1695. ie = itau;
  1696. itauq = ie + *n;
  1697. itaup = itauq + *n;
  1698. iwork = itaup + *n;
  1699. /* Zero out below R in A */
  1700. if (*n > 1) {
  1701. i__2 = *n - 1;
  1702. i__3 = *n - 1;
  1703. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[
  1704. a_dim1 + 2], lda);
  1705. }
  1706. /* Bidiagonalize R in A */
  1707. /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */
  1708. i__2 = *lwork - iwork + 1;
  1709. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &
  1710. work[itauq], &work[itaup], &work[iwork], &
  1711. i__2, &ierr);
  1712. /* Multiply Q in U by left vectors bidiagonalizing R */
  1713. /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */
  1714. i__2 = *lwork - iwork + 1;
  1715. dormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
  1716. work[itauq], &u[u_offset], ldu, &work[iwork],
  1717. &i__2, &ierr)
  1718. ;
  1719. iwork = ie + *n;
  1720. /* Perform bidiagonal QR iteration, computing left */
  1721. /* singular vectors of A in U */
  1722. /* (Workspace: need BDSPAC) */
  1723. dbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie],
  1724. dum, &c__1, &u[u_offset], ldu, dum, &c__1, &
  1725. work[iwork], info);
  1726. }
  1727. } else if (wntvo) {
  1728. /* Path 5 (M much larger than N, JOBU='S', JOBVT='O') */
  1729. /* N left singular vectors to be computed in U and */
  1730. /* N right singular vectors to be overwritten on A */
  1731. /* Computing MAX */
  1732. i__2 = *n << 2;
  1733. if (*lwork >= (*n << 1) * *n + f2cmax(i__2,bdspac)) {
  1734. /* Sufficient workspace for a fast algorithm */
  1735. iu = 1;
  1736. if (*lwork >= wrkbl + (*lda << 1) * *n) {
  1737. /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */
  1738. ldwrku = *lda;
  1739. ir = iu + ldwrku * *n;
  1740. ldwrkr = *lda;
  1741. } else if (*lwork >= wrkbl + (*lda + *n) * *n) {
  1742. /* WORK(IU) is LDA by N and WORK(IR) is N by N */
  1743. ldwrku = *lda;
  1744. ir = iu + ldwrku * *n;
  1745. ldwrkr = *n;
  1746. } else {
  1747. /* WORK(IU) is N by N and WORK(IR) is N by N */
  1748. ldwrku = *n;
  1749. ir = iu + ldwrku * *n;
  1750. ldwrkr = *n;
  1751. }
  1752. itau = ir + ldwrkr * *n;
  1753. iwork = itau + *n;
  1754. /* Compute A=Q*R */
  1755. /* (Workspace: need 2*N*N + 2*N, prefer 2*N*N + N + N*NB) */
  1756. i__2 = *lwork - iwork + 1;
  1757. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  1758. iwork], &i__2, &ierr);
  1759. /* Copy R to WORK(IU), zeroing out below it */
  1760. dlacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
  1761. ldwrku);
  1762. i__2 = *n - 1;
  1763. i__3 = *n - 1;
  1764. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu +
  1765. 1], &ldwrku);
  1766. /* Generate Q in A */
  1767. /* (Workspace: need 2*N*N + 2*N, prefer 2*N*N + N + N*NB) */
  1768. i__2 = *lwork - iwork + 1;
  1769. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &
  1770. work[iwork], &i__2, &ierr);
  1771. ie = itau;
  1772. itauq = ie + *n;
  1773. itaup = itauq + *n;
  1774. iwork = itaup + *n;
  1775. /* Bidiagonalize R in WORK(IU), copying result to */
  1776. /* WORK(IR) */
  1777. /* (Workspace: need 2*N*N + 4*N, */
  1778. /* prefer 2*N*N+3*N+2*N*NB) */
  1779. i__2 = *lwork - iwork + 1;
  1780. dgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], &
  1781. work[itauq], &work[itaup], &work[iwork], &
  1782. i__2, &ierr);
  1783. dlacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], &
  1784. ldwrkr);
  1785. /* Generate left bidiagonalizing vectors in WORK(IU) */
  1786. /* (Workspace: need 2*N*N + 4*N, prefer 2*N*N + 3*N + N*NB) */
  1787. i__2 = *lwork - iwork + 1;
  1788. dorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
  1789. , &work[iwork], &i__2, &ierr);
  1790. /* Generate right bidiagonalizing vectors in WORK(IR) */
  1791. /* (Workspace: need 2*N*N + 4*N-1, */
  1792. /* prefer 2*N*N+3*N+(N-1)*NB) */
  1793. i__2 = *lwork - iwork + 1;
  1794. dorgbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup]
  1795. , &work[iwork], &i__2, &ierr);
  1796. iwork = ie + *n;
  1797. /* Perform bidiagonal QR iteration, computing left */
  1798. /* singular vectors of R in WORK(IU) and computing */
  1799. /* right singular vectors of R in WORK(IR) */
  1800. /* (Workspace: need 2*N*N + BDSPAC) */
  1801. dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &work[
  1802. ir], &ldwrkr, &work[iu], &ldwrku, dum, &c__1,
  1803. &work[iwork], info);
  1804. /* Multiply Q in A by left singular vectors of R in */
  1805. /* WORK(IU), storing result in U */
  1806. /* (Workspace: need N*N) */
  1807. dgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, &
  1808. work[iu], &ldwrku, &c_b57, &u[u_offset], ldu);
  1809. /* Copy right singular vectors of R to A */
  1810. /* (Workspace: need N*N) */
  1811. dlacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset],
  1812. lda);
  1813. } else {
  1814. /* Insufficient workspace for a fast algorithm */
  1815. itau = 1;
  1816. iwork = itau + *n;
  1817. /* Compute A=Q*R, copying result to U */
  1818. /* (Workspace: need 2*N, prefer N + N*NB) */
  1819. i__2 = *lwork - iwork + 1;
  1820. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  1821. iwork], &i__2, &ierr);
  1822. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  1823. ldu);
  1824. /* Generate Q in U */
  1825. /* (Workspace: need 2*N, prefer N + N*NB) */
  1826. i__2 = *lwork - iwork + 1;
  1827. dorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
  1828. work[iwork], &i__2, &ierr);
  1829. ie = itau;
  1830. itauq = ie + *n;
  1831. itaup = itauq + *n;
  1832. iwork = itaup + *n;
  1833. /* Zero out below R in A */
  1834. if (*n > 1) {
  1835. i__2 = *n - 1;
  1836. i__3 = *n - 1;
  1837. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[
  1838. a_dim1 + 2], lda);
  1839. }
  1840. /* Bidiagonalize R in A */
  1841. /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */
  1842. i__2 = *lwork - iwork + 1;
  1843. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &
  1844. work[itauq], &work[itaup], &work[iwork], &
  1845. i__2, &ierr);
  1846. /* Multiply Q in U by left vectors bidiagonalizing R */
  1847. /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */
  1848. i__2 = *lwork - iwork + 1;
  1849. dormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
  1850. work[itauq], &u[u_offset], ldu, &work[iwork],
  1851. &i__2, &ierr)
  1852. ;
  1853. /* Generate right vectors bidiagonalizing R in A */
  1854. /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */
  1855. i__2 = *lwork - iwork + 1;
  1856. dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup],
  1857. &work[iwork], &i__2, &ierr);
  1858. iwork = ie + *n;
  1859. /* Perform bidiagonal QR iteration, computing left */
  1860. /* singular vectors of A in U and computing right */
  1861. /* singular vectors of A in A */
  1862. /* (Workspace: need BDSPAC) */
  1863. dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &a[
  1864. a_offset], lda, &u[u_offset], ldu, dum, &c__1,
  1865. &work[iwork], info);
  1866. }
  1867. } else if (wntvas) {
  1868. /* Path 6 (M much larger than N, JOBU='S', JOBVT='S' */
  1869. /* or 'A') */
  1870. /* N left singular vectors to be computed in U and */
  1871. /* N right singular vectors to be computed in VT */
  1872. /* Computing MAX */
  1873. i__2 = *n << 2;
  1874. if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) {
  1875. /* Sufficient workspace for a fast algorithm */
  1876. iu = 1;
  1877. if (*lwork >= wrkbl + *lda * *n) {
  1878. /* WORK(IU) is LDA by N */
  1879. ldwrku = *lda;
  1880. } else {
  1881. /* WORK(IU) is N by N */
  1882. ldwrku = *n;
  1883. }
  1884. itau = iu + ldwrku * *n;
  1885. iwork = itau + *n;
  1886. /* Compute A=Q*R */
  1887. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  1888. i__2 = *lwork - iwork + 1;
  1889. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  1890. iwork], &i__2, &ierr);
  1891. /* Copy R to WORK(IU), zeroing out below it */
  1892. dlacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
  1893. ldwrku);
  1894. i__2 = *n - 1;
  1895. i__3 = *n - 1;
  1896. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu +
  1897. 1], &ldwrku);
  1898. /* Generate Q in A */
  1899. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  1900. i__2 = *lwork - iwork + 1;
  1901. dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &
  1902. work[iwork], &i__2, &ierr);
  1903. ie = itau;
  1904. itauq = ie + *n;
  1905. itaup = itauq + *n;
  1906. iwork = itaup + *n;
  1907. /* Bidiagonalize R in WORK(IU), copying result to VT */
  1908. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */
  1909. i__2 = *lwork - iwork + 1;
  1910. dgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], &
  1911. work[itauq], &work[itaup], &work[iwork], &
  1912. i__2, &ierr);
  1913. dlacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset],
  1914. ldvt);
  1915. /* Generate left bidiagonalizing vectors in WORK(IU) */
  1916. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */
  1917. i__2 = *lwork - iwork + 1;
  1918. dorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
  1919. , &work[iwork], &i__2, &ierr);
  1920. /* Generate right bidiagonalizing vectors in VT */
  1921. /* (Workspace: need N*N + 4*N-1, */
  1922. /* prefer N*N+3*N+(N-1)*NB) */
  1923. i__2 = *lwork - iwork + 1;
  1924. dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
  1925. itaup], &work[iwork], &i__2, &ierr)
  1926. ;
  1927. iwork = ie + *n;
  1928. /* Perform bidiagonal QR iteration, computing left */
  1929. /* singular vectors of R in WORK(IU) and computing */
  1930. /* right singular vectors of R in VT */
  1931. /* (Workspace: need N*N + BDSPAC) */
  1932. dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[
  1933. vt_offset], ldvt, &work[iu], &ldwrku, dum, &
  1934. c__1, &work[iwork], info);
  1935. /* Multiply Q in A by left singular vectors of R in */
  1936. /* WORK(IU), storing result in U */
  1937. /* (Workspace: need N*N) */
  1938. dgemm_("N", "N", m, n, n, &c_b79, &a[a_offset], lda, &
  1939. work[iu], &ldwrku, &c_b57, &u[u_offset], ldu);
  1940. } else {
  1941. /* Insufficient workspace for a fast algorithm */
  1942. itau = 1;
  1943. iwork = itau + *n;
  1944. /* Compute A=Q*R, copying result to U */
  1945. /* (Workspace: need 2*N, prefer N + N*NB) */
  1946. i__2 = *lwork - iwork + 1;
  1947. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  1948. iwork], &i__2, &ierr);
  1949. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  1950. ldu);
  1951. /* Generate Q in U */
  1952. /* (Workspace: need 2*N, prefer N + N*NB) */
  1953. i__2 = *lwork - iwork + 1;
  1954. dorgqr_(m, n, n, &u[u_offset], ldu, &work[itau], &
  1955. work[iwork], &i__2, &ierr);
  1956. /* Copy R to VT, zeroing out below it */
  1957. dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset],
  1958. ldvt);
  1959. if (*n > 1) {
  1960. i__2 = *n - 1;
  1961. i__3 = *n - 1;
  1962. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[
  1963. vt_dim1 + 2], ldvt);
  1964. }
  1965. ie = itau;
  1966. itauq = ie + *n;
  1967. itaup = itauq + *n;
  1968. iwork = itaup + *n;
  1969. /* Bidiagonalize R in VT */
  1970. /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */
  1971. i__2 = *lwork - iwork + 1;
  1972. dgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie],
  1973. &work[itauq], &work[itaup], &work[iwork], &
  1974. i__2, &ierr);
  1975. /* Multiply Q in U by left bidiagonalizing vectors */
  1976. /* in VT */
  1977. /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */
  1978. i__2 = *lwork - iwork + 1;
  1979. dormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt,
  1980. &work[itauq], &u[u_offset], ldu, &work[iwork],
  1981. &i__2, &ierr);
  1982. /* Generate right bidiagonalizing vectors in VT */
  1983. /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */
  1984. i__2 = *lwork - iwork + 1;
  1985. dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
  1986. itaup], &work[iwork], &i__2, &ierr)
  1987. ;
  1988. iwork = ie + *n;
  1989. /* Perform bidiagonal QR iteration, computing left */
  1990. /* singular vectors of A in U and computing right */
  1991. /* singular vectors of A in VT */
  1992. /* (Workspace: need BDSPAC) */
  1993. dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[
  1994. vt_offset], ldvt, &u[u_offset], ldu, dum, &
  1995. c__1, &work[iwork], info);
  1996. }
  1997. }
  1998. } else if (wntua) {
  1999. if (wntvn) {
  2000. /* Path 7 (M much larger than N, JOBU='A', JOBVT='N') */
  2001. /* M left singular vectors to be computed in U and */
  2002. /* no right singular vectors to be computed */
  2003. /* Computing MAX */
  2004. i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3);
  2005. if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) {
  2006. /* Sufficient workspace for a fast algorithm */
  2007. ir = 1;
  2008. if (*lwork >= wrkbl + *lda * *n) {
  2009. /* WORK(IR) is LDA by N */
  2010. ldwrkr = *lda;
  2011. } else {
  2012. /* WORK(IR) is N by N */
  2013. ldwrkr = *n;
  2014. }
  2015. itau = ir + ldwrkr * *n;
  2016. iwork = itau + *n;
  2017. /* Compute A=Q*R, copying result to U */
  2018. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  2019. i__2 = *lwork - iwork + 1;
  2020. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2021. iwork], &i__2, &ierr);
  2022. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  2023. ldu);
  2024. /* Copy R to WORK(IR), zeroing out below it */
  2025. dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &
  2026. ldwrkr);
  2027. i__2 = *n - 1;
  2028. i__3 = *n - 1;
  2029. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[ir +
  2030. 1], &ldwrkr);
  2031. /* Generate Q in U */
  2032. /* (Workspace: need N*N + N + M, prefer N*N + N + M*NB) */
  2033. i__2 = *lwork - iwork + 1;
  2034. dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
  2035. work[iwork], &i__2, &ierr);
  2036. ie = itau;
  2037. itauq = ie + *n;
  2038. itaup = itauq + *n;
  2039. iwork = itaup + *n;
  2040. /* Bidiagonalize R in WORK(IR) */
  2041. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */
  2042. i__2 = *lwork - iwork + 1;
  2043. dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &
  2044. work[itauq], &work[itaup], &work[iwork], &
  2045. i__2, &ierr);
  2046. /* Generate left bidiagonalizing vectors in WORK(IR) */
  2047. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */
  2048. i__2 = *lwork - iwork + 1;
  2049. dorgbr_("Q", n, n, n, &work[ir], &ldwrkr, &work[itauq]
  2050. , &work[iwork], &i__2, &ierr);
  2051. iwork = ie + *n;
  2052. /* Perform bidiagonal QR iteration, computing left */
  2053. /* singular vectors of R in WORK(IR) */
  2054. /* (Workspace: need N*N + BDSPAC) */
  2055. dbdsqr_("U", n, &c__0, n, &c__0, &s[1], &work[ie],
  2056. dum, &c__1, &work[ir], &ldwrkr, dum, &c__1, &
  2057. work[iwork], info);
  2058. /* Multiply Q in U by left singular vectors of R in */
  2059. /* WORK(IR), storing result in A */
  2060. /* (Workspace: need N*N) */
  2061. dgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, &
  2062. work[ir], &ldwrkr, &c_b57, &a[a_offset], lda);
  2063. /* Copy left singular vectors of A from A to U */
  2064. dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset],
  2065. ldu);
  2066. } else {
  2067. /* Insufficient workspace for a fast algorithm */
  2068. itau = 1;
  2069. iwork = itau + *n;
  2070. /* Compute A=Q*R, copying result to U */
  2071. /* (Workspace: need 2*N, prefer N + N*NB) */
  2072. i__2 = *lwork - iwork + 1;
  2073. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2074. iwork], &i__2, &ierr);
  2075. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  2076. ldu);
  2077. /* Generate Q in U */
  2078. /* (Workspace: need N + M, prefer N + M*NB) */
  2079. i__2 = *lwork - iwork + 1;
  2080. dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
  2081. work[iwork], &i__2, &ierr);
  2082. ie = itau;
  2083. itauq = ie + *n;
  2084. itaup = itauq + *n;
  2085. iwork = itaup + *n;
  2086. /* Zero out below R in A */
  2087. if (*n > 1) {
  2088. i__2 = *n - 1;
  2089. i__3 = *n - 1;
  2090. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[
  2091. a_dim1 + 2], lda);
  2092. }
  2093. /* Bidiagonalize R in A */
  2094. /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */
  2095. i__2 = *lwork - iwork + 1;
  2096. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &
  2097. work[itauq], &work[itaup], &work[iwork], &
  2098. i__2, &ierr);
  2099. /* Multiply Q in U by left bidiagonalizing vectors */
  2100. /* in A */
  2101. /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */
  2102. i__2 = *lwork - iwork + 1;
  2103. dormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
  2104. work[itauq], &u[u_offset], ldu, &work[iwork],
  2105. &i__2, &ierr)
  2106. ;
  2107. iwork = ie + *n;
  2108. /* Perform bidiagonal QR iteration, computing left */
  2109. /* singular vectors of A in U */
  2110. /* (Workspace: need BDSPAC) */
  2111. dbdsqr_("U", n, &c__0, m, &c__0, &s[1], &work[ie],
  2112. dum, &c__1, &u[u_offset], ldu, dum, &c__1, &
  2113. work[iwork], info);
  2114. }
  2115. } else if (wntvo) {
  2116. /* Path 8 (M much larger than N, JOBU='A', JOBVT='O') */
  2117. /* M left singular vectors to be computed in U and */
  2118. /* N right singular vectors to be overwritten on A */
  2119. /* Computing MAX */
  2120. i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3);
  2121. if (*lwork >= (*n << 1) * *n + f2cmax(i__2,bdspac)) {
  2122. /* Sufficient workspace for a fast algorithm */
  2123. iu = 1;
  2124. if (*lwork >= wrkbl + (*lda << 1) * *n) {
  2125. /* WORK(IU) is LDA by N and WORK(IR) is LDA by N */
  2126. ldwrku = *lda;
  2127. ir = iu + ldwrku * *n;
  2128. ldwrkr = *lda;
  2129. } else if (*lwork >= wrkbl + (*lda + *n) * *n) {
  2130. /* WORK(IU) is LDA by N and WORK(IR) is N by N */
  2131. ldwrku = *lda;
  2132. ir = iu + ldwrku * *n;
  2133. ldwrkr = *n;
  2134. } else {
  2135. /* WORK(IU) is N by N and WORK(IR) is N by N */
  2136. ldwrku = *n;
  2137. ir = iu + ldwrku * *n;
  2138. ldwrkr = *n;
  2139. }
  2140. itau = ir + ldwrkr * *n;
  2141. iwork = itau + *n;
  2142. /* Compute A=Q*R, copying result to U */
  2143. /* (Workspace: need 2*N*N + 2*N, prefer 2*N*N + N + N*NB) */
  2144. i__2 = *lwork - iwork + 1;
  2145. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2146. iwork], &i__2, &ierr);
  2147. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  2148. ldu);
  2149. /* Generate Q in U */
  2150. /* (Workspace: need 2*N*N + N + M, prefer 2*N*N + N + M*NB) */
  2151. i__2 = *lwork - iwork + 1;
  2152. dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
  2153. work[iwork], &i__2, &ierr);
  2154. /* Copy R to WORK(IU), zeroing out below it */
  2155. dlacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
  2156. ldwrku);
  2157. i__2 = *n - 1;
  2158. i__3 = *n - 1;
  2159. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu +
  2160. 1], &ldwrku);
  2161. ie = itau;
  2162. itauq = ie + *n;
  2163. itaup = itauq + *n;
  2164. iwork = itaup + *n;
  2165. /* Bidiagonalize R in WORK(IU), copying result to */
  2166. /* WORK(IR) */
  2167. /* (Workspace: need 2*N*N + 4*N, */
  2168. /* prefer 2*N*N+3*N+2*N*NB) */
  2169. i__2 = *lwork - iwork + 1;
  2170. dgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], &
  2171. work[itauq], &work[itaup], &work[iwork], &
  2172. i__2, &ierr);
  2173. dlacpy_("U", n, n, &work[iu], &ldwrku, &work[ir], &
  2174. ldwrkr);
  2175. /* Generate left bidiagonalizing vectors in WORK(IU) */
  2176. /* (Workspace: need 2*N*N + 4*N, prefer 2*N*N + 3*N + N*NB) */
  2177. i__2 = *lwork - iwork + 1;
  2178. dorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
  2179. , &work[iwork], &i__2, &ierr);
  2180. /* Generate right bidiagonalizing vectors in WORK(IR) */
  2181. /* (Workspace: need 2*N*N + 4*N-1, */
  2182. /* prefer 2*N*N+3*N+(N-1)*NB) */
  2183. i__2 = *lwork - iwork + 1;
  2184. dorgbr_("P", n, n, n, &work[ir], &ldwrkr, &work[itaup]
  2185. , &work[iwork], &i__2, &ierr);
  2186. iwork = ie + *n;
  2187. /* Perform bidiagonal QR iteration, computing left */
  2188. /* singular vectors of R in WORK(IU) and computing */
  2189. /* right singular vectors of R in WORK(IR) */
  2190. /* (Workspace: need 2*N*N + BDSPAC) */
  2191. dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &work[
  2192. ir], &ldwrkr, &work[iu], &ldwrku, dum, &c__1,
  2193. &work[iwork], info);
  2194. /* Multiply Q in U by left singular vectors of R in */
  2195. /* WORK(IU), storing result in A */
  2196. /* (Workspace: need N*N) */
  2197. dgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, &
  2198. work[iu], &ldwrku, &c_b57, &a[a_offset], lda);
  2199. /* Copy left singular vectors of A from A to U */
  2200. dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset],
  2201. ldu);
  2202. /* Copy right singular vectors of R from WORK(IR) to A */
  2203. dlacpy_("F", n, n, &work[ir], &ldwrkr, &a[a_offset],
  2204. lda);
  2205. } else {
  2206. /* Insufficient workspace for a fast algorithm */
  2207. itau = 1;
  2208. iwork = itau + *n;
  2209. /* Compute A=Q*R, copying result to U */
  2210. /* (Workspace: need 2*N, prefer N + N*NB) */
  2211. i__2 = *lwork - iwork + 1;
  2212. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2213. iwork], &i__2, &ierr);
  2214. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  2215. ldu);
  2216. /* Generate Q in U */
  2217. /* (Workspace: need N + M, prefer N + M*NB) */
  2218. i__2 = *lwork - iwork + 1;
  2219. dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
  2220. work[iwork], &i__2, &ierr);
  2221. ie = itau;
  2222. itauq = ie + *n;
  2223. itaup = itauq + *n;
  2224. iwork = itaup + *n;
  2225. /* Zero out below R in A */
  2226. if (*n > 1) {
  2227. i__2 = *n - 1;
  2228. i__3 = *n - 1;
  2229. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &a[
  2230. a_dim1 + 2], lda);
  2231. }
  2232. /* Bidiagonalize R in A */
  2233. /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */
  2234. i__2 = *lwork - iwork + 1;
  2235. dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &
  2236. work[itauq], &work[itaup], &work[iwork], &
  2237. i__2, &ierr);
  2238. /* Multiply Q in U by left bidiagonalizing vectors */
  2239. /* in A */
  2240. /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */
  2241. i__2 = *lwork - iwork + 1;
  2242. dormbr_("Q", "R", "N", m, n, n, &a[a_offset], lda, &
  2243. work[itauq], &u[u_offset], ldu, &work[iwork],
  2244. &i__2, &ierr)
  2245. ;
  2246. /* Generate right bidiagonalizing vectors in A */
  2247. /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */
  2248. i__2 = *lwork - iwork + 1;
  2249. dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup],
  2250. &work[iwork], &i__2, &ierr);
  2251. iwork = ie + *n;
  2252. /* Perform bidiagonal QR iteration, computing left */
  2253. /* singular vectors of A in U and computing right */
  2254. /* singular vectors of A in A */
  2255. /* (Workspace: need BDSPAC) */
  2256. dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &a[
  2257. a_offset], lda, &u[u_offset], ldu, dum, &c__1,
  2258. &work[iwork], info);
  2259. }
  2260. } else if (wntvas) {
  2261. /* Path 9 (M much larger than N, JOBU='A', JOBVT='S' */
  2262. /* or 'A') */
  2263. /* M left singular vectors to be computed in U and */
  2264. /* N right singular vectors to be computed in VT */
  2265. /* Computing MAX */
  2266. i__2 = *n + *m, i__3 = *n << 2, i__2 = f2cmax(i__2,i__3);
  2267. if (*lwork >= *n * *n + f2cmax(i__2,bdspac)) {
  2268. /* Sufficient workspace for a fast algorithm */
  2269. iu = 1;
  2270. if (*lwork >= wrkbl + *lda * *n) {
  2271. /* WORK(IU) is LDA by N */
  2272. ldwrku = *lda;
  2273. } else {
  2274. /* WORK(IU) is N by N */
  2275. ldwrku = *n;
  2276. }
  2277. itau = iu + ldwrku * *n;
  2278. iwork = itau + *n;
  2279. /* Compute A=Q*R, copying result to U */
  2280. /* (Workspace: need N*N + 2*N, prefer N*N + N + N*NB) */
  2281. i__2 = *lwork - iwork + 1;
  2282. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2283. iwork], &i__2, &ierr);
  2284. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  2285. ldu);
  2286. /* Generate Q in U */
  2287. /* (Workspace: need N*N + N + M, prefer N*N + N + M*NB) */
  2288. i__2 = *lwork - iwork + 1;
  2289. dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
  2290. work[iwork], &i__2, &ierr);
  2291. /* Copy R to WORK(IU), zeroing out below it */
  2292. dlacpy_("U", n, n, &a[a_offset], lda, &work[iu], &
  2293. ldwrku);
  2294. i__2 = *n - 1;
  2295. i__3 = *n - 1;
  2296. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &work[iu +
  2297. 1], &ldwrku);
  2298. ie = itau;
  2299. itauq = ie + *n;
  2300. itaup = itauq + *n;
  2301. iwork = itaup + *n;
  2302. /* Bidiagonalize R in WORK(IU), copying result to VT */
  2303. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + 2*N*NB) */
  2304. i__2 = *lwork - iwork + 1;
  2305. dgebrd_(n, n, &work[iu], &ldwrku, &s[1], &work[ie], &
  2306. work[itauq], &work[itaup], &work[iwork], &
  2307. i__2, &ierr);
  2308. dlacpy_("U", n, n, &work[iu], &ldwrku, &vt[vt_offset],
  2309. ldvt);
  2310. /* Generate left bidiagonalizing vectors in WORK(IU) */
  2311. /* (Workspace: need N*N + 4*N, prefer N*N + 3*N + N*NB) */
  2312. i__2 = *lwork - iwork + 1;
  2313. dorgbr_("Q", n, n, n, &work[iu], &ldwrku, &work[itauq]
  2314. , &work[iwork], &i__2, &ierr);
  2315. /* Generate right bidiagonalizing vectors in VT */
  2316. /* (Workspace: need N*N + 4*N-1, */
  2317. /* prefer N*N+3*N+(N-1)*NB) */
  2318. i__2 = *lwork - iwork + 1;
  2319. dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
  2320. itaup], &work[iwork], &i__2, &ierr)
  2321. ;
  2322. iwork = ie + *n;
  2323. /* Perform bidiagonal QR iteration, computing left */
  2324. /* singular vectors of R in WORK(IU) and computing */
  2325. /* right singular vectors of R in VT */
  2326. /* (Workspace: need N*N + BDSPAC) */
  2327. dbdsqr_("U", n, n, n, &c__0, &s[1], &work[ie], &vt[
  2328. vt_offset], ldvt, &work[iu], &ldwrku, dum, &
  2329. c__1, &work[iwork], info);
  2330. /* Multiply Q in U by left singular vectors of R in */
  2331. /* WORK(IU), storing result in A */
  2332. /* (Workspace: need N*N) */
  2333. dgemm_("N", "N", m, n, n, &c_b79, &u[u_offset], ldu, &
  2334. work[iu], &ldwrku, &c_b57, &a[a_offset], lda);
  2335. /* Copy left singular vectors of A from A to U */
  2336. dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset],
  2337. ldu);
  2338. } else {
  2339. /* Insufficient workspace for a fast algorithm */
  2340. itau = 1;
  2341. iwork = itau + *n;
  2342. /* Compute A=Q*R, copying result to U */
  2343. /* (Workspace: need 2*N, prefer N + N*NB) */
  2344. i__2 = *lwork - iwork + 1;
  2345. dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2346. iwork], &i__2, &ierr);
  2347. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset],
  2348. ldu);
  2349. /* Generate Q in U */
  2350. /* (Workspace: need N + M, prefer N + M*NB) */
  2351. i__2 = *lwork - iwork + 1;
  2352. dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &
  2353. work[iwork], &i__2, &ierr);
  2354. /* Copy R from A to VT, zeroing out below it */
  2355. dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset],
  2356. ldvt);
  2357. if (*n > 1) {
  2358. i__2 = *n - 1;
  2359. i__3 = *n - 1;
  2360. dlaset_("L", &i__2, &i__3, &c_b57, &c_b57, &vt[
  2361. vt_dim1 + 2], ldvt);
  2362. }
  2363. ie = itau;
  2364. itauq = ie + *n;
  2365. itaup = itauq + *n;
  2366. iwork = itaup + *n;
  2367. /* Bidiagonalize R in VT */
  2368. /* (Workspace: need 4*N, prefer 3*N + 2*N*NB) */
  2369. i__2 = *lwork - iwork + 1;
  2370. dgebrd_(n, n, &vt[vt_offset], ldvt, &s[1], &work[ie],
  2371. &work[itauq], &work[itaup], &work[iwork], &
  2372. i__2, &ierr);
  2373. /* Multiply Q in U by left bidiagonalizing vectors */
  2374. /* in VT */
  2375. /* (Workspace: need 3*N + M, prefer 3*N + M*NB) */
  2376. i__2 = *lwork - iwork + 1;
  2377. dormbr_("Q", "R", "N", m, n, n, &vt[vt_offset], ldvt,
  2378. &work[itauq], &u[u_offset], ldu, &work[iwork],
  2379. &i__2, &ierr);
  2380. /* Generate right bidiagonalizing vectors in VT */
  2381. /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */
  2382. i__2 = *lwork - iwork + 1;
  2383. dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[
  2384. itaup], &work[iwork], &i__2, &ierr)
  2385. ;
  2386. iwork = ie + *n;
  2387. /* Perform bidiagonal QR iteration, computing left */
  2388. /* singular vectors of A in U and computing right */
  2389. /* singular vectors of A in VT */
  2390. /* (Workspace: need BDSPAC) */
  2391. dbdsqr_("U", n, n, m, &c__0, &s[1], &work[ie], &vt[
  2392. vt_offset], ldvt, &u[u_offset], ldu, dum, &
  2393. c__1, &work[iwork], info);
  2394. }
  2395. }
  2396. }
  2397. } else {
  2398. /* M .LT. MNTHR */
  2399. /* Path 10 (M at least N, but not much larger) */
  2400. /* Reduce to bidiagonal form without QR decomposition */
  2401. ie = 1;
  2402. itauq = ie + *n;
  2403. itaup = itauq + *n;
  2404. iwork = itaup + *n;
  2405. /* Bidiagonalize A */
  2406. /* (Workspace: need 3*N + M, prefer 3*N + (M + N)*NB) */
  2407. i__2 = *lwork - iwork + 1;
  2408. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  2409. work[itaup], &work[iwork], &i__2, &ierr);
  2410. if (wntuas) {
  2411. /* If left singular vectors desired in U, copy result to U */
  2412. /* and generate left bidiagonalizing vectors in U */
  2413. /* (Workspace: need 3*N + NCU, prefer 3*N + NCU*NB) */
  2414. dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  2415. if (wntus) {
  2416. ncu = *n;
  2417. }
  2418. if (wntua) {
  2419. ncu = *m;
  2420. }
  2421. i__2 = *lwork - iwork + 1;
  2422. dorgbr_("Q", m, &ncu, n, &u[u_offset], ldu, &work[itauq], &
  2423. work[iwork], &i__2, &ierr);
  2424. }
  2425. if (wntvas) {
  2426. /* If right singular vectors desired in VT, copy result to */
  2427. /* VT and generate right bidiagonalizing vectors in VT */
  2428. /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */
  2429. dlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  2430. i__2 = *lwork - iwork + 1;
  2431. dorgbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
  2432. work[iwork], &i__2, &ierr);
  2433. }
  2434. if (wntuo) {
  2435. /* If left singular vectors desired in A, generate left */
  2436. /* bidiagonalizing vectors in A */
  2437. /* (Workspace: need 4*N, prefer 3*N + N*NB) */
  2438. i__2 = *lwork - iwork + 1;
  2439. dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[
  2440. iwork], &i__2, &ierr);
  2441. }
  2442. if (wntvo) {
  2443. /* If right singular vectors desired in A, generate right */
  2444. /* bidiagonalizing vectors in A */
  2445. /* (Workspace: need 4*N-1, prefer 3*N + (N-1)*NB) */
  2446. i__2 = *lwork - iwork + 1;
  2447. dorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[
  2448. iwork], &i__2, &ierr);
  2449. }
  2450. iwork = ie + *n;
  2451. if (wntuas || wntuo) {
  2452. nru = *m;
  2453. }
  2454. if (wntun) {
  2455. nru = 0;
  2456. }
  2457. if (wntvas || wntvo) {
  2458. ncvt = *n;
  2459. }
  2460. if (wntvn) {
  2461. ncvt = 0;
  2462. }
  2463. if (! wntuo && ! wntvo) {
  2464. /* Perform bidiagonal QR iteration, if desired, computing */
  2465. /* left singular vectors in U and computing right singular */
  2466. /* vectors in VT */
  2467. /* (Workspace: need BDSPAC) */
  2468. dbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[
  2469. vt_offset], ldvt, &u[u_offset], ldu, dum, &c__1, &
  2470. work[iwork], info);
  2471. } else if (! wntuo && wntvo) {
  2472. /* Perform bidiagonal QR iteration, if desired, computing */
  2473. /* left singular vectors in U and computing right singular */
  2474. /* vectors in A */
  2475. /* (Workspace: need BDSPAC) */
  2476. dbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &a[
  2477. a_offset], lda, &u[u_offset], ldu, dum, &c__1, &work[
  2478. iwork], info);
  2479. } else {
  2480. /* Perform bidiagonal QR iteration, if desired, computing */
  2481. /* left singular vectors in A and computing right singular */
  2482. /* vectors in VT */
  2483. /* (Workspace: need BDSPAC) */
  2484. dbdsqr_("U", n, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[
  2485. vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, &
  2486. work[iwork], info);
  2487. }
  2488. }
  2489. } else {
  2490. /* A has more columns than rows. If A has sufficiently more */
  2491. /* columns than rows, first reduce using the LQ decomposition (if */
  2492. /* sufficient workspace available) */
  2493. if (*n >= mnthr) {
  2494. if (wntvn) {
  2495. /* Path 1t(N much larger than M, JOBVT='N') */
  2496. /* No right singular vectors to be computed */
  2497. itau = 1;
  2498. iwork = itau + *m;
  2499. /* Compute A=L*Q */
  2500. /* (Workspace: need 2*M, prefer M + M*NB) */
  2501. i__2 = *lwork - iwork + 1;
  2502. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &
  2503. i__2, &ierr);
  2504. /* Zero out above L */
  2505. i__2 = *m - 1;
  2506. i__3 = *m - 1;
  2507. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1 << 1) +
  2508. 1], lda);
  2509. ie = 1;
  2510. itauq = ie + *m;
  2511. itaup = itauq + *m;
  2512. iwork = itaup + *m;
  2513. /* Bidiagonalize L in A */
  2514. /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */
  2515. i__2 = *lwork - iwork + 1;
  2516. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  2517. itauq], &work[itaup], &work[iwork], &i__2, &ierr);
  2518. if (wntuo || wntuas) {
  2519. /* If left singular vectors desired, generate Q */
  2520. /* (Workspace: need 4*M, prefer 3*M + M*NB) */
  2521. i__2 = *lwork - iwork + 1;
  2522. dorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq], &
  2523. work[iwork], &i__2, &ierr);
  2524. }
  2525. iwork = ie + *m;
  2526. nru = 0;
  2527. if (wntuo || wntuas) {
  2528. nru = *m;
  2529. }
  2530. /* Perform bidiagonal QR iteration, computing left singular */
  2531. /* vectors of A in A if desired */
  2532. /* (Workspace: need BDSPAC) */
  2533. dbdsqr_("U", m, &c__0, &nru, &c__0, &s[1], &work[ie], dum, &
  2534. c__1, &a[a_offset], lda, dum, &c__1, &work[iwork],
  2535. info);
  2536. /* If left singular vectors desired in U, copy them there */
  2537. if (wntuas) {
  2538. dlacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  2539. }
  2540. } else if (wntvo && wntun) {
  2541. /* Path 2t(N much larger than M, JOBU='N', JOBVT='O') */
  2542. /* M right singular vectors to be overwritten on A and */
  2543. /* no left singular vectors to be computed */
  2544. /* Computing MAX */
  2545. i__2 = *m << 2;
  2546. if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) {
  2547. /* Sufficient workspace for a fast algorithm */
  2548. ir = 1;
  2549. /* Computing MAX */
  2550. i__2 = wrkbl, i__3 = *lda * *n + *m;
  2551. if (*lwork >= f2cmax(i__2,i__3) + *lda * *m) {
  2552. /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */
  2553. ldwrku = *lda;
  2554. chunk = *n;
  2555. ldwrkr = *lda;
  2556. } else /* if(complicated condition) */ {
  2557. /* Computing MAX */
  2558. i__2 = wrkbl, i__3 = *lda * *n + *m;
  2559. if (*lwork >= f2cmax(i__2,i__3) + *m * *m) {
  2560. /* WORK(IU) is LDA by N and WORK(IR) is M by M */
  2561. ldwrku = *lda;
  2562. chunk = *n;
  2563. ldwrkr = *m;
  2564. } else {
  2565. /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */
  2566. ldwrku = *m;
  2567. chunk = (*lwork - *m * *m - *m) / *m;
  2568. ldwrkr = *m;
  2569. }
  2570. }
  2571. itau = ir + ldwrkr * *m;
  2572. iwork = itau + *m;
  2573. /* Compute A=L*Q */
  2574. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  2575. i__2 = *lwork - iwork + 1;
  2576. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
  2577. , &i__2, &ierr);
  2578. /* Copy L to WORK(IR) and zero out above it */
  2579. dlacpy_("L", m, m, &a[a_offset], lda, &work[ir], &ldwrkr);
  2580. i__2 = *m - 1;
  2581. i__3 = *m - 1;
  2582. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir +
  2583. ldwrkr], &ldwrkr);
  2584. /* Generate Q in A */
  2585. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  2586. i__2 = *lwork - iwork + 1;
  2587. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
  2588. iwork], &i__2, &ierr);
  2589. ie = itau;
  2590. itauq = ie + *m;
  2591. itaup = itauq + *m;
  2592. iwork = itaup + *m;
  2593. /* Bidiagonalize L in WORK(IR) */
  2594. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */
  2595. i__2 = *lwork - iwork + 1;
  2596. dgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  2597. itauq], &work[itaup], &work[iwork], &i__2, &ierr);
  2598. /* Generate right vectors bidiagonalizing L */
  2599. /* (Workspace: need M*M + 4*M-1, prefer M*M + 3*M + (M-1)*NB) */
  2600. i__2 = *lwork - iwork + 1;
  2601. dorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], &
  2602. work[iwork], &i__2, &ierr);
  2603. iwork = ie + *m;
  2604. /* Perform bidiagonal QR iteration, computing right */
  2605. /* singular vectors of L in WORK(IR) */
  2606. /* (Workspace: need M*M + BDSPAC) */
  2607. dbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], &work[
  2608. ir], &ldwrkr, dum, &c__1, dum, &c__1, &work[iwork]
  2609. , info);
  2610. iu = ie + *m;
  2611. /* Multiply right singular vectors of L in WORK(IR) by Q */
  2612. /* in A, storing result in WORK(IU) and copying to A */
  2613. /* (Workspace: need M*M + 2*M, prefer M*M + M*N + M) */
  2614. i__2 = *n;
  2615. i__3 = chunk;
  2616. for (i__ = 1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  2617. i__3) {
  2618. /* Computing MIN */
  2619. i__4 = *n - i__ + 1;
  2620. blk = f2cmin(i__4,chunk);
  2621. dgemm_("N", "N", m, &blk, m, &c_b79, &work[ir], &
  2622. ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b57, &
  2623. work[iu], &ldwrku);
  2624. dlacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ *
  2625. a_dim1 + 1], lda);
  2626. /* L30: */
  2627. }
  2628. } else {
  2629. /* Insufficient workspace for a fast algorithm */
  2630. ie = 1;
  2631. itauq = ie + *m;
  2632. itaup = itauq + *m;
  2633. iwork = itaup + *m;
  2634. /* Bidiagonalize A */
  2635. /* (Workspace: need 3*M + N, prefer 3*M + (M + N)*NB) */
  2636. i__3 = *lwork - iwork + 1;
  2637. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  2638. itauq], &work[itaup], &work[iwork], &i__3, &ierr);
  2639. /* Generate right vectors bidiagonalizing A */
  2640. /* (Workspace: need 4*M, prefer 3*M + M*NB) */
  2641. i__3 = *lwork - iwork + 1;
  2642. dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
  2643. work[iwork], &i__3, &ierr);
  2644. iwork = ie + *m;
  2645. /* Perform bidiagonal QR iteration, computing right */
  2646. /* singular vectors of A in A */
  2647. /* (Workspace: need BDSPAC) */
  2648. dbdsqr_("L", m, n, &c__0, &c__0, &s[1], &work[ie], &a[
  2649. a_offset], lda, dum, &c__1, dum, &c__1, &work[
  2650. iwork], info);
  2651. }
  2652. } else if (wntvo && wntuas) {
  2653. /* Path 3t(N much larger than M, JOBU='S' or 'A', JOBVT='O') */
  2654. /* M right singular vectors to be overwritten on A and */
  2655. /* M left singular vectors to be computed in U */
  2656. /* Computing MAX */
  2657. i__3 = *m << 2;
  2658. if (*lwork >= *m * *m + f2cmax(i__3,bdspac)) {
  2659. /* Sufficient workspace for a fast algorithm */
  2660. ir = 1;
  2661. /* Computing MAX */
  2662. i__3 = wrkbl, i__2 = *lda * *n + *m;
  2663. if (*lwork >= f2cmax(i__3,i__2) + *lda * *m) {
  2664. /* WORK(IU) is LDA by N and WORK(IR) is LDA by M */
  2665. ldwrku = *lda;
  2666. chunk = *n;
  2667. ldwrkr = *lda;
  2668. } else /* if(complicated condition) */ {
  2669. /* Computing MAX */
  2670. i__3 = wrkbl, i__2 = *lda * *n + *m;
  2671. if (*lwork >= f2cmax(i__3,i__2) + *m * *m) {
  2672. /* WORK(IU) is LDA by N and WORK(IR) is M by M */
  2673. ldwrku = *lda;
  2674. chunk = *n;
  2675. ldwrkr = *m;
  2676. } else {
  2677. /* WORK(IU) is M by CHUNK and WORK(IR) is M by M */
  2678. ldwrku = *m;
  2679. chunk = (*lwork - *m * *m - *m) / *m;
  2680. ldwrkr = *m;
  2681. }
  2682. }
  2683. itau = ir + ldwrkr * *m;
  2684. iwork = itau + *m;
  2685. /* Compute A=L*Q */
  2686. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  2687. i__3 = *lwork - iwork + 1;
  2688. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
  2689. , &i__3, &ierr);
  2690. /* Copy L to U, zeroing about above it */
  2691. dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  2692. i__3 = *m - 1;
  2693. i__2 = *m - 1;
  2694. dlaset_("U", &i__3, &i__2, &c_b57, &c_b57, &u[(u_dim1 <<
  2695. 1) + 1], ldu);
  2696. /* Generate Q in A */
  2697. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  2698. i__3 = *lwork - iwork + 1;
  2699. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
  2700. iwork], &i__3, &ierr);
  2701. ie = itau;
  2702. itauq = ie + *m;
  2703. itaup = itauq + *m;
  2704. iwork = itaup + *m;
  2705. /* Bidiagonalize L in U, copying result to WORK(IR) */
  2706. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */
  2707. i__3 = *lwork - iwork + 1;
  2708. dgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], &work[
  2709. itauq], &work[itaup], &work[iwork], &i__3, &ierr);
  2710. dlacpy_("U", m, m, &u[u_offset], ldu, &work[ir], &ldwrkr);
  2711. /* Generate right vectors bidiagonalizing L in WORK(IR) */
  2712. /* (Workspace: need M*M + 4*M-1, prefer M*M + 3*M + (M-1)*NB) */
  2713. i__3 = *lwork - iwork + 1;
  2714. dorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup], &
  2715. work[iwork], &i__3, &ierr);
  2716. /* Generate left vectors bidiagonalizing L in U */
  2717. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + M*NB) */
  2718. i__3 = *lwork - iwork + 1;
  2719. dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &
  2720. work[iwork], &i__3, &ierr);
  2721. iwork = ie + *m;
  2722. /* Perform bidiagonal QR iteration, computing left */
  2723. /* singular vectors of L in U, and computing right */
  2724. /* singular vectors of L in WORK(IR) */
  2725. /* (Workspace: need M*M + BDSPAC) */
  2726. dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[ir],
  2727. &ldwrkr, &u[u_offset], ldu, dum, &c__1, &work[
  2728. iwork], info);
  2729. iu = ie + *m;
  2730. /* Multiply right singular vectors of L in WORK(IR) by Q */
  2731. /* in A, storing result in WORK(IU) and copying to A */
  2732. /* (Workspace: need M*M + 2*M, prefer M*M + M*N + M)) */
  2733. i__3 = *n;
  2734. i__2 = chunk;
  2735. for (i__ = 1; i__2 < 0 ? i__ >= i__3 : i__ <= i__3; i__ +=
  2736. i__2) {
  2737. /* Computing MIN */
  2738. i__4 = *n - i__ + 1;
  2739. blk = f2cmin(i__4,chunk);
  2740. dgemm_("N", "N", m, &blk, m, &c_b79, &work[ir], &
  2741. ldwrkr, &a[i__ * a_dim1 + 1], lda, &c_b57, &
  2742. work[iu], &ldwrku);
  2743. dlacpy_("F", m, &blk, &work[iu], &ldwrku, &a[i__ *
  2744. a_dim1 + 1], lda);
  2745. /* L40: */
  2746. }
  2747. } else {
  2748. /* Insufficient workspace for a fast algorithm */
  2749. itau = 1;
  2750. iwork = itau + *m;
  2751. /* Compute A=L*Q */
  2752. /* (Workspace: need 2*M, prefer M + M*NB) */
  2753. i__2 = *lwork - iwork + 1;
  2754. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork]
  2755. , &i__2, &ierr);
  2756. /* Copy L to U, zeroing out above it */
  2757. dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  2758. i__2 = *m - 1;
  2759. i__3 = *m - 1;
  2760. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1 <<
  2761. 1) + 1], ldu);
  2762. /* Generate Q in A */
  2763. /* (Workspace: need 2*M, prefer M + M*NB) */
  2764. i__2 = *lwork - iwork + 1;
  2765. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[
  2766. iwork], &i__2, &ierr);
  2767. ie = itau;
  2768. itauq = ie + *m;
  2769. itaup = itauq + *m;
  2770. iwork = itaup + *m;
  2771. /* Bidiagonalize L in U */
  2772. /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */
  2773. i__2 = *lwork - iwork + 1;
  2774. dgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], &work[
  2775. itauq], &work[itaup], &work[iwork], &i__2, &ierr);
  2776. /* Multiply right vectors bidiagonalizing L by Q in A */
  2777. /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */
  2778. i__2 = *lwork - iwork + 1;
  2779. dormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, &work[
  2780. itaup], &a[a_offset], lda, &work[iwork], &i__2, &
  2781. ierr);
  2782. /* Generate left vectors bidiagonalizing L in U */
  2783. /* (Workspace: need 4*M, prefer 3*M + M*NB) */
  2784. i__2 = *lwork - iwork + 1;
  2785. dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq], &
  2786. work[iwork], &i__2, &ierr);
  2787. iwork = ie + *m;
  2788. /* Perform bidiagonal QR iteration, computing left */
  2789. /* singular vectors of A in U and computing right */
  2790. /* singular vectors of A in A */
  2791. /* (Workspace: need BDSPAC) */
  2792. dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &a[
  2793. a_offset], lda, &u[u_offset], ldu, dum, &c__1, &
  2794. work[iwork], info);
  2795. }
  2796. } else if (wntvs) {
  2797. if (wntun) {
  2798. /* Path 4t(N much larger than M, JOBU='N', JOBVT='S') */
  2799. /* M right singular vectors to be computed in VT and */
  2800. /* no left singular vectors to be computed */
  2801. /* Computing MAX */
  2802. i__2 = *m << 2;
  2803. if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) {
  2804. /* Sufficient workspace for a fast algorithm */
  2805. ir = 1;
  2806. if (*lwork >= wrkbl + *lda * *m) {
  2807. /* WORK(IR) is LDA by M */
  2808. ldwrkr = *lda;
  2809. } else {
  2810. /* WORK(IR) is M by M */
  2811. ldwrkr = *m;
  2812. }
  2813. itau = ir + ldwrkr * *m;
  2814. iwork = itau + *m;
  2815. /* Compute A=L*Q */
  2816. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  2817. i__2 = *lwork - iwork + 1;
  2818. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2819. iwork], &i__2, &ierr);
  2820. /* Copy L to WORK(IR), zeroing out above it */
  2821. dlacpy_("L", m, m, &a[a_offset], lda, &work[ir], &
  2822. ldwrkr);
  2823. i__2 = *m - 1;
  2824. i__3 = *m - 1;
  2825. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir +
  2826. ldwrkr], &ldwrkr);
  2827. /* Generate Q in A */
  2828. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  2829. i__2 = *lwork - iwork + 1;
  2830. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &
  2831. work[iwork], &i__2, &ierr);
  2832. ie = itau;
  2833. itauq = ie + *m;
  2834. itaup = itauq + *m;
  2835. iwork = itaup + *m;
  2836. /* Bidiagonalize L in WORK(IR) */
  2837. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */
  2838. i__2 = *lwork - iwork + 1;
  2839. dgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], &
  2840. work[itauq], &work[itaup], &work[iwork], &
  2841. i__2, &ierr);
  2842. /* Generate right vectors bidiagonalizing L in */
  2843. /* WORK(IR) */
  2844. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + (M-1)*NB) */
  2845. i__2 = *lwork - iwork + 1;
  2846. dorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup]
  2847. , &work[iwork], &i__2, &ierr);
  2848. iwork = ie + *m;
  2849. /* Perform bidiagonal QR iteration, computing right */
  2850. /* singular vectors of L in WORK(IR) */
  2851. /* (Workspace: need M*M + BDSPAC) */
  2852. dbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], &
  2853. work[ir], &ldwrkr, dum, &c__1, dum, &c__1, &
  2854. work[iwork], info);
  2855. /* Multiply right singular vectors of L in WORK(IR) by */
  2856. /* Q in A, storing result in VT */
  2857. /* (Workspace: need M*M) */
  2858. dgemm_("N", "N", m, n, m, &c_b79, &work[ir], &ldwrkr,
  2859. &a[a_offset], lda, &c_b57, &vt[vt_offset],
  2860. ldvt);
  2861. } else {
  2862. /* Insufficient workspace for a fast algorithm */
  2863. itau = 1;
  2864. iwork = itau + *m;
  2865. /* Compute A=L*Q */
  2866. /* (Workspace: need 2*M, prefer M + M*NB) */
  2867. i__2 = *lwork - iwork + 1;
  2868. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2869. iwork], &i__2, &ierr);
  2870. /* Copy result to VT */
  2871. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  2872. ldvt);
  2873. /* Generate Q in VT */
  2874. /* (Workspace: need 2*M, prefer M + M*NB) */
  2875. i__2 = *lwork - iwork + 1;
  2876. dorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
  2877. work[iwork], &i__2, &ierr);
  2878. ie = itau;
  2879. itauq = ie + *m;
  2880. itaup = itauq + *m;
  2881. iwork = itaup + *m;
  2882. /* Zero out above L in A */
  2883. i__2 = *m - 1;
  2884. i__3 = *m - 1;
  2885. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1
  2886. << 1) + 1], lda);
  2887. /* Bidiagonalize L in A */
  2888. /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */
  2889. i__2 = *lwork - iwork + 1;
  2890. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &
  2891. work[itauq], &work[itaup], &work[iwork], &
  2892. i__2, &ierr);
  2893. /* Multiply right vectors bidiagonalizing L by Q in VT */
  2894. /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */
  2895. i__2 = *lwork - iwork + 1;
  2896. dormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, &
  2897. work[itaup], &vt[vt_offset], ldvt, &work[
  2898. iwork], &i__2, &ierr);
  2899. iwork = ie + *m;
  2900. /* Perform bidiagonal QR iteration, computing right */
  2901. /* singular vectors of A in VT */
  2902. /* (Workspace: need BDSPAC) */
  2903. dbdsqr_("U", m, n, &c__0, &c__0, &s[1], &work[ie], &
  2904. vt[vt_offset], ldvt, dum, &c__1, dum, &c__1, &
  2905. work[iwork], info);
  2906. }
  2907. } else if (wntuo) {
  2908. /* Path 5t(N much larger than M, JOBU='O', JOBVT='S') */
  2909. /* M right singular vectors to be computed in VT and */
  2910. /* M left singular vectors to be overwritten on A */
  2911. /* Computing MAX */
  2912. i__2 = *m << 2;
  2913. if (*lwork >= (*m << 1) * *m + f2cmax(i__2,bdspac)) {
  2914. /* Sufficient workspace for a fast algorithm */
  2915. iu = 1;
  2916. if (*lwork >= wrkbl + (*lda << 1) * *m) {
  2917. /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */
  2918. ldwrku = *lda;
  2919. ir = iu + ldwrku * *m;
  2920. ldwrkr = *lda;
  2921. } else if (*lwork >= wrkbl + (*lda + *m) * *m) {
  2922. /* WORK(IU) is LDA by M and WORK(IR) is M by M */
  2923. ldwrku = *lda;
  2924. ir = iu + ldwrku * *m;
  2925. ldwrkr = *m;
  2926. } else {
  2927. /* WORK(IU) is M by M and WORK(IR) is M by M */
  2928. ldwrku = *m;
  2929. ir = iu + ldwrku * *m;
  2930. ldwrkr = *m;
  2931. }
  2932. itau = ir + ldwrkr * *m;
  2933. iwork = itau + *m;
  2934. /* Compute A=L*Q */
  2935. /* (Workspace: need 2*M*M + 2*M, prefer 2*M*M + M + M*NB) */
  2936. i__2 = *lwork - iwork + 1;
  2937. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  2938. iwork], &i__2, &ierr);
  2939. /* Copy L to WORK(IU), zeroing out below it */
  2940. dlacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
  2941. ldwrku);
  2942. i__2 = *m - 1;
  2943. i__3 = *m - 1;
  2944. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu +
  2945. ldwrku], &ldwrku);
  2946. /* Generate Q in A */
  2947. /* (Workspace: need 2*M*M + 2*M, prefer 2*M*M + M + M*NB) */
  2948. i__2 = *lwork - iwork + 1;
  2949. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &
  2950. work[iwork], &i__2, &ierr);
  2951. ie = itau;
  2952. itauq = ie + *m;
  2953. itaup = itauq + *m;
  2954. iwork = itaup + *m;
  2955. /* Bidiagonalize L in WORK(IU), copying result to */
  2956. /* WORK(IR) */
  2957. /* (Workspace: need 2*M*M + 4*M, */
  2958. /* prefer 2*M*M+3*M+2*M*NB) */
  2959. i__2 = *lwork - iwork + 1;
  2960. dgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], &
  2961. work[itauq], &work[itaup], &work[iwork], &
  2962. i__2, &ierr);
  2963. dlacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], &
  2964. ldwrkr);
  2965. /* Generate right bidiagonalizing vectors in WORK(IU) */
  2966. /* (Workspace: need 2*M*M + 4*M-1, */
  2967. /* prefer 2*M*M+3*M+(M-1)*NB) */
  2968. i__2 = *lwork - iwork + 1;
  2969. dorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
  2970. , &work[iwork], &i__2, &ierr);
  2971. /* Generate left bidiagonalizing vectors in WORK(IR) */
  2972. /* (Workspace: need 2*M*M + 4*M, prefer 2*M*M + 3*M + M*NB) */
  2973. i__2 = *lwork - iwork + 1;
  2974. dorgbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq]
  2975. , &work[iwork], &i__2, &ierr);
  2976. iwork = ie + *m;
  2977. /* Perform bidiagonal QR iteration, computing left */
  2978. /* singular vectors of L in WORK(IR) and computing */
  2979. /* right singular vectors of L in WORK(IU) */
  2980. /* (Workspace: need 2*M*M + BDSPAC) */
  2981. dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[
  2982. iu], &ldwrku, &work[ir], &ldwrkr, dum, &c__1,
  2983. &work[iwork], info);
  2984. /* Multiply right singular vectors of L in WORK(IU) by */
  2985. /* Q in A, storing result in VT */
  2986. /* (Workspace: need M*M) */
  2987. dgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku,
  2988. &a[a_offset], lda, &c_b57, &vt[vt_offset],
  2989. ldvt);
  2990. /* Copy left singular vectors of L to A */
  2991. /* (Workspace: need M*M) */
  2992. dlacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset],
  2993. lda);
  2994. } else {
  2995. /* Insufficient workspace for a fast algorithm */
  2996. itau = 1;
  2997. iwork = itau + *m;
  2998. /* Compute A=L*Q, copying result to VT */
  2999. /* (Workspace: need 2*M, prefer M + M*NB) */
  3000. i__2 = *lwork - iwork + 1;
  3001. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3002. iwork], &i__2, &ierr);
  3003. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  3004. ldvt);
  3005. /* Generate Q in VT */
  3006. /* (Workspace: need 2*M, prefer M + M*NB) */
  3007. i__2 = *lwork - iwork + 1;
  3008. dorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
  3009. work[iwork], &i__2, &ierr);
  3010. ie = itau;
  3011. itauq = ie + *m;
  3012. itaup = itauq + *m;
  3013. iwork = itaup + *m;
  3014. /* Zero out above L in A */
  3015. i__2 = *m - 1;
  3016. i__3 = *m - 1;
  3017. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1
  3018. << 1) + 1], lda);
  3019. /* Bidiagonalize L in A */
  3020. /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */
  3021. i__2 = *lwork - iwork + 1;
  3022. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &
  3023. work[itauq], &work[itaup], &work[iwork], &
  3024. i__2, &ierr);
  3025. /* Multiply right vectors bidiagonalizing L by Q in VT */
  3026. /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */
  3027. i__2 = *lwork - iwork + 1;
  3028. dormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, &
  3029. work[itaup], &vt[vt_offset], ldvt, &work[
  3030. iwork], &i__2, &ierr);
  3031. /* Generate left bidiagonalizing vectors of L in A */
  3032. /* (Workspace: need 4*M, prefer 3*M + M*NB) */
  3033. i__2 = *lwork - iwork + 1;
  3034. dorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq],
  3035. &work[iwork], &i__2, &ierr);
  3036. iwork = ie + *m;
  3037. /* Perform bidiagonal QR iteration, compute left */
  3038. /* singular vectors of A in A and compute right */
  3039. /* singular vectors of A in VT */
  3040. /* (Workspace: need BDSPAC) */
  3041. dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[
  3042. vt_offset], ldvt, &a[a_offset], lda, dum, &
  3043. c__1, &work[iwork], info);
  3044. }
  3045. } else if (wntuas) {
  3046. /* Path 6t(N much larger than M, JOBU='S' or 'A', */
  3047. /* JOBVT='S') */
  3048. /* M right singular vectors to be computed in VT and */
  3049. /* M left singular vectors to be computed in U */
  3050. /* Computing MAX */
  3051. i__2 = *m << 2;
  3052. if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) {
  3053. /* Sufficient workspace for a fast algorithm */
  3054. iu = 1;
  3055. if (*lwork >= wrkbl + *lda * *m) {
  3056. /* WORK(IU) is LDA by N */
  3057. ldwrku = *lda;
  3058. } else {
  3059. /* WORK(IU) is LDA by M */
  3060. ldwrku = *m;
  3061. }
  3062. itau = iu + ldwrku * *m;
  3063. iwork = itau + *m;
  3064. /* Compute A=L*Q */
  3065. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  3066. i__2 = *lwork - iwork + 1;
  3067. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3068. iwork], &i__2, &ierr);
  3069. /* Copy L to WORK(IU), zeroing out above it */
  3070. dlacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
  3071. ldwrku);
  3072. i__2 = *m - 1;
  3073. i__3 = *m - 1;
  3074. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu +
  3075. ldwrku], &ldwrku);
  3076. /* Generate Q in A */
  3077. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  3078. i__2 = *lwork - iwork + 1;
  3079. dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &
  3080. work[iwork], &i__2, &ierr);
  3081. ie = itau;
  3082. itauq = ie + *m;
  3083. itaup = itauq + *m;
  3084. iwork = itaup + *m;
  3085. /* Bidiagonalize L in WORK(IU), copying result to U */
  3086. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */
  3087. i__2 = *lwork - iwork + 1;
  3088. dgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], &
  3089. work[itauq], &work[itaup], &work[iwork], &
  3090. i__2, &ierr);
  3091. dlacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset],
  3092. ldu);
  3093. /* Generate right bidiagonalizing vectors in WORK(IU) */
  3094. /* (Workspace: need M*M + 4*M-1, */
  3095. /* prefer M*M+3*M+(M-1)*NB) */
  3096. i__2 = *lwork - iwork + 1;
  3097. dorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
  3098. , &work[iwork], &i__2, &ierr);
  3099. /* Generate left bidiagonalizing vectors in U */
  3100. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + M*NB) */
  3101. i__2 = *lwork - iwork + 1;
  3102. dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
  3103. &work[iwork], &i__2, &ierr);
  3104. iwork = ie + *m;
  3105. /* Perform bidiagonal QR iteration, computing left */
  3106. /* singular vectors of L in U and computing right */
  3107. /* singular vectors of L in WORK(IU) */
  3108. /* (Workspace: need M*M + BDSPAC) */
  3109. dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[
  3110. iu], &ldwrku, &u[u_offset], ldu, dum, &c__1, &
  3111. work[iwork], info);
  3112. /* Multiply right singular vectors of L in WORK(IU) by */
  3113. /* Q in A, storing result in VT */
  3114. /* (Workspace: need M*M) */
  3115. dgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku,
  3116. &a[a_offset], lda, &c_b57, &vt[vt_offset],
  3117. ldvt);
  3118. } else {
  3119. /* Insufficient workspace for a fast algorithm */
  3120. itau = 1;
  3121. iwork = itau + *m;
  3122. /* Compute A=L*Q, copying result to VT */
  3123. /* (Workspace: need 2*M, prefer M + M*NB) */
  3124. i__2 = *lwork - iwork + 1;
  3125. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3126. iwork], &i__2, &ierr);
  3127. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  3128. ldvt);
  3129. /* Generate Q in VT */
  3130. /* (Workspace: need 2*M, prefer M + M*NB) */
  3131. i__2 = *lwork - iwork + 1;
  3132. dorglq_(m, n, m, &vt[vt_offset], ldvt, &work[itau], &
  3133. work[iwork], &i__2, &ierr);
  3134. /* Copy L to U, zeroing out above it */
  3135. dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset],
  3136. ldu);
  3137. i__2 = *m - 1;
  3138. i__3 = *m - 1;
  3139. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1
  3140. << 1) + 1], ldu);
  3141. ie = itau;
  3142. itauq = ie + *m;
  3143. itaup = itauq + *m;
  3144. iwork = itaup + *m;
  3145. /* Bidiagonalize L in U */
  3146. /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */
  3147. i__2 = *lwork - iwork + 1;
  3148. dgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], &
  3149. work[itauq], &work[itaup], &work[iwork], &
  3150. i__2, &ierr);
  3151. /* Multiply right bidiagonalizing vectors in U by Q */
  3152. /* in VT */
  3153. /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */
  3154. i__2 = *lwork - iwork + 1;
  3155. dormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, &
  3156. work[itaup], &vt[vt_offset], ldvt, &work[
  3157. iwork], &i__2, &ierr);
  3158. /* Generate left bidiagonalizing vectors in U */
  3159. /* (Workspace: need 4*M, prefer 3*M + M*NB) */
  3160. i__2 = *lwork - iwork + 1;
  3161. dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
  3162. &work[iwork], &i__2, &ierr);
  3163. iwork = ie + *m;
  3164. /* Perform bidiagonal QR iteration, computing left */
  3165. /* singular vectors of A in U and computing right */
  3166. /* singular vectors of A in VT */
  3167. /* (Workspace: need BDSPAC) */
  3168. dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[
  3169. vt_offset], ldvt, &u[u_offset], ldu, dum, &
  3170. c__1, &work[iwork], info);
  3171. }
  3172. }
  3173. } else if (wntva) {
  3174. if (wntun) {
  3175. /* Path 7t(N much larger than M, JOBU='N', JOBVT='A') */
  3176. /* N right singular vectors to be computed in VT and */
  3177. /* no left singular vectors to be computed */
  3178. /* Computing MAX */
  3179. i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3);
  3180. if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) {
  3181. /* Sufficient workspace for a fast algorithm */
  3182. ir = 1;
  3183. if (*lwork >= wrkbl + *lda * *m) {
  3184. /* WORK(IR) is LDA by M */
  3185. ldwrkr = *lda;
  3186. } else {
  3187. /* WORK(IR) is M by M */
  3188. ldwrkr = *m;
  3189. }
  3190. itau = ir + ldwrkr * *m;
  3191. iwork = itau + *m;
  3192. /* Compute A=L*Q, copying result to VT */
  3193. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  3194. i__2 = *lwork - iwork + 1;
  3195. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3196. iwork], &i__2, &ierr);
  3197. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  3198. ldvt);
  3199. /* Copy L to WORK(IR), zeroing out above it */
  3200. dlacpy_("L", m, m, &a[a_offset], lda, &work[ir], &
  3201. ldwrkr);
  3202. i__2 = *m - 1;
  3203. i__3 = *m - 1;
  3204. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[ir +
  3205. ldwrkr], &ldwrkr);
  3206. /* Generate Q in VT */
  3207. /* (Workspace: need M*M + M + N, prefer M*M + M + N*NB) */
  3208. i__2 = *lwork - iwork + 1;
  3209. dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
  3210. work[iwork], &i__2, &ierr);
  3211. ie = itau;
  3212. itauq = ie + *m;
  3213. itaup = itauq + *m;
  3214. iwork = itaup + *m;
  3215. /* Bidiagonalize L in WORK(IR) */
  3216. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */
  3217. i__2 = *lwork - iwork + 1;
  3218. dgebrd_(m, m, &work[ir], &ldwrkr, &s[1], &work[ie], &
  3219. work[itauq], &work[itaup], &work[iwork], &
  3220. i__2, &ierr);
  3221. /* Generate right bidiagonalizing vectors in WORK(IR) */
  3222. /* (Workspace: need M*M + 4*M-1, */
  3223. /* prefer M*M+3*M+(M-1)*NB) */
  3224. i__2 = *lwork - iwork + 1;
  3225. dorgbr_("P", m, m, m, &work[ir], &ldwrkr, &work[itaup]
  3226. , &work[iwork], &i__2, &ierr);
  3227. iwork = ie + *m;
  3228. /* Perform bidiagonal QR iteration, computing right */
  3229. /* singular vectors of L in WORK(IR) */
  3230. /* (Workspace: need M*M + BDSPAC) */
  3231. dbdsqr_("U", m, m, &c__0, &c__0, &s[1], &work[ie], &
  3232. work[ir], &ldwrkr, dum, &c__1, dum, &c__1, &
  3233. work[iwork], info);
  3234. /* Multiply right singular vectors of L in WORK(IR) by */
  3235. /* Q in VT, storing result in A */
  3236. /* (Workspace: need M*M) */
  3237. dgemm_("N", "N", m, n, m, &c_b79, &work[ir], &ldwrkr,
  3238. &vt[vt_offset], ldvt, &c_b57, &a[a_offset],
  3239. lda);
  3240. /* Copy right singular vectors of A from A to VT */
  3241. dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset],
  3242. ldvt);
  3243. } else {
  3244. /* Insufficient workspace for a fast algorithm */
  3245. itau = 1;
  3246. iwork = itau + *m;
  3247. /* Compute A=L*Q, copying result to VT */
  3248. /* (Workspace: need 2*M, prefer M + M*NB) */
  3249. i__2 = *lwork - iwork + 1;
  3250. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3251. iwork], &i__2, &ierr);
  3252. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  3253. ldvt);
  3254. /* Generate Q in VT */
  3255. /* (Workspace: need M + N, prefer M + N*NB) */
  3256. i__2 = *lwork - iwork + 1;
  3257. dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
  3258. work[iwork], &i__2, &ierr);
  3259. ie = itau;
  3260. itauq = ie + *m;
  3261. itaup = itauq + *m;
  3262. iwork = itaup + *m;
  3263. /* Zero out above L in A */
  3264. i__2 = *m - 1;
  3265. i__3 = *m - 1;
  3266. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1
  3267. << 1) + 1], lda);
  3268. /* Bidiagonalize L in A */
  3269. /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */
  3270. i__2 = *lwork - iwork + 1;
  3271. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &
  3272. work[itauq], &work[itaup], &work[iwork], &
  3273. i__2, &ierr);
  3274. /* Multiply right bidiagonalizing vectors in A by Q */
  3275. /* in VT */
  3276. /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */
  3277. i__2 = *lwork - iwork + 1;
  3278. dormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, &
  3279. work[itaup], &vt[vt_offset], ldvt, &work[
  3280. iwork], &i__2, &ierr);
  3281. iwork = ie + *m;
  3282. /* Perform bidiagonal QR iteration, computing right */
  3283. /* singular vectors of A in VT */
  3284. /* (Workspace: need BDSPAC) */
  3285. dbdsqr_("U", m, n, &c__0, &c__0, &s[1], &work[ie], &
  3286. vt[vt_offset], ldvt, dum, &c__1, dum, &c__1, &
  3287. work[iwork], info);
  3288. }
  3289. } else if (wntuo) {
  3290. /* Path 8t(N much larger than M, JOBU='O', JOBVT='A') */
  3291. /* N right singular vectors to be computed in VT and */
  3292. /* M left singular vectors to be overwritten on A */
  3293. /* Computing MAX */
  3294. i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3);
  3295. if (*lwork >= (*m << 1) * *m + f2cmax(i__2,bdspac)) {
  3296. /* Sufficient workspace for a fast algorithm */
  3297. iu = 1;
  3298. if (*lwork >= wrkbl + (*lda << 1) * *m) {
  3299. /* WORK(IU) is LDA by M and WORK(IR) is LDA by M */
  3300. ldwrku = *lda;
  3301. ir = iu + ldwrku * *m;
  3302. ldwrkr = *lda;
  3303. } else if (*lwork >= wrkbl + (*lda + *m) * *m) {
  3304. /* WORK(IU) is LDA by M and WORK(IR) is M by M */
  3305. ldwrku = *lda;
  3306. ir = iu + ldwrku * *m;
  3307. ldwrkr = *m;
  3308. } else {
  3309. /* WORK(IU) is M by M and WORK(IR) is M by M */
  3310. ldwrku = *m;
  3311. ir = iu + ldwrku * *m;
  3312. ldwrkr = *m;
  3313. }
  3314. itau = ir + ldwrkr * *m;
  3315. iwork = itau + *m;
  3316. /* Compute A=L*Q, copying result to VT */
  3317. /* (Workspace: need 2*M*M + 2*M, prefer 2*M*M + M + M*NB) */
  3318. i__2 = *lwork - iwork + 1;
  3319. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3320. iwork], &i__2, &ierr);
  3321. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  3322. ldvt);
  3323. /* Generate Q in VT */
  3324. /* (Workspace: need 2*M*M + M + N, prefer 2*M*M + M + N*NB) */
  3325. i__2 = *lwork - iwork + 1;
  3326. dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
  3327. work[iwork], &i__2, &ierr);
  3328. /* Copy L to WORK(IU), zeroing out above it */
  3329. dlacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
  3330. ldwrku);
  3331. i__2 = *m - 1;
  3332. i__3 = *m - 1;
  3333. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu +
  3334. ldwrku], &ldwrku);
  3335. ie = itau;
  3336. itauq = ie + *m;
  3337. itaup = itauq + *m;
  3338. iwork = itaup + *m;
  3339. /* Bidiagonalize L in WORK(IU), copying result to */
  3340. /* WORK(IR) */
  3341. /* (Workspace: need 2*M*M + 4*M, */
  3342. /* prefer 2*M*M+3*M+2*M*NB) */
  3343. i__2 = *lwork - iwork + 1;
  3344. dgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], &
  3345. work[itauq], &work[itaup], &work[iwork], &
  3346. i__2, &ierr);
  3347. dlacpy_("L", m, m, &work[iu], &ldwrku, &work[ir], &
  3348. ldwrkr);
  3349. /* Generate right bidiagonalizing vectors in WORK(IU) */
  3350. /* (Workspace: need 2*M*M + 4*M-1, */
  3351. /* prefer 2*M*M+3*M+(M-1)*NB) */
  3352. i__2 = *lwork - iwork + 1;
  3353. dorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
  3354. , &work[iwork], &i__2, &ierr);
  3355. /* Generate left bidiagonalizing vectors in WORK(IR) */
  3356. /* (Workspace: need 2*M*M + 4*M, prefer 2*M*M + 3*M + M*NB) */
  3357. i__2 = *lwork - iwork + 1;
  3358. dorgbr_("Q", m, m, m, &work[ir], &ldwrkr, &work[itauq]
  3359. , &work[iwork], &i__2, &ierr);
  3360. iwork = ie + *m;
  3361. /* Perform bidiagonal QR iteration, computing left */
  3362. /* singular vectors of L in WORK(IR) and computing */
  3363. /* right singular vectors of L in WORK(IU) */
  3364. /* (Workspace: need 2*M*M + BDSPAC) */
  3365. dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[
  3366. iu], &ldwrku, &work[ir], &ldwrkr, dum, &c__1,
  3367. &work[iwork], info);
  3368. /* Multiply right singular vectors of L in WORK(IU) by */
  3369. /* Q in VT, storing result in A */
  3370. /* (Workspace: need M*M) */
  3371. dgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku,
  3372. &vt[vt_offset], ldvt, &c_b57, &a[a_offset],
  3373. lda);
  3374. /* Copy right singular vectors of A from A to VT */
  3375. dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset],
  3376. ldvt);
  3377. /* Copy left singular vectors of A from WORK(IR) to A */
  3378. dlacpy_("F", m, m, &work[ir], &ldwrkr, &a[a_offset],
  3379. lda);
  3380. } else {
  3381. /* Insufficient workspace for a fast algorithm */
  3382. itau = 1;
  3383. iwork = itau + *m;
  3384. /* Compute A=L*Q, copying result to VT */
  3385. /* (Workspace: need 2*M, prefer M + M*NB) */
  3386. i__2 = *lwork - iwork + 1;
  3387. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3388. iwork], &i__2, &ierr);
  3389. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  3390. ldvt);
  3391. /* Generate Q in VT */
  3392. /* (Workspace: need M + N, prefer M + N*NB) */
  3393. i__2 = *lwork - iwork + 1;
  3394. dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
  3395. work[iwork], &i__2, &ierr);
  3396. ie = itau;
  3397. itauq = ie + *m;
  3398. itaup = itauq + *m;
  3399. iwork = itaup + *m;
  3400. /* Zero out above L in A */
  3401. i__2 = *m - 1;
  3402. i__3 = *m - 1;
  3403. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &a[(a_dim1
  3404. << 1) + 1], lda);
  3405. /* Bidiagonalize L in A */
  3406. /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */
  3407. i__2 = *lwork - iwork + 1;
  3408. dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &
  3409. work[itauq], &work[itaup], &work[iwork], &
  3410. i__2, &ierr);
  3411. /* Multiply right bidiagonalizing vectors in A by Q */
  3412. /* in VT */
  3413. /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */
  3414. i__2 = *lwork - iwork + 1;
  3415. dormbr_("P", "L", "T", m, n, m, &a[a_offset], lda, &
  3416. work[itaup], &vt[vt_offset], ldvt, &work[
  3417. iwork], &i__2, &ierr);
  3418. /* Generate left bidiagonalizing vectors in A */
  3419. /* (Workspace: need 4*M, prefer 3*M + M*NB) */
  3420. i__2 = *lwork - iwork + 1;
  3421. dorgbr_("Q", m, m, m, &a[a_offset], lda, &work[itauq],
  3422. &work[iwork], &i__2, &ierr);
  3423. iwork = ie + *m;
  3424. /* Perform bidiagonal QR iteration, computing left */
  3425. /* singular vectors of A in A and computing right */
  3426. /* singular vectors of A in VT */
  3427. /* (Workspace: need BDSPAC) */
  3428. dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[
  3429. vt_offset], ldvt, &a[a_offset], lda, dum, &
  3430. c__1, &work[iwork], info);
  3431. }
  3432. } else if (wntuas) {
  3433. /* Path 9t(N much larger than M, JOBU='S' or 'A', */
  3434. /* JOBVT='A') */
  3435. /* N right singular vectors to be computed in VT and */
  3436. /* M left singular vectors to be computed in U */
  3437. /* Computing MAX */
  3438. i__2 = *n + *m, i__3 = *m << 2, i__2 = f2cmax(i__2,i__3);
  3439. if (*lwork >= *m * *m + f2cmax(i__2,bdspac)) {
  3440. /* Sufficient workspace for a fast algorithm */
  3441. iu = 1;
  3442. if (*lwork >= wrkbl + *lda * *m) {
  3443. /* WORK(IU) is LDA by M */
  3444. ldwrku = *lda;
  3445. } else {
  3446. /* WORK(IU) is M by M */
  3447. ldwrku = *m;
  3448. }
  3449. itau = iu + ldwrku * *m;
  3450. iwork = itau + *m;
  3451. /* Compute A=L*Q, copying result to VT */
  3452. /* (Workspace: need M*M + 2*M, prefer M*M + M + M*NB) */
  3453. i__2 = *lwork - iwork + 1;
  3454. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3455. iwork], &i__2, &ierr);
  3456. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  3457. ldvt);
  3458. /* Generate Q in VT */
  3459. /* (Workspace: need M*M + M + N, prefer M*M + M + N*NB) */
  3460. i__2 = *lwork - iwork + 1;
  3461. dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
  3462. work[iwork], &i__2, &ierr);
  3463. /* Copy L to WORK(IU), zeroing out above it */
  3464. dlacpy_("L", m, m, &a[a_offset], lda, &work[iu], &
  3465. ldwrku);
  3466. i__2 = *m - 1;
  3467. i__3 = *m - 1;
  3468. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &work[iu +
  3469. ldwrku], &ldwrku);
  3470. ie = itau;
  3471. itauq = ie + *m;
  3472. itaup = itauq + *m;
  3473. iwork = itaup + *m;
  3474. /* Bidiagonalize L in WORK(IU), copying result to U */
  3475. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + 2*M*NB) */
  3476. i__2 = *lwork - iwork + 1;
  3477. dgebrd_(m, m, &work[iu], &ldwrku, &s[1], &work[ie], &
  3478. work[itauq], &work[itaup], &work[iwork], &
  3479. i__2, &ierr);
  3480. dlacpy_("L", m, m, &work[iu], &ldwrku, &u[u_offset],
  3481. ldu);
  3482. /* Generate right bidiagonalizing vectors in WORK(IU) */
  3483. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + (M-1)*NB) */
  3484. i__2 = *lwork - iwork + 1;
  3485. dorgbr_("P", m, m, m, &work[iu], &ldwrku, &work[itaup]
  3486. , &work[iwork], &i__2, &ierr);
  3487. /* Generate left bidiagonalizing vectors in U */
  3488. /* (Workspace: need M*M + 4*M, prefer M*M + 3*M + M*NB) */
  3489. i__2 = *lwork - iwork + 1;
  3490. dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
  3491. &work[iwork], &i__2, &ierr);
  3492. iwork = ie + *m;
  3493. /* Perform bidiagonal QR iteration, computing left */
  3494. /* singular vectors of L in U and computing right */
  3495. /* singular vectors of L in WORK(IU) */
  3496. /* (Workspace: need M*M + BDSPAC) */
  3497. dbdsqr_("U", m, m, m, &c__0, &s[1], &work[ie], &work[
  3498. iu], &ldwrku, &u[u_offset], ldu, dum, &c__1, &
  3499. work[iwork], info);
  3500. /* Multiply right singular vectors of L in WORK(IU) by */
  3501. /* Q in VT, storing result in A */
  3502. /* (Workspace: need M*M) */
  3503. dgemm_("N", "N", m, n, m, &c_b79, &work[iu], &ldwrku,
  3504. &vt[vt_offset], ldvt, &c_b57, &a[a_offset],
  3505. lda);
  3506. /* Copy right singular vectors of A from A to VT */
  3507. dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset],
  3508. ldvt);
  3509. } else {
  3510. /* Insufficient workspace for a fast algorithm */
  3511. itau = 1;
  3512. iwork = itau + *m;
  3513. /* Compute A=L*Q, copying result to VT */
  3514. /* (Workspace: need 2*M, prefer M + M*NB) */
  3515. i__2 = *lwork - iwork + 1;
  3516. dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[
  3517. iwork], &i__2, &ierr);
  3518. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset],
  3519. ldvt);
  3520. /* Generate Q in VT */
  3521. /* (Workspace: need M + N, prefer M + N*NB) */
  3522. i__2 = *lwork - iwork + 1;
  3523. dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &
  3524. work[iwork], &i__2, &ierr);
  3525. /* Copy L to U, zeroing out above it */
  3526. dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset],
  3527. ldu);
  3528. i__2 = *m - 1;
  3529. i__3 = *m - 1;
  3530. dlaset_("U", &i__2, &i__3, &c_b57, &c_b57, &u[(u_dim1
  3531. << 1) + 1], ldu);
  3532. ie = itau;
  3533. itauq = ie + *m;
  3534. itaup = itauq + *m;
  3535. iwork = itaup + *m;
  3536. /* Bidiagonalize L in U */
  3537. /* (Workspace: need 4*M, prefer 3*M + 2*M*NB) */
  3538. i__2 = *lwork - iwork + 1;
  3539. dgebrd_(m, m, &u[u_offset], ldu, &s[1], &work[ie], &
  3540. work[itauq], &work[itaup], &work[iwork], &
  3541. i__2, &ierr);
  3542. /* Multiply right bidiagonalizing vectors in U by Q */
  3543. /* in VT */
  3544. /* (Workspace: need 3*M + N, prefer 3*M + N*NB) */
  3545. i__2 = *lwork - iwork + 1;
  3546. dormbr_("P", "L", "T", m, n, m, &u[u_offset], ldu, &
  3547. work[itaup], &vt[vt_offset], ldvt, &work[
  3548. iwork], &i__2, &ierr);
  3549. /* Generate left bidiagonalizing vectors in U */
  3550. /* (Workspace: need 4*M, prefer 3*M + M*NB) */
  3551. i__2 = *lwork - iwork + 1;
  3552. dorgbr_("Q", m, m, m, &u[u_offset], ldu, &work[itauq],
  3553. &work[iwork], &i__2, &ierr);
  3554. iwork = ie + *m;
  3555. /* Perform bidiagonal QR iteration, computing left */
  3556. /* singular vectors of A in U and computing right */
  3557. /* singular vectors of A in VT */
  3558. /* (Workspace: need BDSPAC) */
  3559. dbdsqr_("U", m, n, m, &c__0, &s[1], &work[ie], &vt[
  3560. vt_offset], ldvt, &u[u_offset], ldu, dum, &
  3561. c__1, &work[iwork], info);
  3562. }
  3563. }
  3564. }
  3565. } else {
  3566. /* N .LT. MNTHR */
  3567. /* Path 10t(N greater than M, but not much larger) */
  3568. /* Reduce to bidiagonal form without LQ decomposition */
  3569. ie = 1;
  3570. itauq = ie + *m;
  3571. itaup = itauq + *m;
  3572. iwork = itaup + *m;
  3573. /* Bidiagonalize A */
  3574. /* (Workspace: need 3*M + N, prefer 3*M + (M + N)*NB) */
  3575. i__2 = *lwork - iwork + 1;
  3576. dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  3577. work[itaup], &work[iwork], &i__2, &ierr);
  3578. if (wntuas) {
  3579. /* If left singular vectors desired in U, copy result to U */
  3580. /* and generate left bidiagonalizing vectors in U */
  3581. /* (Workspace: need 4*M-1, prefer 3*M + (M-1)*NB) */
  3582. dlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  3583. i__2 = *lwork - iwork + 1;
  3584. dorgbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
  3585. iwork], &i__2, &ierr);
  3586. }
  3587. if (wntvas) {
  3588. /* If right singular vectors desired in VT, copy result to */
  3589. /* VT and generate right bidiagonalizing vectors in VT */
  3590. /* (Workspace: need 3*M + NRVT, prefer 3*M + NRVT*NB) */
  3591. dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  3592. if (wntva) {
  3593. nrvt = *n;
  3594. }
  3595. if (wntvs) {
  3596. nrvt = *m;
  3597. }
  3598. i__2 = *lwork - iwork + 1;
  3599. dorgbr_("P", &nrvt, n, m, &vt[vt_offset], ldvt, &work[itaup],
  3600. &work[iwork], &i__2, &ierr);
  3601. }
  3602. if (wntuo) {
  3603. /* If left singular vectors desired in A, generate left */
  3604. /* bidiagonalizing vectors in A */
  3605. /* (Workspace: need 4*M-1, prefer 3*M + (M-1)*NB) */
  3606. i__2 = *lwork - iwork + 1;
  3607. dorgbr_("Q", m, m, n, &a[a_offset], lda, &work[itauq], &work[
  3608. iwork], &i__2, &ierr);
  3609. }
  3610. if (wntvo) {
  3611. /* If right singular vectors desired in A, generate right */
  3612. /* bidiagonalizing vectors in A */
  3613. /* (Workspace: need 4*M, prefer 3*M + M*NB) */
  3614. i__2 = *lwork - iwork + 1;
  3615. dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
  3616. iwork], &i__2, &ierr);
  3617. }
  3618. iwork = ie + *m;
  3619. if (wntuas || wntuo) {
  3620. nru = *m;
  3621. }
  3622. if (wntun) {
  3623. nru = 0;
  3624. }
  3625. if (wntvas || wntvo) {
  3626. ncvt = *n;
  3627. }
  3628. if (wntvn) {
  3629. ncvt = 0;
  3630. }
  3631. if (! wntuo && ! wntvo) {
  3632. /* Perform bidiagonal QR iteration, if desired, computing */
  3633. /* left singular vectors in U and computing right singular */
  3634. /* vectors in VT */
  3635. /* (Workspace: need BDSPAC) */
  3636. dbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[
  3637. vt_offset], ldvt, &u[u_offset], ldu, dum, &c__1, &
  3638. work[iwork], info);
  3639. } else if (! wntuo && wntvo) {
  3640. /* Perform bidiagonal QR iteration, if desired, computing */
  3641. /* left singular vectors in U and computing right singular */
  3642. /* vectors in A */
  3643. /* (Workspace: need BDSPAC) */
  3644. dbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &a[
  3645. a_offset], lda, &u[u_offset], ldu, dum, &c__1, &work[
  3646. iwork], info);
  3647. } else {
  3648. /* Perform bidiagonal QR iteration, if desired, computing */
  3649. /* left singular vectors in A and computing right singular */
  3650. /* vectors in VT */
  3651. /* (Workspace: need BDSPAC) */
  3652. dbdsqr_("L", m, &ncvt, &nru, &c__0, &s[1], &work[ie], &vt[
  3653. vt_offset], ldvt, &a[a_offset], lda, dum, &c__1, &
  3654. work[iwork], info);
  3655. }
  3656. }
  3657. }
  3658. /* If DBDSQR failed to converge, copy unconverged superdiagonals */
  3659. /* to WORK( 2:MINMN ) */
  3660. if (*info != 0) {
  3661. if (ie > 2) {
  3662. i__2 = minmn - 1;
  3663. for (i__ = 1; i__ <= i__2; ++i__) {
  3664. work[i__ + 1] = work[i__ + ie - 1];
  3665. /* L50: */
  3666. }
  3667. }
  3668. if (ie < 2) {
  3669. for (i__ = minmn - 1; i__ >= 1; --i__) {
  3670. work[i__ + 1] = work[i__ + ie - 1];
  3671. /* L60: */
  3672. }
  3673. }
  3674. }
  3675. /* Undo scaling if necessary */
  3676. if (iscl == 1) {
  3677. if (anrm > bignum) {
  3678. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  3679. minmn, &ierr);
  3680. }
  3681. if (*info != 0 && anrm > bignum) {
  3682. i__2 = minmn - 1;
  3683. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &i__2, &c__1, &work[2],
  3684. &minmn, &ierr);
  3685. }
  3686. if (anrm < smlnum) {
  3687. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  3688. minmn, &ierr);
  3689. }
  3690. if (*info != 0 && anrm < smlnum) {
  3691. i__2 = minmn - 1;
  3692. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &i__2, &c__1, &work[2],
  3693. &minmn, &ierr);
  3694. }
  3695. }
  3696. /* Return optimal workspace in WORK(1) */
  3697. work[1] = (doublereal) maxwrk;
  3698. return 0;
  3699. /* End of DGESVD */
  3700. } /* dgesvd_ */