You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgels.c 31 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static doublereal c_b33 = 0.;
  489. static integer c__0 = 0;
  490. /* > \brief <b> DGELS solves overdetermined or underdetermined systems for GE matrices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGELS + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgels.f
  497. "> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgels.f
  500. "> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgels.f
  503. "> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, */
  509. /* INFO ) */
  510. /* CHARACTER TRANS */
  511. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS */
  512. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DGELS solves overdetermined or underdetermined real linear systems */
  519. /* > involving an M-by-N matrix A, or its transpose, using a QR or LQ */
  520. /* > factorization of A. It is assumed that A has full rank. */
  521. /* > */
  522. /* > The following options are provided: */
  523. /* > */
  524. /* > 1. If TRANS = 'N' and m >= n: find the least squares solution of */
  525. /* > an overdetermined system, i.e., solve the least squares problem */
  526. /* > minimize || B - A*X ||. */
  527. /* > */
  528. /* > 2. If TRANS = 'N' and m < n: find the minimum norm solution of */
  529. /* > an underdetermined system A * X = B. */
  530. /* > */
  531. /* > 3. If TRANS = 'T' and m >= n: find the minimum norm solution of */
  532. /* > an underdetermined system A**T * X = B. */
  533. /* > */
  534. /* > 4. If TRANS = 'T' and m < n: find the least squares solution of */
  535. /* > an overdetermined system, i.e., solve the least squares problem */
  536. /* > minimize || B - A**T * X ||. */
  537. /* > */
  538. /* > Several right hand side vectors b and solution vectors x can be */
  539. /* > handled in a single call; they are stored as the columns of the */
  540. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  541. /* > matrix X. */
  542. /* > \endverbatim */
  543. /* Arguments: */
  544. /* ========== */
  545. /* > \param[in] TRANS */
  546. /* > \verbatim */
  547. /* > TRANS is CHARACTER*1 */
  548. /* > = 'N': the linear system involves A; */
  549. /* > = 'T': the linear system involves A**T. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] M */
  553. /* > \verbatim */
  554. /* > M is INTEGER */
  555. /* > The number of rows of the matrix A. M >= 0. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The number of columns of the matrix A. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] NRHS */
  565. /* > \verbatim */
  566. /* > NRHS is INTEGER */
  567. /* > The number of right hand sides, i.e., the number of */
  568. /* > columns of the matrices B and X. NRHS >=0. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in,out] A */
  572. /* > \verbatim */
  573. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  574. /* > On entry, the M-by-N matrix A. */
  575. /* > On exit, */
  576. /* > if M >= N, A is overwritten by details of its QR */
  577. /* > factorization as returned by DGEQRF; */
  578. /* > if M < N, A is overwritten by details of its LQ */
  579. /* > factorization as returned by DGELQF. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDA */
  583. /* > \verbatim */
  584. /* > LDA is INTEGER */
  585. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] B */
  589. /* > \verbatim */
  590. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  591. /* > On entry, the matrix B of right hand side vectors, stored */
  592. /* > columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
  593. /* > if TRANS = 'T'. */
  594. /* > On exit, if INFO = 0, B is overwritten by the solution */
  595. /* > vectors, stored columnwise: */
  596. /* > if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
  597. /* > squares solution vectors; the residual sum of squares for the */
  598. /* > solution in each column is given by the sum of squares of */
  599. /* > elements N+1 to M in that column; */
  600. /* > if TRANS = 'N' and m < n, rows 1 to N of B contain the */
  601. /* > minimum norm solution vectors; */
  602. /* > if TRANS = 'T' and m >= n, rows 1 to M of B contain the */
  603. /* > minimum norm solution vectors; */
  604. /* > if TRANS = 'T' and m < n, rows 1 to M of B contain the */
  605. /* > least squares solution vectors; the residual sum of squares */
  606. /* > for the solution in each column is given by the sum of */
  607. /* > squares of elements M+1 to N in that column. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LDB */
  611. /* > \verbatim */
  612. /* > LDB is INTEGER */
  613. /* > The leading dimension of the array B. LDB >= MAX(1,M,N). */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[out] WORK */
  617. /* > \verbatim */
  618. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  619. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LWORK */
  623. /* > \verbatim */
  624. /* > LWORK is INTEGER */
  625. /* > The dimension of the array WORK. */
  626. /* > LWORK >= f2cmax( 1, MN + f2cmax( MN, NRHS ) ). */
  627. /* > For optimal performance, */
  628. /* > LWORK >= f2cmax( 1, MN + f2cmax( MN, NRHS )*NB ). */
  629. /* > where MN = f2cmin(M,N) and NB is the optimum block size. */
  630. /* > */
  631. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  632. /* > only calculates the optimal size of the WORK array, returns */
  633. /* > this value as the first entry of the WORK array, and no error */
  634. /* > message related to LWORK is issued by XERBLA. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] INFO */
  638. /* > \verbatim */
  639. /* > INFO is INTEGER */
  640. /* > = 0: successful exit */
  641. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  642. /* > > 0: if INFO = i, the i-th diagonal element of the */
  643. /* > triangular factor of A is zero, so that A does not have */
  644. /* > full rank; the least squares solution could not be */
  645. /* > computed. */
  646. /* > \endverbatim */
  647. /* Authors: */
  648. /* ======== */
  649. /* > \author Univ. of Tennessee */
  650. /* > \author Univ. of California Berkeley */
  651. /* > \author Univ. of Colorado Denver */
  652. /* > \author NAG Ltd. */
  653. /* > \date December 2016 */
  654. /* > \ingroup doubleGEsolve */
  655. /* ===================================================================== */
  656. /* Subroutine */ int dgels_(char *trans, integer *m, integer *n, integer *
  657. nrhs, doublereal *a, integer *lda, doublereal *b, integer *ldb,
  658. doublereal *work, integer *lwork, integer *info)
  659. {
  660. /* System generated locals */
  661. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
  662. /* Local variables */
  663. doublereal anrm, bnrm;
  664. integer brow;
  665. logical tpsd;
  666. integer i__, j, iascl, ibscl;
  667. extern logical lsame_(char *, char *);
  668. integer wsize;
  669. doublereal rwork[1];
  670. extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
  671. integer nb;
  672. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  673. integer *, doublereal *, integer *, doublereal *);
  674. integer mn;
  675. extern /* Subroutine */ int dgelqf_(integer *, integer *, doublereal *,
  676. integer *, doublereal *, doublereal *, integer *, integer *),
  677. dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  678. integer *, integer *, doublereal *, integer *, integer *),
  679. dgeqrf_(integer *, integer *, doublereal *, integer *,
  680. doublereal *, doublereal *, integer *, integer *), dlaset_(char *,
  681. integer *, integer *, doublereal *, doublereal *, doublereal *,
  682. integer *), xerbla_(char *, integer *, ftnlen);
  683. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  684. integer *, integer *, ftnlen, ftnlen);
  685. integer scllen;
  686. doublereal bignum;
  687. extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *,
  688. integer *, doublereal *, integer *, doublereal *, doublereal *,
  689. integer *, doublereal *, integer *, integer *),
  690. dormqr_(char *, char *, integer *, integer *, integer *,
  691. doublereal *, integer *, doublereal *, doublereal *, integer *,
  692. doublereal *, integer *, integer *);
  693. doublereal smlnum;
  694. logical lquery;
  695. extern /* Subroutine */ int dtrtrs_(char *, char *, char *, integer *,
  696. integer *, doublereal *, integer *, doublereal *, integer *,
  697. integer *);
  698. /* -- LAPACK driver routine (version 3.7.0) -- */
  699. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  700. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  701. /* December 2016 */
  702. /* ===================================================================== */
  703. /* Test the input arguments. */
  704. /* Parameter adjustments */
  705. a_dim1 = *lda;
  706. a_offset = 1 + a_dim1 * 1;
  707. a -= a_offset;
  708. b_dim1 = *ldb;
  709. b_offset = 1 + b_dim1 * 1;
  710. b -= b_offset;
  711. --work;
  712. /* Function Body */
  713. *info = 0;
  714. mn = f2cmin(*m,*n);
  715. lquery = *lwork == -1;
  716. if (! (lsame_(trans, "N") || lsame_(trans, "T"))) {
  717. *info = -1;
  718. } else if (*m < 0) {
  719. *info = -2;
  720. } else if (*n < 0) {
  721. *info = -3;
  722. } else if (*nrhs < 0) {
  723. *info = -4;
  724. } else if (*lda < f2cmax(1,*m)) {
  725. *info = -6;
  726. } else /* if(complicated condition) */ {
  727. /* Computing MAX */
  728. i__1 = f2cmax(1,*m);
  729. if (*ldb < f2cmax(i__1,*n)) {
  730. *info = -8;
  731. } else /* if(complicated condition) */ {
  732. /* Computing MAX */
  733. i__1 = 1, i__2 = mn + f2cmax(mn,*nrhs);
  734. if (*lwork < f2cmax(i__1,i__2) && ! lquery) {
  735. *info = -10;
  736. }
  737. }
  738. }
  739. /* Figure out optimal block size */
  740. if (*info == 0 || *info == -10) {
  741. tpsd = TRUE_;
  742. if (lsame_(trans, "N")) {
  743. tpsd = FALSE_;
  744. }
  745. if (*m >= *n) {
  746. nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
  747. (ftnlen)1);
  748. if (tpsd) {
  749. /* Computing MAX */
  750. i__1 = nb, i__2 = ilaenv_(&c__1, "DORMQR", "LN", m, nrhs, n, &
  751. c_n1, (ftnlen)6, (ftnlen)2);
  752. nb = f2cmax(i__1,i__2);
  753. } else {
  754. /* Computing MAX */
  755. i__1 = nb, i__2 = ilaenv_(&c__1, "DORMQR", "LT", m, nrhs, n, &
  756. c_n1, (ftnlen)6, (ftnlen)2);
  757. nb = f2cmax(i__1,i__2);
  758. }
  759. } else {
  760. nb = ilaenv_(&c__1, "DGELQF", " ", m, n, &c_n1, &c_n1, (ftnlen)6,
  761. (ftnlen)1);
  762. if (tpsd) {
  763. /* Computing MAX */
  764. i__1 = nb, i__2 = ilaenv_(&c__1, "DORMLQ", "LT", n, nrhs, m, &
  765. c_n1, (ftnlen)6, (ftnlen)2);
  766. nb = f2cmax(i__1,i__2);
  767. } else {
  768. /* Computing MAX */
  769. i__1 = nb, i__2 = ilaenv_(&c__1, "DORMLQ", "LN", n, nrhs, m, &
  770. c_n1, (ftnlen)6, (ftnlen)2);
  771. nb = f2cmax(i__1,i__2);
  772. }
  773. }
  774. /* Computing MAX */
  775. i__1 = 1, i__2 = mn + f2cmax(mn,*nrhs) * nb;
  776. wsize = f2cmax(i__1,i__2);
  777. work[1] = (doublereal) wsize;
  778. }
  779. if (*info != 0) {
  780. i__1 = -(*info);
  781. xerbla_("DGELS ", &i__1, (ftnlen)6);
  782. return 0;
  783. } else if (lquery) {
  784. return 0;
  785. }
  786. /* Quick return if possible */
  787. /* Computing MIN */
  788. i__1 = f2cmin(*m,*n);
  789. if (f2cmin(i__1,*nrhs) == 0) {
  790. i__1 = f2cmax(*m,*n);
  791. dlaset_("Full", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);
  792. return 0;
  793. }
  794. /* Get machine parameters */
  795. smlnum = dlamch_("S") / dlamch_("P");
  796. bignum = 1. / smlnum;
  797. dlabad_(&smlnum, &bignum);
  798. /* Scale A, B if f2cmax element outside range [SMLNUM,BIGNUM] */
  799. anrm = dlange_("M", m, n, &a[a_offset], lda, rwork);
  800. iascl = 0;
  801. if (anrm > 0. && anrm < smlnum) {
  802. /* Scale matrix norm up to SMLNUM */
  803. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  804. info);
  805. iascl = 1;
  806. } else if (anrm > bignum) {
  807. /* Scale matrix norm down to BIGNUM */
  808. dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  809. info);
  810. iascl = 2;
  811. } else if (anrm == 0.) {
  812. /* Matrix all zero. Return zero solution. */
  813. i__1 = f2cmax(*m,*n);
  814. dlaset_("F", &i__1, nrhs, &c_b33, &c_b33, &b[b_offset], ldb);
  815. goto L50;
  816. }
  817. brow = *m;
  818. if (tpsd) {
  819. brow = *n;
  820. }
  821. bnrm = dlange_("M", &brow, nrhs, &b[b_offset], ldb, rwork);
  822. ibscl = 0;
  823. if (bnrm > 0. && bnrm < smlnum) {
  824. /* Scale matrix norm up to SMLNUM */
  825. dlascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset],
  826. ldb, info);
  827. ibscl = 1;
  828. } else if (bnrm > bignum) {
  829. /* Scale matrix norm down to BIGNUM */
  830. dlascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset],
  831. ldb, info);
  832. ibscl = 2;
  833. }
  834. if (*m >= *n) {
  835. /* compute QR factorization of A */
  836. i__1 = *lwork - mn;
  837. dgeqrf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
  838. ;
  839. /* workspace at least N, optimally N*NB */
  840. if (! tpsd) {
  841. /* Least-Squares Problem f2cmin || A * X - B || */
  842. /* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) */
  843. i__1 = *lwork - mn;
  844. dormqr_("Left", "Transpose", m, nrhs, n, &a[a_offset], lda, &work[
  845. 1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
  846. /* workspace at least NRHS, optimally NRHS*NB */
  847. /* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */
  848. dtrtrs_("Upper", "No transpose", "Non-unit", n, nrhs, &a[a_offset]
  849. , lda, &b[b_offset], ldb, info);
  850. if (*info > 0) {
  851. return 0;
  852. }
  853. scllen = *n;
  854. } else {
  855. /* Underdetermined system of equations A**T * X = B */
  856. /* B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) */
  857. dtrtrs_("Upper", "Transpose", "Non-unit", n, nrhs, &a[a_offset],
  858. lda, &b[b_offset], ldb, info);
  859. if (*info > 0) {
  860. return 0;
  861. }
  862. /* B(N+1:M,1:NRHS) = ZERO */
  863. i__1 = *nrhs;
  864. for (j = 1; j <= i__1; ++j) {
  865. i__2 = *m;
  866. for (i__ = *n + 1; i__ <= i__2; ++i__) {
  867. b[i__ + j * b_dim1] = 0.;
  868. /* L10: */
  869. }
  870. /* L20: */
  871. }
  872. /* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */
  873. i__1 = *lwork - mn;
  874. dormqr_("Left", "No transpose", m, nrhs, n, &a[a_offset], lda, &
  875. work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
  876. /* workspace at least NRHS, optimally NRHS*NB */
  877. scllen = *m;
  878. }
  879. } else {
  880. /* Compute LQ factorization of A */
  881. i__1 = *lwork - mn;
  882. dgelqf_(m, n, &a[a_offset], lda, &work[1], &work[mn + 1], &i__1, info)
  883. ;
  884. /* workspace at least M, optimally M*NB. */
  885. if (! tpsd) {
  886. /* underdetermined system of equations A * X = B */
  887. /* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */
  888. dtrtrs_("Lower", "No transpose", "Non-unit", m, nrhs, &a[a_offset]
  889. , lda, &b[b_offset], ldb, info);
  890. if (*info > 0) {
  891. return 0;
  892. }
  893. /* B(M+1:N,1:NRHS) = 0 */
  894. i__1 = *nrhs;
  895. for (j = 1; j <= i__1; ++j) {
  896. i__2 = *n;
  897. for (i__ = *m + 1; i__ <= i__2; ++i__) {
  898. b[i__ + j * b_dim1] = 0.;
  899. /* L30: */
  900. }
  901. /* L40: */
  902. }
  903. /* B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS) */
  904. i__1 = *lwork - mn;
  905. dormlq_("Left", "Transpose", n, nrhs, m, &a[a_offset], lda, &work[
  906. 1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
  907. /* workspace at least NRHS, optimally NRHS*NB */
  908. scllen = *n;
  909. } else {
  910. /* overdetermined system f2cmin || A**T * X - B || */
  911. /* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */
  912. i__1 = *lwork - mn;
  913. dormlq_("Left", "No transpose", n, nrhs, m, &a[a_offset], lda, &
  914. work[1], &b[b_offset], ldb, &work[mn + 1], &i__1, info);
  915. /* workspace at least NRHS, optimally NRHS*NB */
  916. /* B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) */
  917. dtrtrs_("Lower", "Transpose", "Non-unit", m, nrhs, &a[a_offset],
  918. lda, &b[b_offset], ldb, info);
  919. if (*info > 0) {
  920. return 0;
  921. }
  922. scllen = *m;
  923. }
  924. }
  925. /* Undo scaling */
  926. if (iascl == 1) {
  927. dlascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
  928. , ldb, info);
  929. } else if (iascl == 2) {
  930. dlascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
  931. , ldb, info);
  932. }
  933. if (ibscl == 1) {
  934. dlascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
  935. , ldb, info);
  936. } else if (ibscl == 2) {
  937. dlascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
  938. , ldb, info);
  939. }
  940. L50:
  941. work[1] = (doublereal) wsize;
  942. return 0;
  943. /* End of DGELS */
  944. } /* dgels_ */