You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctprfs.c 32 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b CTPRFS */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CTPRFS + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctprfs.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctprfs.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctprfs.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX, */
  506. /* FERR, BERR, WORK, RWORK, INFO ) */
  507. /* CHARACTER DIAG, TRANS, UPLO */
  508. /* INTEGER INFO, LDB, LDX, N, NRHS */
  509. /* REAL BERR( * ), FERR( * ), RWORK( * ) */
  510. /* COMPLEX AP( * ), B( LDB, * ), WORK( * ), X( LDX, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CTPRFS provides error bounds and backward error estimates for the */
  517. /* > solution to a system of linear equations with a triangular packed */
  518. /* > coefficient matrix. */
  519. /* > */
  520. /* > The solution matrix X must be computed by CTPTRS or some other */
  521. /* > means before entering this routine. CTPRFS does not do iterative */
  522. /* > refinement because doing so cannot improve the backward error. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] UPLO */
  527. /* > \verbatim */
  528. /* > UPLO is CHARACTER*1 */
  529. /* > = 'U': A is upper triangular; */
  530. /* > = 'L': A is lower triangular. */
  531. /* > \endverbatim */
  532. /* > */
  533. /* > \param[in] TRANS */
  534. /* > \verbatim */
  535. /* > TRANS is CHARACTER*1 */
  536. /* > Specifies the form of the system of equations: */
  537. /* > = 'N': A * X = B (No transpose) */
  538. /* > = 'T': A**T * X = B (Transpose) */
  539. /* > = 'C': A**H * X = B (Conjugate transpose) */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] DIAG */
  543. /* > \verbatim */
  544. /* > DIAG is CHARACTER*1 */
  545. /* > = 'N': A is non-unit triangular; */
  546. /* > = 'U': A is unit triangular. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] N */
  550. /* > \verbatim */
  551. /* > N is INTEGER */
  552. /* > The order of the matrix A. N >= 0. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] NRHS */
  556. /* > \verbatim */
  557. /* > NRHS is INTEGER */
  558. /* > The number of right hand sides, i.e., the number of columns */
  559. /* > of the matrices B and X. NRHS >= 0. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] AP */
  563. /* > \verbatim */
  564. /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
  565. /* > The upper or lower triangular matrix A, packed columnwise in */
  566. /* > a linear array. The j-th column of A is stored in the array */
  567. /* > AP as follows: */
  568. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  569. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  570. /* > If DIAG = 'U', the diagonal elements of A are not referenced */
  571. /* > and are assumed to be 1. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] B */
  575. /* > \verbatim */
  576. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  577. /* > The right hand side matrix B. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDB */
  581. /* > \verbatim */
  582. /* > LDB is INTEGER */
  583. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] X */
  587. /* > \verbatim */
  588. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  589. /* > The solution matrix X. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDX */
  593. /* > \verbatim */
  594. /* > LDX is INTEGER */
  595. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] FERR */
  599. /* > \verbatim */
  600. /* > FERR is REAL array, dimension (NRHS) */
  601. /* > The estimated forward error bound for each solution vector */
  602. /* > X(j) (the j-th column of the solution matrix X). */
  603. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  604. /* > is an estimated upper bound for the magnitude of the largest */
  605. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  606. /* > largest element in X(j). The estimate is as reliable as */
  607. /* > the estimate for RCOND, and is almost always a slight */
  608. /* > overestimate of the true error. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[out] BERR */
  612. /* > \verbatim */
  613. /* > BERR is REAL array, dimension (NRHS) */
  614. /* > The componentwise relative backward error of each solution */
  615. /* > vector X(j) (i.e., the smallest relative change in */
  616. /* > any element of A or B that makes X(j) an exact solution). */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] WORK */
  620. /* > \verbatim */
  621. /* > WORK is COMPLEX array, dimension (2*N) */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] RWORK */
  625. /* > \verbatim */
  626. /* > RWORK is REAL array, dimension (N) */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] INFO */
  630. /* > \verbatim */
  631. /* > INFO is INTEGER */
  632. /* > = 0: successful exit */
  633. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  634. /* > \endverbatim */
  635. /* Authors: */
  636. /* ======== */
  637. /* > \author Univ. of Tennessee */
  638. /* > \author Univ. of California Berkeley */
  639. /* > \author Univ. of Colorado Denver */
  640. /* > \author NAG Ltd. */
  641. /* > \date December 2016 */
  642. /* > \ingroup complexOTHERcomputational */
  643. /* ===================================================================== */
  644. /* Subroutine */ int ctprfs_(char *uplo, char *trans, char *diag, integer *n,
  645. integer *nrhs, complex *ap, complex *b, integer *ldb, complex *x,
  646. integer *ldx, real *ferr, real *berr, complex *work, real *rwork,
  647. integer *info)
  648. {
  649. /* System generated locals */
  650. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
  651. real r__1, r__2, r__3, r__4;
  652. complex q__1;
  653. /* Local variables */
  654. integer kase;
  655. real safe1, safe2;
  656. integer i__, j, k;
  657. real s;
  658. extern logical lsame_(char *, char *);
  659. integer isave[3];
  660. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  661. complex *, integer *), caxpy_(integer *, complex *, complex *,
  662. integer *, complex *, integer *), ctpmv_(char *, char *, char *,
  663. integer *, complex *, complex *, integer *);
  664. logical upper;
  665. extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *,
  666. complex *, complex *, integer *), clacn2_(
  667. integer *, complex *, complex *, real *, integer *, integer *);
  668. integer kc;
  669. real xk;
  670. extern real slamch_(char *);
  671. integer nz;
  672. real safmin;
  673. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  674. logical notran;
  675. char transn[1], transt[1];
  676. logical nounit;
  677. real lstres, eps;
  678. /* -- LAPACK computational routine (version 3.7.0) -- */
  679. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  680. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  681. /* December 2016 */
  682. /* ===================================================================== */
  683. /* Test the input parameters. */
  684. /* Parameter adjustments */
  685. --ap;
  686. b_dim1 = *ldb;
  687. b_offset = 1 + b_dim1 * 1;
  688. b -= b_offset;
  689. x_dim1 = *ldx;
  690. x_offset = 1 + x_dim1 * 1;
  691. x -= x_offset;
  692. --ferr;
  693. --berr;
  694. --work;
  695. --rwork;
  696. /* Function Body */
  697. *info = 0;
  698. upper = lsame_(uplo, "U");
  699. notran = lsame_(trans, "N");
  700. nounit = lsame_(diag, "N");
  701. if (! upper && ! lsame_(uplo, "L")) {
  702. *info = -1;
  703. } else if (! notran && ! lsame_(trans, "T") && !
  704. lsame_(trans, "C")) {
  705. *info = -2;
  706. } else if (! nounit && ! lsame_(diag, "U")) {
  707. *info = -3;
  708. } else if (*n < 0) {
  709. *info = -4;
  710. } else if (*nrhs < 0) {
  711. *info = -5;
  712. } else if (*ldb < f2cmax(1,*n)) {
  713. *info = -8;
  714. } else if (*ldx < f2cmax(1,*n)) {
  715. *info = -10;
  716. }
  717. if (*info != 0) {
  718. i__1 = -(*info);
  719. xerbla_("CTPRFS", &i__1, (ftnlen)6);
  720. return 0;
  721. }
  722. /* Quick return if possible */
  723. if (*n == 0 || *nrhs == 0) {
  724. i__1 = *nrhs;
  725. for (j = 1; j <= i__1; ++j) {
  726. ferr[j] = 0.f;
  727. berr[j] = 0.f;
  728. /* L10: */
  729. }
  730. return 0;
  731. }
  732. if (notran) {
  733. *(unsigned char *)transn = 'N';
  734. *(unsigned char *)transt = 'C';
  735. } else {
  736. *(unsigned char *)transn = 'C';
  737. *(unsigned char *)transt = 'N';
  738. }
  739. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  740. nz = *n + 1;
  741. eps = slamch_("Epsilon");
  742. safmin = slamch_("Safe minimum");
  743. safe1 = nz * safmin;
  744. safe2 = safe1 / eps;
  745. /* Do for each right hand side */
  746. i__1 = *nrhs;
  747. for (j = 1; j <= i__1; ++j) {
  748. /* Compute residual R = B - op(A) * X, */
  749. /* where op(A) = A, A**T, or A**H, depending on TRANS. */
  750. ccopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
  751. ctpmv_(uplo, trans, diag, n, &ap[1], &work[1], &c__1);
  752. q__1.r = -1.f, q__1.i = 0.f;
  753. caxpy_(n, &q__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
  754. /* Compute componentwise relative backward error from formula */
  755. /* f2cmax(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
  756. /* where abs(Z) is the componentwise absolute value of the matrix */
  757. /* or vector Z. If the i-th component of the denominator is less */
  758. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  759. /* numerator and denominator before dividing. */
  760. i__2 = *n;
  761. for (i__ = 1; i__ <= i__2; ++i__) {
  762. i__3 = i__ + j * b_dim1;
  763. rwork[i__] = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[
  764. i__ + j * b_dim1]), abs(r__2));
  765. /* L20: */
  766. }
  767. if (notran) {
  768. /* Compute abs(A)*abs(X) + abs(B). */
  769. if (upper) {
  770. kc = 1;
  771. if (nounit) {
  772. i__2 = *n;
  773. for (k = 1; k <= i__2; ++k) {
  774. i__3 = k + j * x_dim1;
  775. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  776. x[k + j * x_dim1]), abs(r__2));
  777. i__3 = k;
  778. for (i__ = 1; i__ <= i__3; ++i__) {
  779. i__4 = kc + i__ - 1;
  780. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (
  781. r__2 = r_imag(&ap[kc + i__ - 1]), abs(
  782. r__2))) * xk;
  783. /* L30: */
  784. }
  785. kc += k;
  786. /* L40: */
  787. }
  788. } else {
  789. i__2 = *n;
  790. for (k = 1; k <= i__2; ++k) {
  791. i__3 = k + j * x_dim1;
  792. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  793. x[k + j * x_dim1]), abs(r__2));
  794. i__3 = k - 1;
  795. for (i__ = 1; i__ <= i__3; ++i__) {
  796. i__4 = kc + i__ - 1;
  797. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (
  798. r__2 = r_imag(&ap[kc + i__ - 1]), abs(
  799. r__2))) * xk;
  800. /* L50: */
  801. }
  802. rwork[k] += xk;
  803. kc += k;
  804. /* L60: */
  805. }
  806. }
  807. } else {
  808. kc = 1;
  809. if (nounit) {
  810. i__2 = *n;
  811. for (k = 1; k <= i__2; ++k) {
  812. i__3 = k + j * x_dim1;
  813. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  814. x[k + j * x_dim1]), abs(r__2));
  815. i__3 = *n;
  816. for (i__ = k; i__ <= i__3; ++i__) {
  817. i__4 = kc + i__ - k;
  818. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (
  819. r__2 = r_imag(&ap[kc + i__ - k]), abs(
  820. r__2))) * xk;
  821. /* L70: */
  822. }
  823. kc = kc + *n - k + 1;
  824. /* L80: */
  825. }
  826. } else {
  827. i__2 = *n;
  828. for (k = 1; k <= i__2; ++k) {
  829. i__3 = k + j * x_dim1;
  830. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&
  831. x[k + j * x_dim1]), abs(r__2));
  832. i__3 = *n;
  833. for (i__ = k + 1; i__ <= i__3; ++i__) {
  834. i__4 = kc + i__ - k;
  835. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (
  836. r__2 = r_imag(&ap[kc + i__ - k]), abs(
  837. r__2))) * xk;
  838. /* L90: */
  839. }
  840. rwork[k] += xk;
  841. kc = kc + *n - k + 1;
  842. /* L100: */
  843. }
  844. }
  845. }
  846. } else {
  847. /* Compute abs(A**H)*abs(X) + abs(B). */
  848. if (upper) {
  849. kc = 1;
  850. if (nounit) {
  851. i__2 = *n;
  852. for (k = 1; k <= i__2; ++k) {
  853. s = 0.f;
  854. i__3 = k;
  855. for (i__ = 1; i__ <= i__3; ++i__) {
  856. i__4 = kc + i__ - 1;
  857. i__5 = i__ + j * x_dim1;
  858. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  859. r_imag(&ap[kc + i__ - 1]), abs(r__2))) * (
  860. (r__3 = x[i__5].r, abs(r__3)) + (r__4 =
  861. r_imag(&x[i__ + j * x_dim1]), abs(r__4)));
  862. /* L110: */
  863. }
  864. rwork[k] += s;
  865. kc += k;
  866. /* L120: */
  867. }
  868. } else {
  869. i__2 = *n;
  870. for (k = 1; k <= i__2; ++k) {
  871. i__3 = k + j * x_dim1;
  872. s = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[
  873. k + j * x_dim1]), abs(r__2));
  874. i__3 = k - 1;
  875. for (i__ = 1; i__ <= i__3; ++i__) {
  876. i__4 = kc + i__ - 1;
  877. i__5 = i__ + j * x_dim1;
  878. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  879. r_imag(&ap[kc + i__ - 1]), abs(r__2))) * (
  880. (r__3 = x[i__5].r, abs(r__3)) + (r__4 =
  881. r_imag(&x[i__ + j * x_dim1]), abs(r__4)));
  882. /* L130: */
  883. }
  884. rwork[k] += s;
  885. kc += k;
  886. /* L140: */
  887. }
  888. }
  889. } else {
  890. kc = 1;
  891. if (nounit) {
  892. i__2 = *n;
  893. for (k = 1; k <= i__2; ++k) {
  894. s = 0.f;
  895. i__3 = *n;
  896. for (i__ = k; i__ <= i__3; ++i__) {
  897. i__4 = kc + i__ - k;
  898. i__5 = i__ + j * x_dim1;
  899. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  900. r_imag(&ap[kc + i__ - k]), abs(r__2))) * (
  901. (r__3 = x[i__5].r, abs(r__3)) + (r__4 =
  902. r_imag(&x[i__ + j * x_dim1]), abs(r__4)));
  903. /* L150: */
  904. }
  905. rwork[k] += s;
  906. kc = kc + *n - k + 1;
  907. /* L160: */
  908. }
  909. } else {
  910. i__2 = *n;
  911. for (k = 1; k <= i__2; ++k) {
  912. i__3 = k + j * x_dim1;
  913. s = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[
  914. k + j * x_dim1]), abs(r__2));
  915. i__3 = *n;
  916. for (i__ = k + 1; i__ <= i__3; ++i__) {
  917. i__4 = kc + i__ - k;
  918. i__5 = i__ + j * x_dim1;
  919. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  920. r_imag(&ap[kc + i__ - k]), abs(r__2))) * (
  921. (r__3 = x[i__5].r, abs(r__3)) + (r__4 =
  922. r_imag(&x[i__ + j * x_dim1]), abs(r__4)));
  923. /* L170: */
  924. }
  925. rwork[k] += s;
  926. kc = kc + *n - k + 1;
  927. /* L180: */
  928. }
  929. }
  930. }
  931. }
  932. s = 0.f;
  933. i__2 = *n;
  934. for (i__ = 1; i__ <= i__2; ++i__) {
  935. if (rwork[i__] > safe2) {
  936. /* Computing MAX */
  937. i__3 = i__;
  938. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  939. r_imag(&work[i__]), abs(r__2))) / rwork[i__];
  940. s = f2cmax(r__3,r__4);
  941. } else {
  942. /* Computing MAX */
  943. i__3 = i__;
  944. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  945. r_imag(&work[i__]), abs(r__2)) + safe1) / (rwork[i__]
  946. + safe1);
  947. s = f2cmax(r__3,r__4);
  948. }
  949. /* L190: */
  950. }
  951. berr[j] = s;
  952. /* Bound error from formula */
  953. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  954. /* norm( abs(inv(op(A)))* */
  955. /* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
  956. /* where */
  957. /* norm(Z) is the magnitude of the largest component of Z */
  958. /* inv(op(A)) is the inverse of op(A) */
  959. /* abs(Z) is the componentwise absolute value of the matrix or */
  960. /* vector Z */
  961. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  962. /* EPS is machine epsilon */
  963. /* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
  964. /* is incremented by SAFE1 if the i-th component of */
  965. /* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
  966. /* Use CLACN2 to estimate the infinity-norm of the matrix */
  967. /* inv(op(A)) * diag(W), */
  968. /* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
  969. i__2 = *n;
  970. for (i__ = 1; i__ <= i__2; ++i__) {
  971. if (rwork[i__] > safe2) {
  972. i__3 = i__;
  973. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  974. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  975. ;
  976. } else {
  977. i__3 = i__;
  978. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  979. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  980. + safe1;
  981. }
  982. /* L200: */
  983. }
  984. kase = 0;
  985. L210:
  986. clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
  987. if (kase != 0) {
  988. if (kase == 1) {
  989. /* Multiply by diag(W)*inv(op(A)**H). */
  990. ctpsv_(uplo, transt, diag, n, &ap[1], &work[1], &c__1);
  991. i__2 = *n;
  992. for (i__ = 1; i__ <= i__2; ++i__) {
  993. i__3 = i__;
  994. i__4 = i__;
  995. i__5 = i__;
  996. q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
  997. * work[i__5].i;
  998. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  999. /* L220: */
  1000. }
  1001. } else {
  1002. /* Multiply by inv(op(A))*diag(W). */
  1003. i__2 = *n;
  1004. for (i__ = 1; i__ <= i__2; ++i__) {
  1005. i__3 = i__;
  1006. i__4 = i__;
  1007. i__5 = i__;
  1008. q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
  1009. * work[i__5].i;
  1010. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  1011. /* L230: */
  1012. }
  1013. ctpsv_(uplo, transn, diag, n, &ap[1], &work[1], &c__1);
  1014. }
  1015. goto L210;
  1016. }
  1017. /* Normalize error. */
  1018. lstres = 0.f;
  1019. i__2 = *n;
  1020. for (i__ = 1; i__ <= i__2; ++i__) {
  1021. /* Computing MAX */
  1022. i__3 = i__ + j * x_dim1;
  1023. r__3 = lstres, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
  1024. r_imag(&x[i__ + j * x_dim1]), abs(r__2));
  1025. lstres = f2cmax(r__3,r__4);
  1026. /* L240: */
  1027. }
  1028. if (lstres != 0.f) {
  1029. ferr[j] /= lstres;
  1030. }
  1031. /* L250: */
  1032. }
  1033. return 0;
  1034. /* End of CTPRFS */
  1035. } /* ctprfs_ */