You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slasyf.c 42 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static real c_b8 = -1.f;
  486. static real c_b9 = 1.f;
  487. /* > \brief \b SLASYF computes a partial factorization of a real symmetric matrix using the Bunch-Kaufman diag
  488. onal pivoting method. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SLASYF + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasyf.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasyf.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasyf.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
  507. /* CHARACTER UPLO */
  508. /* INTEGER INFO, KB, LDA, LDW, N, NB */
  509. /* INTEGER IPIV( * ) */
  510. /* REAL A( LDA, * ), W( LDW, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > SLASYF computes a partial factorization of a real symmetric matrix A */
  517. /* > using the Bunch-Kaufman diagonal pivoting method. The partial */
  518. /* > factorization has the form: */
  519. /* > */
  520. /* > A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
  521. /* > ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) */
  522. /* > */
  523. /* > A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' */
  524. /* > ( L21 I ) ( 0 A22 ) ( 0 I ) */
  525. /* > */
  526. /* > where the order of D is at most NB. The actual order is returned in */
  527. /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
  528. /* > */
  529. /* > SLASYF is an auxiliary routine called by SSYTRF. It uses blocked code */
  530. /* > (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
  531. /* > A22 (if UPLO = 'L'). */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] UPLO */
  536. /* > \verbatim */
  537. /* > UPLO is CHARACTER*1 */
  538. /* > Specifies whether the upper or lower triangular part of the */
  539. /* > symmetric matrix A is stored: */
  540. /* > = 'U': Upper triangular */
  541. /* > = 'L': Lower triangular */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] N */
  545. /* > \verbatim */
  546. /* > N is INTEGER */
  547. /* > The order of the matrix A. N >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] NB */
  551. /* > \verbatim */
  552. /* > NB is INTEGER */
  553. /* > The maximum number of columns of the matrix A that should be */
  554. /* > factored. NB should be at least 2 to allow for 2-by-2 pivot */
  555. /* > blocks. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[out] KB */
  559. /* > \verbatim */
  560. /* > KB is INTEGER */
  561. /* > The number of columns of A that were actually factored. */
  562. /* > KB is either NB-1 or NB, or N if N <= NB. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] A */
  566. /* > \verbatim */
  567. /* > A is REAL array, dimension (LDA,N) */
  568. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  569. /* > n-by-n upper triangular part of A contains the upper */
  570. /* > triangular part of the matrix A, and the strictly lower */
  571. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  572. /* > leading n-by-n lower triangular part of A contains the lower */
  573. /* > triangular part of the matrix A, and the strictly upper */
  574. /* > triangular part of A is not referenced. */
  575. /* > On exit, A contains details of the partial factorization. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDA */
  579. /* > \verbatim */
  580. /* > LDA is INTEGER */
  581. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[out] IPIV */
  585. /* > \verbatim */
  586. /* > IPIV is INTEGER array, dimension (N) */
  587. /* > Details of the interchanges and the block structure of D. */
  588. /* > */
  589. /* > If UPLO = 'U': */
  590. /* > Only the last KB elements of IPIV are set. */
  591. /* > */
  592. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  593. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  594. /* > */
  595. /* > If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
  596. /* > k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
  597. /* > is a 2-by-2 diagonal block. */
  598. /* > */
  599. /* > If UPLO = 'L': */
  600. /* > Only the first KB elements of IPIV are set. */
  601. /* > */
  602. /* > If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
  603. /* > interchanged and D(k,k) is a 1-by-1 diagonal block. */
  604. /* > */
  605. /* > If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
  606. /* > k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
  607. /* > is a 2-by-2 diagonal block. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] W */
  611. /* > \verbatim */
  612. /* > W is REAL array, dimension (LDW,NB) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] LDW */
  616. /* > \verbatim */
  617. /* > LDW is INTEGER */
  618. /* > The leading dimension of the array W. LDW >= f2cmax(1,N). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] INFO */
  622. /* > \verbatim */
  623. /* > INFO is INTEGER */
  624. /* > = 0: successful exit */
  625. /* > > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
  626. /* > has been completed, but the block diagonal matrix D is */
  627. /* > exactly singular. */
  628. /* > \endverbatim */
  629. /* Authors: */
  630. /* ======== */
  631. /* > \author Univ. of Tennessee */
  632. /* > \author Univ. of California Berkeley */
  633. /* > \author Univ. of Colorado Denver */
  634. /* > \author NAG Ltd. */
  635. /* > \date November 2013 */
  636. /* > \ingroup realSYcomputational */
  637. /* > \par Contributors: */
  638. /* ================== */
  639. /* > */
  640. /* > \verbatim */
  641. /* > */
  642. /* > November 2013, Igor Kozachenko, */
  643. /* > Computer Science Division, */
  644. /* > University of California, Berkeley */
  645. /* > \endverbatim */
  646. /* ===================================================================== */
  647. /* Subroutine */ void slasyf_(char *uplo, integer *n, integer *nb, integer *kb,
  648. real *a, integer *lda, integer *ipiv, real *w, integer *ldw, integer
  649. *info)
  650. {
  651. /* System generated locals */
  652. integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
  653. real r__1, r__2, r__3;
  654. /* Local variables */
  655. integer imax, jmax, j, k;
  656. real t, alpha;
  657. extern logical lsame_(char *, char *);
  658. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *),
  659. sgemm_(char *, char *, integer *, integer *, integer *, real *,
  660. real *, integer *, real *, integer *, real *, real *, integer *), sgemv_(char *, integer *, integer *, real *,
  661. real *, integer *, real *, integer *, real *, real *, integer *);
  662. integer kstep;
  663. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  664. integer *), sswap_(integer *, real *, integer *, real *, integer *
  665. );
  666. real r1, d11, d21, d22;
  667. integer jb, jj, kk, jp, kp;
  668. real absakk;
  669. integer kw;
  670. extern integer isamax_(integer *, real *, integer *);
  671. real colmax, rowmax;
  672. integer kkw;
  673. /* -- LAPACK computational routine (version 3.5.0) -- */
  674. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  675. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  676. /* November 2013 */
  677. /* ===================================================================== */
  678. /* Parameter adjustments */
  679. a_dim1 = *lda;
  680. a_offset = 1 + a_dim1 * 1;
  681. a -= a_offset;
  682. --ipiv;
  683. w_dim1 = *ldw;
  684. w_offset = 1 + w_dim1 * 1;
  685. w -= w_offset;
  686. /* Function Body */
  687. *info = 0;
  688. /* Initialize ALPHA for use in choosing pivot block size. */
  689. alpha = (sqrt(17.f) + 1.f) / 8.f;
  690. if (lsame_(uplo, "U")) {
  691. /* Factorize the trailing columns of A using the upper triangle */
  692. /* of A and working backwards, and compute the matrix W = U12*D */
  693. /* for use in updating A11 */
  694. /* K is the main loop index, decreasing from N in steps of 1 or 2 */
  695. /* KW is the column of W which corresponds to column K of A */
  696. k = *n;
  697. L10:
  698. kw = *nb + k - *n;
  699. /* Exit from loop */
  700. if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
  701. goto L30;
  702. }
  703. /* Copy column K of A to column KW of W and update it */
  704. scopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
  705. if (k < *n) {
  706. i__1 = *n - k;
  707. sgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) * a_dim1 + 1],
  708. lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b9, &w[kw *
  709. w_dim1 + 1], &c__1);
  710. }
  711. kstep = 1;
  712. /* Determine rows and columns to be interchanged and whether */
  713. /* a 1-by-1 or 2-by-2 pivot block will be used */
  714. absakk = (r__1 = w[k + kw * w_dim1], abs(r__1));
  715. /* IMAX is the row-index of the largest off-diagonal element in */
  716. /* column K, and COLMAX is its absolute value. */
  717. /* Determine both COLMAX and IMAX. */
  718. if (k > 1) {
  719. i__1 = k - 1;
  720. imax = isamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
  721. colmax = (r__1 = w[imax + kw * w_dim1], abs(r__1));
  722. } else {
  723. colmax = 0.f;
  724. }
  725. if (f2cmax(absakk,colmax) == 0.f) {
  726. /* Column K is zero or underflow: set INFO and continue */
  727. if (*info == 0) {
  728. *info = k;
  729. }
  730. kp = k;
  731. } else {
  732. if (absakk >= alpha * colmax) {
  733. /* no interchange, use 1-by-1 pivot block */
  734. kp = k;
  735. } else {
  736. /* Copy column IMAX to column KW-1 of W and update it */
  737. scopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) *
  738. w_dim1 + 1], &c__1);
  739. i__1 = k - imax;
  740. scopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax +
  741. 1 + (kw - 1) * w_dim1], &c__1);
  742. if (k < *n) {
  743. i__1 = *n - k;
  744. sgemv_("No transpose", &k, &i__1, &c_b8, &a[(k + 1) *
  745. a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1],
  746. ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);
  747. }
  748. /* JMAX is the column-index of the largest off-diagonal */
  749. /* element in row IMAX, and ROWMAX is its absolute value */
  750. i__1 = k - imax;
  751. jmax = imax + isamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1],
  752. &c__1);
  753. rowmax = (r__1 = w[jmax + (kw - 1) * w_dim1], abs(r__1));
  754. if (imax > 1) {
  755. i__1 = imax - 1;
  756. jmax = isamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
  757. /* Computing MAX */
  758. r__2 = rowmax, r__3 = (r__1 = w[jmax + (kw - 1) * w_dim1],
  759. abs(r__1));
  760. rowmax = f2cmax(r__2,r__3);
  761. }
  762. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  763. /* no interchange, use 1-by-1 pivot block */
  764. kp = k;
  765. } else if ((r__1 = w[imax + (kw - 1) * w_dim1], abs(r__1)) >=
  766. alpha * rowmax) {
  767. /* interchange rows and columns K and IMAX, use 1-by-1 */
  768. /* pivot block */
  769. kp = imax;
  770. /* copy column KW-1 of W to column KW of W */
  771. scopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw *
  772. w_dim1 + 1], &c__1);
  773. } else {
  774. /* interchange rows and columns K-1 and IMAX, use 2-by-2 */
  775. /* pivot block */
  776. kp = imax;
  777. kstep = 2;
  778. }
  779. }
  780. /* ============================================================ */
  781. /* KK is the column of A where pivoting step stopped */
  782. kk = k - kstep + 1;
  783. /* KKW is the column of W which corresponds to column KK of A */
  784. kkw = *nb + kk - *n;
  785. /* Interchange rows and columns KP and KK. */
  786. /* Updated column KP is already stored in column KKW of W. */
  787. if (kp != kk) {
  788. /* Copy non-updated column KK to column KP of submatrix A */
  789. /* at step K. No need to copy element into column K */
  790. /* (or K and K-1 for 2-by-2 pivot) of A, since these columns */
  791. /* will be later overwritten. */
  792. a[kp + kp * a_dim1] = a[kk + kk * a_dim1];
  793. i__1 = kk - 1 - kp;
  794. scopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
  795. 1) * a_dim1], lda);
  796. if (kp > 1) {
  797. i__1 = kp - 1;
  798. scopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1
  799. + 1], &c__1);
  800. }
  801. /* Interchange rows KK and KP in last K+1 to N columns of A */
  802. /* (columns K (or K and K-1 for 2-by-2 pivot) of A will be */
  803. /* later overwritten). Interchange rows KK and KP */
  804. /* in last KKW to NB columns of W. */
  805. if (k < *n) {
  806. i__1 = *n - k;
  807. sswap_(&i__1, &a[kk + (k + 1) * a_dim1], lda, &a[kp + (k
  808. + 1) * a_dim1], lda);
  809. }
  810. i__1 = *n - kk + 1;
  811. sswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw *
  812. w_dim1], ldw);
  813. }
  814. if (kstep == 1) {
  815. /* 1-by-1 pivot block D(k): column kw of W now holds */
  816. /* W(kw) = U(k)*D(k), */
  817. /* where U(k) is the k-th column of U */
  818. /* Store subdiag. elements of column U(k) */
  819. /* and 1-by-1 block D(k) in column k of A. */
  820. /* NOTE: Diagonal element U(k,k) is a UNIT element */
  821. /* and not stored. */
  822. /* A(k,k) := D(k,k) = W(k,kw) */
  823. /* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k) */
  824. scopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
  825. c__1);
  826. r1 = 1.f / a[k + k * a_dim1];
  827. i__1 = k - 1;
  828. sscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
  829. } else {
  830. /* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold */
  831. /* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k) */
  832. /* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
  833. /* of U */
  834. /* Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2 */
  835. /* block D(k-1:k,k-1:k) in columns k-1 and k of A. */
  836. /* NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT */
  837. /* block and not stored. */
  838. /* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw) */
  839. /* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) = */
  840. /* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) ) */
  841. if (k > 2) {
  842. /* Compose the columns of the inverse of 2-by-2 pivot */
  843. /* block D in the following way to reduce the number */
  844. /* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by */
  845. /* this inverse */
  846. /* D**(-1) = ( d11 d21 )**(-1) = */
  847. /* ( d21 d22 ) */
  848. /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
  849. /* ( (-d21 ) ( d11 ) ) */
  850. /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
  851. /* * ( ( d22/d21 ) ( -1 ) ) = */
  852. /* ( ( -1 ) ( d11/d21 ) ) */
  853. /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
  854. /* ( ( -1 ) ( D22 ) ) */
  855. /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
  856. /* ( ( -1 ) ( D22 ) ) */
  857. /* = D21 * ( ( D11 ) ( -1 ) ) */
  858. /* ( ( -1 ) ( D22 ) ) */
  859. d21 = w[k - 1 + kw * w_dim1];
  860. d11 = w[k + kw * w_dim1] / d21;
  861. d22 = w[k - 1 + (kw - 1) * w_dim1] / d21;
  862. t = 1.f / (d11 * d22 - 1.f);
  863. d21 = t / d21;
  864. /* Update elements in columns A(k-1) and A(k) as */
  865. /* dot products of rows of ( W(kw-1) W(kw) ) and columns */
  866. /* of D**(-1) */
  867. i__1 = k - 2;
  868. for (j = 1; j <= i__1; ++j) {
  869. a[j + (k - 1) * a_dim1] = d21 * (d11 * w[j + (kw - 1)
  870. * w_dim1] - w[j + kw * w_dim1]);
  871. a[j + k * a_dim1] = d21 * (d22 * w[j + kw * w_dim1] -
  872. w[j + (kw - 1) * w_dim1]);
  873. /* L20: */
  874. }
  875. }
  876. /* Copy D(k) to A */
  877. a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];
  878. a[k - 1 + k * a_dim1] = w[k - 1 + kw * w_dim1];
  879. a[k + k * a_dim1] = w[k + kw * w_dim1];
  880. }
  881. }
  882. /* Store details of the interchanges in IPIV */
  883. if (kstep == 1) {
  884. ipiv[k] = kp;
  885. } else {
  886. ipiv[k] = -kp;
  887. ipiv[k - 1] = -kp;
  888. }
  889. /* Decrease K and return to the start of the main loop */
  890. k -= kstep;
  891. goto L10;
  892. L30:
  893. /* Update the upper triangle of A11 (= A(1:k,1:k)) as */
  894. /* A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
  895. /* computing blocks of NB columns at a time */
  896. i__1 = -(*nb);
  897. for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
  898. i__1) {
  899. /* Computing MIN */
  900. i__2 = *nb, i__3 = k - j + 1;
  901. jb = f2cmin(i__2,i__3);
  902. /* Update the upper triangle of the diagonal block */
  903. i__2 = j + jb - 1;
  904. for (jj = j; jj <= i__2; ++jj) {
  905. i__3 = jj - j + 1;
  906. i__4 = *n - k;
  907. sgemv_("No transpose", &i__3, &i__4, &c_b8, &a[j + (k + 1) *
  908. a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b9,
  909. &a[j + jj * a_dim1], &c__1);
  910. /* L40: */
  911. }
  912. /* Update the rectangular superdiagonal block */
  913. i__2 = j - 1;
  914. i__3 = *n - k;
  915. sgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b8, &a[(
  916. k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw,
  917. &c_b9, &a[j * a_dim1 + 1], lda);
  918. /* L50: */
  919. }
  920. /* Put U12 in standard form by partially undoing the interchanges */
  921. /* in columns k+1:n looping backwards from k+1 to n */
  922. j = k + 1;
  923. L60:
  924. /* Undo the interchanges (if any) of rows JJ and JP at each */
  925. /* step J */
  926. /* (Here, J is a diagonal index) */
  927. jj = j;
  928. jp = ipiv[j];
  929. if (jp < 0) {
  930. jp = -jp;
  931. /* (Here, J is a diagonal index) */
  932. ++j;
  933. }
  934. /* (NOTE: Here, J is used to determine row length. Length N-J+1 */
  935. /* of the rows to swap back doesn't include diagonal element) */
  936. ++j;
  937. if (jp != jj && j <= *n) {
  938. i__1 = *n - j + 1;
  939. sswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda);
  940. }
  941. if (j < *n) {
  942. goto L60;
  943. }
  944. /* Set KB to the number of columns factorized */
  945. *kb = *n - k;
  946. } else {
  947. /* Factorize the leading columns of A using the lower triangle */
  948. /* of A and working forwards, and compute the matrix W = L21*D */
  949. /* for use in updating A22 */
  950. /* K is the main loop index, increasing from 1 in steps of 1 or 2 */
  951. k = 1;
  952. L70:
  953. /* Exit from loop */
  954. if (k >= *nb && *nb < *n || k > *n) {
  955. goto L90;
  956. }
  957. /* Copy column K of A to column K of W and update it */
  958. i__1 = *n - k + 1;
  959. scopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
  960. i__1 = *n - k + 1;
  961. i__2 = k - 1;
  962. sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1], lda, &w[k
  963. + w_dim1], ldw, &c_b9, &w[k + k * w_dim1], &c__1);
  964. kstep = 1;
  965. /* Determine rows and columns to be interchanged and whether */
  966. /* a 1-by-1 or 2-by-2 pivot block will be used */
  967. absakk = (r__1 = w[k + k * w_dim1], abs(r__1));
  968. /* IMAX is the row-index of the largest off-diagonal element in */
  969. /* column K, and COLMAX is its absolute value. */
  970. /* Determine both COLMAX and IMAX. */
  971. if (k < *n) {
  972. i__1 = *n - k;
  973. imax = k + isamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
  974. colmax = (r__1 = w[imax + k * w_dim1], abs(r__1));
  975. } else {
  976. colmax = 0.f;
  977. }
  978. if (f2cmax(absakk,colmax) == 0.f) {
  979. /* Column K is zero or underflow: set INFO and continue */
  980. if (*info == 0) {
  981. *info = k;
  982. }
  983. kp = k;
  984. } else {
  985. if (absakk >= alpha * colmax) {
  986. /* no interchange, use 1-by-1 pivot block */
  987. kp = k;
  988. } else {
  989. /* Copy column IMAX to column K+1 of W and update it */
  990. i__1 = imax - k;
  991. scopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) *
  992. w_dim1], &c__1);
  993. i__1 = *n - imax + 1;
  994. scopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k +
  995. 1) * w_dim1], &c__1);
  996. i__1 = *n - k + 1;
  997. i__2 = k - 1;
  998. sgemv_("No transpose", &i__1, &i__2, &c_b8, &a[k + a_dim1],
  999. lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) *
  1000. w_dim1], &c__1);
  1001. /* JMAX is the column-index of the largest off-diagonal */
  1002. /* element in row IMAX, and ROWMAX is its absolute value */
  1003. i__1 = imax - k;
  1004. jmax = k - 1 + isamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
  1005. ;
  1006. rowmax = (r__1 = w[jmax + (k + 1) * w_dim1], abs(r__1));
  1007. if (imax < *n) {
  1008. i__1 = *n - imax;
  1009. jmax = imax + isamax_(&i__1, &w[imax + 1 + (k + 1) *
  1010. w_dim1], &c__1);
  1011. /* Computing MAX */
  1012. r__2 = rowmax, r__3 = (r__1 = w[jmax + (k + 1) * w_dim1],
  1013. abs(r__1));
  1014. rowmax = f2cmax(r__2,r__3);
  1015. }
  1016. if (absakk >= alpha * colmax * (colmax / rowmax)) {
  1017. /* no interchange, use 1-by-1 pivot block */
  1018. kp = k;
  1019. } else if ((r__1 = w[imax + (k + 1) * w_dim1], abs(r__1)) >=
  1020. alpha * rowmax) {
  1021. /* interchange rows and columns K and IMAX, use 1-by-1 */
  1022. /* pivot block */
  1023. kp = imax;
  1024. /* copy column K+1 of W to column K of W */
  1025. i__1 = *n - k + 1;
  1026. scopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k *
  1027. w_dim1], &c__1);
  1028. } else {
  1029. /* interchange rows and columns K+1 and IMAX, use 2-by-2 */
  1030. /* pivot block */
  1031. kp = imax;
  1032. kstep = 2;
  1033. }
  1034. }
  1035. /* ============================================================ */
  1036. /* KK is the column of A where pivoting step stopped */
  1037. kk = k + kstep - 1;
  1038. /* Interchange rows and columns KP and KK. */
  1039. /* Updated column KP is already stored in column KK of W. */
  1040. if (kp != kk) {
  1041. /* Copy non-updated column KK to column KP of submatrix A */
  1042. /* at step K. No need to copy element into column K */
  1043. /* (or K and K+1 for 2-by-2 pivot) of A, since these columns */
  1044. /* will be later overwritten. */
  1045. a[kp + kp * a_dim1] = a[kk + kk * a_dim1];
  1046. i__1 = kp - kk - 1;
  1047. scopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
  1048. 1) * a_dim1], lda);
  1049. if (kp < *n) {
  1050. i__1 = *n - kp;
  1051. scopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
  1052. + kp * a_dim1], &c__1);
  1053. }
  1054. /* Interchange rows KK and KP in first K-1 columns of A */
  1055. /* (columns K (or K and K+1 for 2-by-2 pivot) of A will be */
  1056. /* later overwritten). Interchange rows KK and KP */
  1057. /* in first KK columns of W. */
  1058. if (k > 1) {
  1059. i__1 = k - 1;
  1060. sswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
  1061. }
  1062. sswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
  1063. }
  1064. if (kstep == 1) {
  1065. /* 1-by-1 pivot block D(k): column k of W now holds */
  1066. /* W(k) = L(k)*D(k), */
  1067. /* where L(k) is the k-th column of L */
  1068. /* Store subdiag. elements of column L(k) */
  1069. /* and 1-by-1 block D(k) in column k of A. */
  1070. /* (NOTE: Diagonal element L(k,k) is a UNIT element */
  1071. /* and not stored) */
  1072. /* A(k,k) := D(k,k) = W(k,k) */
  1073. /* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k) */
  1074. i__1 = *n - k + 1;
  1075. scopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
  1076. c__1);
  1077. if (k < *n) {
  1078. r1 = 1.f / a[k + k * a_dim1];
  1079. i__1 = *n - k;
  1080. sscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
  1081. }
  1082. } else {
  1083. /* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
  1084. /* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
  1085. /* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
  1086. /* of L */
  1087. /* Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2 */
  1088. /* block D(k:k+1,k:k+1) in columns k and k+1 of A. */
  1089. /* (NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT */
  1090. /* block and not stored) */
  1091. /* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1) */
  1092. /* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) = */
  1093. /* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) ) */
  1094. if (k < *n - 1) {
  1095. /* Compose the columns of the inverse of 2-by-2 pivot */
  1096. /* block D in the following way to reduce the number */
  1097. /* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by */
  1098. /* this inverse */
  1099. /* D**(-1) = ( d11 d21 )**(-1) = */
  1100. /* ( d21 d22 ) */
  1101. /* = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = */
  1102. /* ( (-d21 ) ( d11 ) ) */
  1103. /* = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * */
  1104. /* * ( ( d22/d21 ) ( -1 ) ) = */
  1105. /* ( ( -1 ) ( d11/d21 ) ) */
  1106. /* = 1/d21 * 1/(D22*D11-1) * ( ( D11 ) ( -1 ) ) = */
  1107. /* ( ( -1 ) ( D22 ) ) */
  1108. /* = 1/d21 * T * ( ( D11 ) ( -1 ) ) */
  1109. /* ( ( -1 ) ( D22 ) ) */
  1110. /* = D21 * ( ( D11 ) ( -1 ) ) */
  1111. /* ( ( -1 ) ( D22 ) ) */
  1112. d21 = w[k + 1 + k * w_dim1];
  1113. d11 = w[k + 1 + (k + 1) * w_dim1] / d21;
  1114. d22 = w[k + k * w_dim1] / d21;
  1115. t = 1.f / (d11 * d22 - 1.f);
  1116. d21 = t / d21;
  1117. /* Update elements in columns A(k) and A(k+1) as */
  1118. /* dot products of rows of ( W(k) W(k+1) ) and columns */
  1119. /* of D**(-1) */
  1120. i__1 = *n;
  1121. for (j = k + 2; j <= i__1; ++j) {
  1122. a[j + k * a_dim1] = d21 * (d11 * w[j + k * w_dim1] -
  1123. w[j + (k + 1) * w_dim1]);
  1124. a[j + (k + 1) * a_dim1] = d21 * (d22 * w[j + (k + 1) *
  1125. w_dim1] - w[j + k * w_dim1]);
  1126. /* L80: */
  1127. }
  1128. }
  1129. /* Copy D(k) to A */
  1130. a[k + k * a_dim1] = w[k + k * w_dim1];
  1131. a[k + 1 + k * a_dim1] = w[k + 1 + k * w_dim1];
  1132. a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];
  1133. }
  1134. }
  1135. /* Store details of the interchanges in IPIV */
  1136. if (kstep == 1) {
  1137. ipiv[k] = kp;
  1138. } else {
  1139. ipiv[k] = -kp;
  1140. ipiv[k + 1] = -kp;
  1141. }
  1142. /* Increase K and return to the start of the main loop */
  1143. k += kstep;
  1144. goto L70;
  1145. L90:
  1146. /* Update the lower triangle of A22 (= A(k:n,k:n)) as */
  1147. /* A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
  1148. /* computing blocks of NB columns at a time */
  1149. i__1 = *n;
  1150. i__2 = *nb;
  1151. for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
  1152. /* Computing MIN */
  1153. i__3 = *nb, i__4 = *n - j + 1;
  1154. jb = f2cmin(i__3,i__4);
  1155. /* Update the lower triangle of the diagonal block */
  1156. i__3 = j + jb - 1;
  1157. for (jj = j; jj <= i__3; ++jj) {
  1158. i__4 = j + jb - jj;
  1159. i__5 = k - 1;
  1160. sgemv_("No transpose", &i__4, &i__5, &c_b8, &a[jj + a_dim1],
  1161. lda, &w[jj + w_dim1], ldw, &c_b9, &a[jj + jj * a_dim1]
  1162. , &c__1);
  1163. /* L100: */
  1164. }
  1165. /* Update the rectangular subdiagonal block */
  1166. if (j + jb <= *n) {
  1167. i__3 = *n - j - jb + 1;
  1168. i__4 = k - 1;
  1169. sgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b8,
  1170. &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b9,
  1171. &a[j + jb + j * a_dim1], lda);
  1172. }
  1173. /* L110: */
  1174. }
  1175. /* Put L21 in standard form by partially undoing the interchanges */
  1176. /* of rows in columns 1:k-1 looping backwards from k-1 to 1 */
  1177. j = k - 1;
  1178. L120:
  1179. /* Undo the interchanges (if any) of rows JJ and JP at each */
  1180. /* step J */
  1181. /* (Here, J is a diagonal index) */
  1182. jj = j;
  1183. jp = ipiv[j];
  1184. if (jp < 0) {
  1185. jp = -jp;
  1186. /* (Here, J is a diagonal index) */
  1187. --j;
  1188. }
  1189. /* (NOTE: Here, J is used to determine row length. Length J */
  1190. /* of the rows to swap back doesn't include diagonal element) */
  1191. --j;
  1192. if (jp != jj && j >= 1) {
  1193. sswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda);
  1194. }
  1195. if (j > 1) {
  1196. goto L120;
  1197. }
  1198. /* Set KB to the number of columns factorized */
  1199. *kb = k - 1;
  1200. }
  1201. return;
  1202. /* End of SLASYF */
  1203. } /* slasyf_ */