You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chetri_rook.c 34 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b2 = {0.f,0.f};
  487. static integer c__1 = 1;
  488. /* > \brief \b CHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded
  489. Bunch-Kaufman ("rook") diagonal pivoting method. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CHETRI_ROOK + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetri_
  496. rook.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetri_
  499. rook.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetri_
  502. rook.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CHETRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, LDA, N */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX A( LDA, * ), WORK( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CHETRI_ROOK computes the inverse of a complex Hermitian indefinite matrix */
  518. /* > A using the factorization A = U*D*U**H or A = L*D*L**H computed by */
  519. /* > CHETRF_ROOK. */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] UPLO */
  524. /* > \verbatim */
  525. /* > UPLO is CHARACTER*1 */
  526. /* > Specifies whether the details of the factorization are stored */
  527. /* > as an upper or lower triangular matrix. */
  528. /* > = 'U': Upper triangular, form is A = U*D*U**H; */
  529. /* > = 'L': Lower triangular, form is A = L*D*L**H. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] N */
  533. /* > \verbatim */
  534. /* > N is INTEGER */
  535. /* > The order of the matrix A. N >= 0. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in,out] A */
  539. /* > \verbatim */
  540. /* > A is COMPLEX array, dimension (LDA,N) */
  541. /* > On entry, the block diagonal matrix D and the multipliers */
  542. /* > used to obtain the factor U or L as computed by CHETRF_ROOK. */
  543. /* > */
  544. /* > On exit, if INFO = 0, the (Hermitian) inverse of the original */
  545. /* > matrix. If UPLO = 'U', the upper triangular part of the */
  546. /* > inverse is formed and the part of A below the diagonal is not */
  547. /* > referenced; if UPLO = 'L' the lower triangular part of the */
  548. /* > inverse is formed and the part of A above the diagonal is */
  549. /* > not referenced. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] LDA */
  553. /* > \verbatim */
  554. /* > LDA is INTEGER */
  555. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] IPIV */
  559. /* > \verbatim */
  560. /* > IPIV is INTEGER array, dimension (N) */
  561. /* > Details of the interchanges and the block structure of D */
  562. /* > as determined by CHETRF_ROOK. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] WORK */
  566. /* > \verbatim */
  567. /* > WORK is COMPLEX array, dimension (N) */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[out] INFO */
  571. /* > \verbatim */
  572. /* > INFO is INTEGER */
  573. /* > = 0: successful exit */
  574. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  575. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  576. /* > inverse could not be computed. */
  577. /* > \endverbatim */
  578. /* Authors: */
  579. /* ======== */
  580. /* > \author Univ. of Tennessee */
  581. /* > \author Univ. of California Berkeley */
  582. /* > \author Univ. of Colorado Denver */
  583. /* > \author NAG Ltd. */
  584. /* > \date November 2013 */
  585. /* > \ingroup complexHEcomputational */
  586. /* > \par Contributors: */
  587. /* ================== */
  588. /* > */
  589. /* > \verbatim */
  590. /* > */
  591. /* > November 2013, Igor Kozachenko, */
  592. /* > Computer Science Division, */
  593. /* > University of California, Berkeley */
  594. /* > */
  595. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  596. /* > School of Mathematics, */
  597. /* > University of Manchester */
  598. /* > \endverbatim */
  599. /* ===================================================================== */
  600. /* Subroutine */ int chetri_rook_(char *uplo, integer *n, complex *a,
  601. integer *lda, integer *ipiv, complex *work, integer *info)
  602. {
  603. /* System generated locals */
  604. integer a_dim1, a_offset, i__1, i__2, i__3;
  605. real r__1;
  606. complex q__1, q__2;
  607. /* Local variables */
  608. complex temp, akkp1;
  609. real d__;
  610. integer j, k;
  611. real t;
  612. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  613. *, complex *, integer *);
  614. extern logical lsame_(char *, char *);
  615. extern /* Subroutine */ int chemv_(char *, integer *, complex *, complex *
  616. , integer *, complex *, integer *, complex *, complex *, integer *
  617. ), ccopy_(integer *, complex *, integer *, complex *,
  618. integer *), cswap_(integer *, complex *, integer *, complex *,
  619. integer *);
  620. integer kstep;
  621. logical upper;
  622. real ak;
  623. integer kp;
  624. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  625. real akp1;
  626. /* -- LAPACK computational routine (version 3.5.0) -- */
  627. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  628. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  629. /* November 2013 */
  630. /* ===================================================================== */
  631. /* Test the input parameters. */
  632. /* Parameter adjustments */
  633. a_dim1 = *lda;
  634. a_offset = 1 + a_dim1 * 1;
  635. a -= a_offset;
  636. --ipiv;
  637. --work;
  638. /* Function Body */
  639. *info = 0;
  640. upper = lsame_(uplo, "U");
  641. if (! upper && ! lsame_(uplo, "L")) {
  642. *info = -1;
  643. } else if (*n < 0) {
  644. *info = -2;
  645. } else if (*lda < f2cmax(1,*n)) {
  646. *info = -4;
  647. }
  648. if (*info != 0) {
  649. i__1 = -(*info);
  650. xerbla_("CHETRI_ROOK", &i__1, (ftnlen)11);
  651. return 0;
  652. }
  653. /* Quick return if possible */
  654. if (*n == 0) {
  655. return 0;
  656. }
  657. /* Check that the diagonal matrix D is nonsingular. */
  658. if (upper) {
  659. /* Upper triangular storage: examine D from bottom to top */
  660. for (*info = *n; *info >= 1; --(*info)) {
  661. i__1 = *info + *info * a_dim1;
  662. if (ipiv[*info] > 0 && (a[i__1].r == 0.f && a[i__1].i == 0.f)) {
  663. return 0;
  664. }
  665. /* L10: */
  666. }
  667. } else {
  668. /* Lower triangular storage: examine D from top to bottom. */
  669. i__1 = *n;
  670. for (*info = 1; *info <= i__1; ++(*info)) {
  671. i__2 = *info + *info * a_dim1;
  672. if (ipiv[*info] > 0 && (a[i__2].r == 0.f && a[i__2].i == 0.f)) {
  673. return 0;
  674. }
  675. /* L20: */
  676. }
  677. }
  678. *info = 0;
  679. if (upper) {
  680. /* Compute inv(A) from the factorization A = U*D*U**H. */
  681. /* K is the main loop index, increasing from 1 to N in steps of */
  682. /* 1 or 2, depending on the size of the diagonal blocks. */
  683. k = 1;
  684. L30:
  685. /* If K > N, exit from loop. */
  686. if (k > *n) {
  687. goto L70;
  688. }
  689. if (ipiv[k] > 0) {
  690. /* 1 x 1 diagonal block */
  691. /* Invert the diagonal block. */
  692. i__1 = k + k * a_dim1;
  693. i__2 = k + k * a_dim1;
  694. r__1 = 1.f / a[i__2].r;
  695. a[i__1].r = r__1, a[i__1].i = 0.f;
  696. /* Compute column K of the inverse. */
  697. if (k > 1) {
  698. i__1 = k - 1;
  699. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  700. i__1 = k - 1;
  701. q__1.r = -1.f, q__1.i = 0.f;
  702. chemv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
  703. &c_b2, &a[k * a_dim1 + 1], &c__1);
  704. i__1 = k + k * a_dim1;
  705. i__2 = k + k * a_dim1;
  706. i__3 = k - 1;
  707. cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  708. c__1);
  709. r__1 = q__2.r;
  710. q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
  711. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  712. }
  713. kstep = 1;
  714. } else {
  715. /* 2 x 2 diagonal block */
  716. /* Invert the diagonal block. */
  717. t = c_abs(&a[k + (k + 1) * a_dim1]);
  718. i__1 = k + k * a_dim1;
  719. ak = a[i__1].r / t;
  720. i__1 = k + 1 + (k + 1) * a_dim1;
  721. akp1 = a[i__1].r / t;
  722. i__1 = k + (k + 1) * a_dim1;
  723. q__1.r = a[i__1].r / t, q__1.i = a[i__1].i / t;
  724. akkp1.r = q__1.r, akkp1.i = q__1.i;
  725. d__ = t * (ak * akp1 - 1.f);
  726. i__1 = k + k * a_dim1;
  727. r__1 = akp1 / d__;
  728. a[i__1].r = r__1, a[i__1].i = 0.f;
  729. i__1 = k + 1 + (k + 1) * a_dim1;
  730. r__1 = ak / d__;
  731. a[i__1].r = r__1, a[i__1].i = 0.f;
  732. i__1 = k + (k + 1) * a_dim1;
  733. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  734. q__1.r = q__2.r / d__, q__1.i = q__2.i / d__;
  735. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  736. /* Compute columns K and K+1 of the inverse. */
  737. if (k > 1) {
  738. i__1 = k - 1;
  739. ccopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
  740. i__1 = k - 1;
  741. q__1.r = -1.f, q__1.i = 0.f;
  742. chemv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
  743. &c_b2, &a[k * a_dim1 + 1], &c__1);
  744. i__1 = k + k * a_dim1;
  745. i__2 = k + k * a_dim1;
  746. i__3 = k - 1;
  747. cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
  748. c__1);
  749. r__1 = q__2.r;
  750. q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
  751. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  752. i__1 = k + (k + 1) * a_dim1;
  753. i__2 = k + (k + 1) * a_dim1;
  754. i__3 = k - 1;
  755. cdotc_(&q__2, &i__3, &a[k * a_dim1 + 1], &c__1, &a[(k + 1) *
  756. a_dim1 + 1], &c__1);
  757. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  758. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  759. i__1 = k - 1;
  760. ccopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], &
  761. c__1);
  762. i__1 = k - 1;
  763. q__1.r = -1.f, q__1.i = 0.f;
  764. chemv_(uplo, &i__1, &q__1, &a[a_offset], lda, &work[1], &c__1,
  765. &c_b2, &a[(k + 1) * a_dim1 + 1], &c__1);
  766. i__1 = k + 1 + (k + 1) * a_dim1;
  767. i__2 = k + 1 + (k + 1) * a_dim1;
  768. i__3 = k - 1;
  769. cdotc_(&q__2, &i__3, &work[1], &c__1, &a[(k + 1) * a_dim1 + 1]
  770. , &c__1);
  771. r__1 = q__2.r;
  772. q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
  773. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  774. }
  775. kstep = 2;
  776. }
  777. if (kstep == 1) {
  778. /* Interchange rows and columns K and IPIV(K) in the leading */
  779. /* submatrix A(1:k,1:k) */
  780. kp = ipiv[k];
  781. if (kp != k) {
  782. if (kp > 1) {
  783. i__1 = kp - 1;
  784. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  785. 1], &c__1);
  786. }
  787. i__1 = k - 1;
  788. for (j = kp + 1; j <= i__1; ++j) {
  789. r_cnjg(&q__1, &a[j + k * a_dim1]);
  790. temp.r = q__1.r, temp.i = q__1.i;
  791. i__2 = j + k * a_dim1;
  792. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  793. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  794. i__2 = kp + j * a_dim1;
  795. a[i__2].r = temp.r, a[i__2].i = temp.i;
  796. /* L40: */
  797. }
  798. i__1 = kp + k * a_dim1;
  799. r_cnjg(&q__1, &a[kp + k * a_dim1]);
  800. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  801. i__1 = k + k * a_dim1;
  802. temp.r = a[i__1].r, temp.i = a[i__1].i;
  803. i__1 = k + k * a_dim1;
  804. i__2 = kp + kp * a_dim1;
  805. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  806. i__1 = kp + kp * a_dim1;
  807. a[i__1].r = temp.r, a[i__1].i = temp.i;
  808. }
  809. } else {
  810. /* Interchange rows and columns K and K+1 with -IPIV(K) and */
  811. /* -IPIV(K+1) in the leading submatrix A(k+1:n,k+1:n) */
  812. /* (1) Interchange rows and columns K and -IPIV(K) */
  813. kp = -ipiv[k];
  814. if (kp != k) {
  815. if (kp > 1) {
  816. i__1 = kp - 1;
  817. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  818. 1], &c__1);
  819. }
  820. i__1 = k - 1;
  821. for (j = kp + 1; j <= i__1; ++j) {
  822. r_cnjg(&q__1, &a[j + k * a_dim1]);
  823. temp.r = q__1.r, temp.i = q__1.i;
  824. i__2 = j + k * a_dim1;
  825. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  826. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  827. i__2 = kp + j * a_dim1;
  828. a[i__2].r = temp.r, a[i__2].i = temp.i;
  829. /* L50: */
  830. }
  831. i__1 = kp + k * a_dim1;
  832. r_cnjg(&q__1, &a[kp + k * a_dim1]);
  833. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  834. i__1 = k + k * a_dim1;
  835. temp.r = a[i__1].r, temp.i = a[i__1].i;
  836. i__1 = k + k * a_dim1;
  837. i__2 = kp + kp * a_dim1;
  838. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  839. i__1 = kp + kp * a_dim1;
  840. a[i__1].r = temp.r, a[i__1].i = temp.i;
  841. i__1 = k + (k + 1) * a_dim1;
  842. temp.r = a[i__1].r, temp.i = a[i__1].i;
  843. i__1 = k + (k + 1) * a_dim1;
  844. i__2 = kp + (k + 1) * a_dim1;
  845. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  846. i__1 = kp + (k + 1) * a_dim1;
  847. a[i__1].r = temp.r, a[i__1].i = temp.i;
  848. }
  849. /* (2) Interchange rows and columns K+1 and -IPIV(K+1) */
  850. ++k;
  851. kp = -ipiv[k];
  852. if (kp != k) {
  853. if (kp > 1) {
  854. i__1 = kp - 1;
  855. cswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 +
  856. 1], &c__1);
  857. }
  858. i__1 = k - 1;
  859. for (j = kp + 1; j <= i__1; ++j) {
  860. r_cnjg(&q__1, &a[j + k * a_dim1]);
  861. temp.r = q__1.r, temp.i = q__1.i;
  862. i__2 = j + k * a_dim1;
  863. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  864. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  865. i__2 = kp + j * a_dim1;
  866. a[i__2].r = temp.r, a[i__2].i = temp.i;
  867. /* L60: */
  868. }
  869. i__1 = kp + k * a_dim1;
  870. r_cnjg(&q__1, &a[kp + k * a_dim1]);
  871. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  872. i__1 = k + k * a_dim1;
  873. temp.r = a[i__1].r, temp.i = a[i__1].i;
  874. i__1 = k + k * a_dim1;
  875. i__2 = kp + kp * a_dim1;
  876. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  877. i__1 = kp + kp * a_dim1;
  878. a[i__1].r = temp.r, a[i__1].i = temp.i;
  879. }
  880. }
  881. ++k;
  882. goto L30;
  883. L70:
  884. ;
  885. } else {
  886. /* Compute inv(A) from the factorization A = L*D*L**H. */
  887. /* K is the main loop index, decreasing from N to 1 in steps of */
  888. /* 1 or 2, depending on the size of the diagonal blocks. */
  889. k = *n;
  890. L80:
  891. /* If K < 1, exit from loop. */
  892. if (k < 1) {
  893. goto L120;
  894. }
  895. if (ipiv[k] > 0) {
  896. /* 1 x 1 diagonal block */
  897. /* Invert the diagonal block. */
  898. i__1 = k + k * a_dim1;
  899. i__2 = k + k * a_dim1;
  900. r__1 = 1.f / a[i__2].r;
  901. a[i__1].r = r__1, a[i__1].i = 0.f;
  902. /* Compute column K of the inverse. */
  903. if (k < *n) {
  904. i__1 = *n - k;
  905. ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  906. i__1 = *n - k;
  907. q__1.r = -1.f, q__1.i = 0.f;
  908. chemv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  909. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  910. i__1 = k + k * a_dim1;
  911. i__2 = k + k * a_dim1;
  912. i__3 = *n - k;
  913. cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  914. &c__1);
  915. r__1 = q__2.r;
  916. q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
  917. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  918. }
  919. kstep = 1;
  920. } else {
  921. /* 2 x 2 diagonal block */
  922. /* Invert the diagonal block. */
  923. t = c_abs(&a[k + (k - 1) * a_dim1]);
  924. i__1 = k - 1 + (k - 1) * a_dim1;
  925. ak = a[i__1].r / t;
  926. i__1 = k + k * a_dim1;
  927. akp1 = a[i__1].r / t;
  928. i__1 = k + (k - 1) * a_dim1;
  929. q__1.r = a[i__1].r / t, q__1.i = a[i__1].i / t;
  930. akkp1.r = q__1.r, akkp1.i = q__1.i;
  931. d__ = t * (ak * akp1 - 1.f);
  932. i__1 = k - 1 + (k - 1) * a_dim1;
  933. r__1 = akp1 / d__;
  934. a[i__1].r = r__1, a[i__1].i = 0.f;
  935. i__1 = k + k * a_dim1;
  936. r__1 = ak / d__;
  937. a[i__1].r = r__1, a[i__1].i = 0.f;
  938. i__1 = k + (k - 1) * a_dim1;
  939. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  940. q__1.r = q__2.r / d__, q__1.i = q__2.i / d__;
  941. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  942. /* Compute columns K-1 and K of the inverse. */
  943. if (k < *n) {
  944. i__1 = *n - k;
  945. ccopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
  946. i__1 = *n - k;
  947. q__1.r = -1.f, q__1.i = 0.f;
  948. chemv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  949. &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
  950. i__1 = k + k * a_dim1;
  951. i__2 = k + k * a_dim1;
  952. i__3 = *n - k;
  953. cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
  954. &c__1);
  955. r__1 = q__2.r;
  956. q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
  957. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  958. i__1 = k + (k - 1) * a_dim1;
  959. i__2 = k + (k - 1) * a_dim1;
  960. i__3 = *n - k;
  961. cdotc_(&q__2, &i__3, &a[k + 1 + k * a_dim1], &c__1, &a[k + 1
  962. + (k - 1) * a_dim1], &c__1);
  963. q__1.r = a[i__2].r - q__2.r, q__1.i = a[i__2].i - q__2.i;
  964. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  965. i__1 = *n - k;
  966. ccopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], &
  967. c__1);
  968. i__1 = *n - k;
  969. q__1.r = -1.f, q__1.i = 0.f;
  970. chemv_(uplo, &i__1, &q__1, &a[k + 1 + (k + 1) * a_dim1], lda,
  971. &work[1], &c__1, &c_b2, &a[k + 1 + (k - 1) * a_dim1],
  972. &c__1);
  973. i__1 = k - 1 + (k - 1) * a_dim1;
  974. i__2 = k - 1 + (k - 1) * a_dim1;
  975. i__3 = *n - k;
  976. cdotc_(&q__2, &i__3, &work[1], &c__1, &a[k + 1 + (k - 1) *
  977. a_dim1], &c__1);
  978. r__1 = q__2.r;
  979. q__1.r = a[i__2].r - r__1, q__1.i = a[i__2].i;
  980. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  981. }
  982. kstep = 2;
  983. }
  984. if (kstep == 1) {
  985. /* Interchange rows and columns K and IPIV(K) in the trailing */
  986. /* submatrix A(k:n,k:n) */
  987. kp = ipiv[k];
  988. if (kp != k) {
  989. if (kp < *n) {
  990. i__1 = *n - kp;
  991. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  992. kp * a_dim1], &c__1);
  993. }
  994. i__1 = kp - 1;
  995. for (j = k + 1; j <= i__1; ++j) {
  996. r_cnjg(&q__1, &a[j + k * a_dim1]);
  997. temp.r = q__1.r, temp.i = q__1.i;
  998. i__2 = j + k * a_dim1;
  999. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  1000. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1001. i__2 = kp + j * a_dim1;
  1002. a[i__2].r = temp.r, a[i__2].i = temp.i;
  1003. /* L90: */
  1004. }
  1005. i__1 = kp + k * a_dim1;
  1006. r_cnjg(&q__1, &a[kp + k * a_dim1]);
  1007. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1008. i__1 = k + k * a_dim1;
  1009. temp.r = a[i__1].r, temp.i = a[i__1].i;
  1010. i__1 = k + k * a_dim1;
  1011. i__2 = kp + kp * a_dim1;
  1012. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1013. i__1 = kp + kp * a_dim1;
  1014. a[i__1].r = temp.r, a[i__1].i = temp.i;
  1015. }
  1016. } else {
  1017. /* Interchange rows and columns K and K-1 with -IPIV(K) and */
  1018. /* -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n) */
  1019. /* (1) Interchange rows and columns K and -IPIV(K) */
  1020. kp = -ipiv[k];
  1021. if (kp != k) {
  1022. if (kp < *n) {
  1023. i__1 = *n - kp;
  1024. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  1025. kp * a_dim1], &c__1);
  1026. }
  1027. i__1 = kp - 1;
  1028. for (j = k + 1; j <= i__1; ++j) {
  1029. r_cnjg(&q__1, &a[j + k * a_dim1]);
  1030. temp.r = q__1.r, temp.i = q__1.i;
  1031. i__2 = j + k * a_dim1;
  1032. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  1033. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1034. i__2 = kp + j * a_dim1;
  1035. a[i__2].r = temp.r, a[i__2].i = temp.i;
  1036. /* L100: */
  1037. }
  1038. i__1 = kp + k * a_dim1;
  1039. r_cnjg(&q__1, &a[kp + k * a_dim1]);
  1040. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1041. i__1 = k + k * a_dim1;
  1042. temp.r = a[i__1].r, temp.i = a[i__1].i;
  1043. i__1 = k + k * a_dim1;
  1044. i__2 = kp + kp * a_dim1;
  1045. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1046. i__1 = kp + kp * a_dim1;
  1047. a[i__1].r = temp.r, a[i__1].i = temp.i;
  1048. i__1 = k + (k - 1) * a_dim1;
  1049. temp.r = a[i__1].r, temp.i = a[i__1].i;
  1050. i__1 = k + (k - 1) * a_dim1;
  1051. i__2 = kp + (k - 1) * a_dim1;
  1052. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1053. i__1 = kp + (k - 1) * a_dim1;
  1054. a[i__1].r = temp.r, a[i__1].i = temp.i;
  1055. }
  1056. /* (2) Interchange rows and columns K-1 and -IPIV(K-1) */
  1057. --k;
  1058. kp = -ipiv[k];
  1059. if (kp != k) {
  1060. if (kp < *n) {
  1061. i__1 = *n - kp;
  1062. cswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 +
  1063. kp * a_dim1], &c__1);
  1064. }
  1065. i__1 = kp - 1;
  1066. for (j = k + 1; j <= i__1; ++j) {
  1067. r_cnjg(&q__1, &a[j + k * a_dim1]);
  1068. temp.r = q__1.r, temp.i = q__1.i;
  1069. i__2 = j + k * a_dim1;
  1070. r_cnjg(&q__1, &a[kp + j * a_dim1]);
  1071. a[i__2].r = q__1.r, a[i__2].i = q__1.i;
  1072. i__2 = kp + j * a_dim1;
  1073. a[i__2].r = temp.r, a[i__2].i = temp.i;
  1074. /* L110: */
  1075. }
  1076. i__1 = kp + k * a_dim1;
  1077. r_cnjg(&q__1, &a[kp + k * a_dim1]);
  1078. a[i__1].r = q__1.r, a[i__1].i = q__1.i;
  1079. i__1 = k + k * a_dim1;
  1080. temp.r = a[i__1].r, temp.i = a[i__1].i;
  1081. i__1 = k + k * a_dim1;
  1082. i__2 = kp + kp * a_dim1;
  1083. a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
  1084. i__1 = kp + kp * a_dim1;
  1085. a[i__1].r = temp.r, a[i__1].i = temp.i;
  1086. }
  1087. }
  1088. --k;
  1089. goto L80;
  1090. L120:
  1091. ;
  1092. }
  1093. return 0;
  1094. /* End of CHETRI_ROOK */
  1095. } /* chetri_rook__ */