You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsbtrd.c 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublereal c_b9 = 0.;
  485. static doublereal c_b10 = 1.;
  486. static integer c__1 = 1;
  487. /* > \brief \b DSBTRD */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download DSBTRD + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbtrd.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbtrd.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbtrd.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE DSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, */
  506. /* WORK, INFO ) */
  507. /* CHARACTER UPLO, VECT */
  508. /* INTEGER INFO, KD, LDAB, LDQ, N */
  509. /* DOUBLE PRECISION AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ), */
  510. /* $ WORK( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > DSBTRD reduces a real symmetric band matrix A to symmetric */
  517. /* > tridiagonal form T by an orthogonal similarity transformation: */
  518. /* > Q**T * A * Q = T. */
  519. /* > \endverbatim */
  520. /* Arguments: */
  521. /* ========== */
  522. /* > \param[in] VECT */
  523. /* > \verbatim */
  524. /* > VECT is CHARACTER*1 */
  525. /* > = 'N': do not form Q; */
  526. /* > = 'V': form Q; */
  527. /* > = 'U': update a matrix X, by forming X*Q. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] UPLO */
  531. /* > \verbatim */
  532. /* > UPLO is CHARACTER*1 */
  533. /* > = 'U': Upper triangle of A is stored; */
  534. /* > = 'L': Lower triangle of A is stored. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix A. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] KD */
  544. /* > \verbatim */
  545. /* > KD is INTEGER */
  546. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  547. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in,out] AB */
  551. /* > \verbatim */
  552. /* > AB is DOUBLE PRECISION array, dimension (LDAB,N) */
  553. /* > On entry, the upper or lower triangle of the symmetric band */
  554. /* > matrix A, stored in the first KD+1 rows of the array. The */
  555. /* > j-th column of A is stored in the j-th column of the array AB */
  556. /* > as follows: */
  557. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  558. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  559. /* > On exit, the diagonal elements of AB are overwritten by the */
  560. /* > diagonal elements of the tridiagonal matrix T; if KD > 0, the */
  561. /* > elements on the first superdiagonal (if UPLO = 'U') or the */
  562. /* > first subdiagonal (if UPLO = 'L') are overwritten by the */
  563. /* > off-diagonal elements of T; the rest of AB is overwritten by */
  564. /* > values generated during the reduction. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] LDAB */
  568. /* > \verbatim */
  569. /* > LDAB is INTEGER */
  570. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[out] D */
  574. /* > \verbatim */
  575. /* > D is DOUBLE PRECISION array, dimension (N) */
  576. /* > The diagonal elements of the tridiagonal matrix T. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] E */
  580. /* > \verbatim */
  581. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  582. /* > The off-diagonal elements of the tridiagonal matrix T: */
  583. /* > E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] Q */
  587. /* > \verbatim */
  588. /* > Q is DOUBLE PRECISION array, dimension (LDQ,N) */
  589. /* > On entry, if VECT = 'U', then Q must contain an N-by-N */
  590. /* > matrix X; if VECT = 'N' or 'V', then Q need not be set. */
  591. /* > */
  592. /* > On exit: */
  593. /* > if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; */
  594. /* > if VECT = 'U', Q contains the product X*Q; */
  595. /* > if VECT = 'N', the array Q is not referenced. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[in] LDQ */
  599. /* > \verbatim */
  600. /* > LDQ is INTEGER */
  601. /* > The leading dimension of the array Q. */
  602. /* > LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] WORK */
  606. /* > \verbatim */
  607. /* > WORK is DOUBLE PRECISION array, dimension (N) */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] INFO */
  611. /* > \verbatim */
  612. /* > INFO is INTEGER */
  613. /* > = 0: successful exit */
  614. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  615. /* > \endverbatim */
  616. /* Authors: */
  617. /* ======== */
  618. /* > \author Univ. of Tennessee */
  619. /* > \author Univ. of California Berkeley */
  620. /* > \author Univ. of Colorado Denver */
  621. /* > \author NAG Ltd. */
  622. /* > \date December 2016 */
  623. /* > \ingroup doubleOTHERcomputational */
  624. /* > \par Further Details: */
  625. /* ===================== */
  626. /* > */
  627. /* > \verbatim */
  628. /* > */
  629. /* > Modified by Linda Kaufman, Bell Labs. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* ===================================================================== */
  633. /* Subroutine */ void dsbtrd_(char *vect, char *uplo, integer *n, integer *kd,
  634. doublereal *ab, integer *ldab, doublereal *d__, doublereal *e,
  635. doublereal *q, integer *ldq, doublereal *work, integer *info)
  636. {
  637. /* System generated locals */
  638. integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4,
  639. i__5;
  640. /* Local variables */
  641. integer inca, jend, lend, jinc, incx, last;
  642. doublereal temp;
  643. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  644. doublereal *, integer *, doublereal *, doublereal *);
  645. integer j1end, j1inc, i__, j, k, l, iqend;
  646. extern logical lsame_(char *, char *);
  647. logical initq, wantq, upper;
  648. integer i2, j1, j2;
  649. extern /* Subroutine */ void dlar2v_(integer *, doublereal *, doublereal *,
  650. doublereal *, integer *, doublereal *, doublereal *, integer *);
  651. integer nq, nr, iqaend;
  652. extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
  653. doublereal *, doublereal *, doublereal *, integer *),
  654. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  655. doublereal *);
  656. extern int xerbla_(char *, integer *, ftnlen);
  657. extern void dlargv_(
  658. integer *, doublereal *, integer *, doublereal *, integer *,
  659. doublereal *, integer *), dlartv_(integer *, doublereal *,
  660. integer *, doublereal *, integer *, doublereal *, doublereal *,
  661. integer *);
  662. integer kd1, ibl, iqb, kdn, jin, nrt, kdm1;
  663. /* -- LAPACK computational routine (version 3.7.0) -- */
  664. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  665. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  666. /* December 2016 */
  667. /* ===================================================================== */
  668. /* Test the input parameters */
  669. /* Parameter adjustments */
  670. ab_dim1 = *ldab;
  671. ab_offset = 1 + ab_dim1 * 1;
  672. ab -= ab_offset;
  673. --d__;
  674. --e;
  675. q_dim1 = *ldq;
  676. q_offset = 1 + q_dim1 * 1;
  677. q -= q_offset;
  678. --work;
  679. /* Function Body */
  680. initq = lsame_(vect, "V");
  681. wantq = initq || lsame_(vect, "U");
  682. upper = lsame_(uplo, "U");
  683. kd1 = *kd + 1;
  684. kdm1 = *kd - 1;
  685. incx = *ldab - 1;
  686. iqend = 1;
  687. *info = 0;
  688. if (! wantq && ! lsame_(vect, "N")) {
  689. *info = -1;
  690. } else if (! upper && ! lsame_(uplo, "L")) {
  691. *info = -2;
  692. } else if (*n < 0) {
  693. *info = -3;
  694. } else if (*kd < 0) {
  695. *info = -4;
  696. } else if (*ldab < kd1) {
  697. *info = -6;
  698. } else if (*ldq < f2cmax(1,*n) && wantq) {
  699. *info = -10;
  700. }
  701. if (*info != 0) {
  702. i__1 = -(*info);
  703. xerbla_("DSBTRD", &i__1, (ftnlen)6);
  704. return;
  705. }
  706. /* Quick return if possible */
  707. if (*n == 0) {
  708. return;
  709. }
  710. /* Initialize Q to the unit matrix, if needed */
  711. if (initq) {
  712. dlaset_("Full", n, n, &c_b9, &c_b10, &q[q_offset], ldq);
  713. }
  714. /* Wherever possible, plane rotations are generated and applied in */
  715. /* vector operations of length NR over the index set J1:J2:KD1. */
  716. /* The cosines and sines of the plane rotations are stored in the */
  717. /* arrays D and WORK. */
  718. inca = kd1 * *ldab;
  719. /* Computing MIN */
  720. i__1 = *n - 1;
  721. kdn = f2cmin(i__1,*kd);
  722. if (upper) {
  723. if (*kd > 1) {
  724. /* Reduce to tridiagonal form, working with upper triangle */
  725. nr = 0;
  726. j1 = kdn + 2;
  727. j2 = 1;
  728. i__1 = *n - 2;
  729. for (i__ = 1; i__ <= i__1; ++i__) {
  730. /* Reduce i-th row of matrix to tridiagonal form */
  731. for (k = kdn + 1; k >= 2; --k) {
  732. j1 += kdn;
  733. j2 += kdn;
  734. if (nr > 0) {
  735. /* generate plane rotations to annihilate nonzero */
  736. /* elements which have been created outside the band */
  737. dlargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
  738. work[j1], &kd1, &d__[j1], &kd1);
  739. /* apply rotations from the right */
  740. /* Dependent on the the number of diagonals either */
  741. /* DLARTV or DROT is used */
  742. if (nr >= (*kd << 1) - 1) {
  743. i__2 = *kd - 1;
  744. for (l = 1; l <= i__2; ++l) {
  745. dlartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1],
  746. &inca, &ab[l + j1 * ab_dim1], &inca, &
  747. d__[j1], &work[j1], &kd1);
  748. /* L10: */
  749. }
  750. } else {
  751. jend = j1 + (nr - 1) * kd1;
  752. i__2 = jend;
  753. i__3 = kd1;
  754. for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <=
  755. i__2; jinc += i__3) {
  756. drot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
  757. c__1, &ab[jinc * ab_dim1 + 1], &c__1,
  758. &d__[jinc], &work[jinc]);
  759. /* L20: */
  760. }
  761. }
  762. }
  763. if (k > 2) {
  764. if (k <= *n - i__ + 1) {
  765. /* generate plane rotation to annihilate a(i,i+k-1) */
  766. /* within the band */
  767. dlartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
  768. , &ab[*kd - k + 2 + (i__ + k - 1) *
  769. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  770. k - 1], &temp);
  771. ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] = temp;
  772. /* apply rotation from the right */
  773. i__3 = k - 3;
  774. drot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) *
  775. ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ +
  776. k - 1) * ab_dim1], &c__1, &d__[i__ + k -
  777. 1], &work[i__ + k - 1]);
  778. }
  779. ++nr;
  780. j1 = j1 - kdn - 1;
  781. }
  782. /* apply plane rotations from both sides to diagonal */
  783. /* blocks */
  784. if (nr > 0) {
  785. dlar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 +
  786. j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
  787. &d__[j1], &work[j1], &kd1);
  788. }
  789. /* apply plane rotations from the left */
  790. if (nr > 0) {
  791. if ((*kd << 1) - 1 < nr) {
  792. /* Dependent on the the number of diagonals either */
  793. /* DLARTV or DROT is used */
  794. i__3 = *kd - 1;
  795. for (l = 1; l <= i__3; ++l) {
  796. if (j2 + l > *n) {
  797. nrt = nr - 1;
  798. } else {
  799. nrt = nr;
  800. }
  801. if (nrt > 0) {
  802. dlartv_(&nrt, &ab[*kd - l + (j1 + l) *
  803. ab_dim1], &inca, &ab[*kd - l + 1
  804. + (j1 + l) * ab_dim1], &inca, &
  805. d__[j1], &work[j1], &kd1);
  806. }
  807. /* L30: */
  808. }
  809. } else {
  810. j1end = j1 + kd1 * (nr - 2);
  811. if (j1end >= j1) {
  812. i__3 = j1end;
  813. i__2 = kd1;
  814. for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
  815. i__3; jin += i__2) {
  816. i__4 = *kd - 1;
  817. drot_(&i__4, &ab[*kd - 1 + (jin + 1) *
  818. ab_dim1], &incx, &ab[*kd + (jin +
  819. 1) * ab_dim1], &incx, &d__[jin], &
  820. work[jin]);
  821. /* L40: */
  822. }
  823. }
  824. /* Computing MIN */
  825. i__2 = kdm1, i__3 = *n - j2;
  826. lend = f2cmin(i__2,i__3);
  827. last = j1end + kd1;
  828. if (lend > 0) {
  829. drot_(&lend, &ab[*kd - 1 + (last + 1) *
  830. ab_dim1], &incx, &ab[*kd + (last + 1)
  831. * ab_dim1], &incx, &d__[last], &work[
  832. last]);
  833. }
  834. }
  835. }
  836. if (wantq) {
  837. /* accumulate product of plane rotations in Q */
  838. if (initq) {
  839. /* take advantage of the fact that Q was */
  840. /* initially the Identity matrix */
  841. iqend = f2cmax(iqend,j2);
  842. /* Computing MAX */
  843. i__2 = 0, i__3 = k - 3;
  844. i2 = f2cmax(i__2,i__3);
  845. iqaend = i__ * *kd + 1;
  846. if (k == 2) {
  847. iqaend += *kd;
  848. }
  849. iqaend = f2cmin(iqaend,iqend);
  850. i__2 = j2;
  851. i__3 = kd1;
  852. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  853. += i__3) {
  854. ibl = i__ - i2 / kdm1;
  855. ++i2;
  856. /* Computing MAX */
  857. i__4 = 1, i__5 = j - ibl;
  858. iqb = f2cmax(i__4,i__5);
  859. nq = iqaend + 1 - iqb;
  860. /* Computing MIN */
  861. i__4 = iqaend + *kd;
  862. iqaend = f2cmin(i__4,iqend);
  863. drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  864. &q[iqb + j * q_dim1], &c__1, &d__[j],
  865. &work[j]);
  866. /* L50: */
  867. }
  868. } else {
  869. i__3 = j2;
  870. i__2 = kd1;
  871. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  872. += i__2) {
  873. drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  874. j * q_dim1 + 1], &c__1, &d__[j], &
  875. work[j]);
  876. /* L60: */
  877. }
  878. }
  879. }
  880. if (j2 + kdn > *n) {
  881. /* adjust J2 to keep within the bounds of the matrix */
  882. --nr;
  883. j2 = j2 - kdn - 1;
  884. }
  885. i__2 = j2;
  886. i__3 = kd1;
  887. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3)
  888. {
  889. /* create nonzero element a(j-1,j+kd) outside the band */
  890. /* and store it in WORK */
  891. work[j + *kd] = work[j] * ab[(j + *kd) * ab_dim1 + 1];
  892. ab[(j + *kd) * ab_dim1 + 1] = d__[j] * ab[(j + *kd) *
  893. ab_dim1 + 1];
  894. /* L70: */
  895. }
  896. /* L80: */
  897. }
  898. /* L90: */
  899. }
  900. }
  901. if (*kd > 0) {
  902. /* copy off-diagonal elements to E */
  903. i__1 = *n - 1;
  904. for (i__ = 1; i__ <= i__1; ++i__) {
  905. e[i__] = ab[*kd + (i__ + 1) * ab_dim1];
  906. /* L100: */
  907. }
  908. } else {
  909. /* set E to zero if original matrix was diagonal */
  910. i__1 = *n - 1;
  911. for (i__ = 1; i__ <= i__1; ++i__) {
  912. e[i__] = 0.;
  913. /* L110: */
  914. }
  915. }
  916. /* copy diagonal elements to D */
  917. i__1 = *n;
  918. for (i__ = 1; i__ <= i__1; ++i__) {
  919. d__[i__] = ab[kd1 + i__ * ab_dim1];
  920. /* L120: */
  921. }
  922. } else {
  923. if (*kd > 1) {
  924. /* Reduce to tridiagonal form, working with lower triangle */
  925. nr = 0;
  926. j1 = kdn + 2;
  927. j2 = 1;
  928. i__1 = *n - 2;
  929. for (i__ = 1; i__ <= i__1; ++i__) {
  930. /* Reduce i-th column of matrix to tridiagonal form */
  931. for (k = kdn + 1; k >= 2; --k) {
  932. j1 += kdn;
  933. j2 += kdn;
  934. if (nr > 0) {
  935. /* generate plane rotations to annihilate nonzero */
  936. /* elements which have been created outside the band */
  937. dlargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
  938. work[j1], &kd1, &d__[j1], &kd1);
  939. /* apply plane rotations from one side */
  940. /* Dependent on the the number of diagonals either */
  941. /* DLARTV or DROT is used */
  942. if (nr > (*kd << 1) - 1) {
  943. i__3 = *kd - 1;
  944. for (l = 1; l <= i__3; ++l) {
  945. dlartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) *
  946. ab_dim1], &inca, &ab[kd1 - l + 1 + (
  947. j1 - kd1 + l) * ab_dim1], &inca, &d__[
  948. j1], &work[j1], &kd1);
  949. /* L130: */
  950. }
  951. } else {
  952. jend = j1 + kd1 * (nr - 1);
  953. i__3 = jend;
  954. i__2 = kd1;
  955. for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <=
  956. i__3; jinc += i__2) {
  957. drot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
  958. , &incx, &ab[kd1 + (jinc - *kd) *
  959. ab_dim1], &incx, &d__[jinc], &work[
  960. jinc]);
  961. /* L140: */
  962. }
  963. }
  964. }
  965. if (k > 2) {
  966. if (k <= *n - i__ + 1) {
  967. /* generate plane rotation to annihilate a(i+k-1,i) */
  968. /* within the band */
  969. dlartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ *
  970. ab_dim1], &d__[i__ + k - 1], &work[i__ +
  971. k - 1], &temp);
  972. ab[k - 1 + i__ * ab_dim1] = temp;
  973. /* apply rotation from the left */
  974. i__2 = k - 3;
  975. i__3 = *ldab - 1;
  976. i__4 = *ldab - 1;
  977. drot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
  978. i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
  979. i__4, &d__[i__ + k - 1], &work[i__ + k -
  980. 1]);
  981. }
  982. ++nr;
  983. j1 = j1 - kdn - 1;
  984. }
  985. /* apply plane rotations from both sides to diagonal */
  986. /* blocks */
  987. if (nr > 0) {
  988. dlar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 *
  989. ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
  990. inca, &d__[j1], &work[j1], &kd1);
  991. }
  992. /* apply plane rotations from the right */
  993. /* Dependent on the the number of diagonals either */
  994. /* DLARTV or DROT is used */
  995. if (nr > 0) {
  996. if (nr > (*kd << 1) - 1) {
  997. i__2 = *kd - 1;
  998. for (l = 1; l <= i__2; ++l) {
  999. if (j2 + l > *n) {
  1000. nrt = nr - 1;
  1001. } else {
  1002. nrt = nr;
  1003. }
  1004. if (nrt > 0) {
  1005. dlartv_(&nrt, &ab[l + 2 + (j1 - 1) *
  1006. ab_dim1], &inca, &ab[l + 1 + j1 *
  1007. ab_dim1], &inca, &d__[j1], &work[
  1008. j1], &kd1);
  1009. }
  1010. /* L150: */
  1011. }
  1012. } else {
  1013. j1end = j1 + kd1 * (nr - 2);
  1014. if (j1end >= j1) {
  1015. i__2 = j1end;
  1016. i__3 = kd1;
  1017. for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 :
  1018. j1inc <= i__2; j1inc += i__3) {
  1019. drot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 +
  1020. 3], &c__1, &ab[j1inc * ab_dim1 +
  1021. 2], &c__1, &d__[j1inc], &work[
  1022. j1inc]);
  1023. /* L160: */
  1024. }
  1025. }
  1026. /* Computing MIN */
  1027. i__3 = kdm1, i__2 = *n - j2;
  1028. lend = f2cmin(i__3,i__2);
  1029. last = j1end + kd1;
  1030. if (lend > 0) {
  1031. drot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
  1032. c__1, &ab[last * ab_dim1 + 2], &c__1,
  1033. &d__[last], &work[last]);
  1034. }
  1035. }
  1036. }
  1037. if (wantq) {
  1038. /* accumulate product of plane rotations in Q */
  1039. if (initq) {
  1040. /* take advantage of the fact that Q was */
  1041. /* initially the Identity matrix */
  1042. iqend = f2cmax(iqend,j2);
  1043. /* Computing MAX */
  1044. i__3 = 0, i__2 = k - 3;
  1045. i2 = f2cmax(i__3,i__2);
  1046. iqaend = i__ * *kd + 1;
  1047. if (k == 2) {
  1048. iqaend += *kd;
  1049. }
  1050. iqaend = f2cmin(iqaend,iqend);
  1051. i__3 = j2;
  1052. i__2 = kd1;
  1053. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j
  1054. += i__2) {
  1055. ibl = i__ - i2 / kdm1;
  1056. ++i2;
  1057. /* Computing MAX */
  1058. i__4 = 1, i__5 = j - ibl;
  1059. iqb = f2cmax(i__4,i__5);
  1060. nq = iqaend + 1 - iqb;
  1061. /* Computing MIN */
  1062. i__4 = iqaend + *kd;
  1063. iqaend = f2cmin(i__4,iqend);
  1064. drot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1,
  1065. &q[iqb + j * q_dim1], &c__1, &d__[j],
  1066. &work[j]);
  1067. /* L170: */
  1068. }
  1069. } else {
  1070. i__2 = j2;
  1071. i__3 = kd1;
  1072. for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j
  1073. += i__3) {
  1074. drot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
  1075. j * q_dim1 + 1], &c__1, &d__[j], &
  1076. work[j]);
  1077. /* L180: */
  1078. }
  1079. }
  1080. }
  1081. if (j2 + kdn > *n) {
  1082. /* adjust J2 to keep within the bounds of the matrix */
  1083. --nr;
  1084. j2 = j2 - kdn - 1;
  1085. }
  1086. i__3 = j2;
  1087. i__2 = kd1;
  1088. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2)
  1089. {
  1090. /* create nonzero element a(j+kd,j-1) outside the */
  1091. /* band and store it in WORK */
  1092. work[j + *kd] = work[j] * ab[kd1 + j * ab_dim1];
  1093. ab[kd1 + j * ab_dim1] = d__[j] * ab[kd1 + j * ab_dim1]
  1094. ;
  1095. /* L190: */
  1096. }
  1097. /* L200: */
  1098. }
  1099. /* L210: */
  1100. }
  1101. }
  1102. if (*kd > 0) {
  1103. /* copy off-diagonal elements to E */
  1104. i__1 = *n - 1;
  1105. for (i__ = 1; i__ <= i__1; ++i__) {
  1106. e[i__] = ab[i__ * ab_dim1 + 2];
  1107. /* L220: */
  1108. }
  1109. } else {
  1110. /* set E to zero if original matrix was diagonal */
  1111. i__1 = *n - 1;
  1112. for (i__ = 1; i__ <= i__1; ++i__) {
  1113. e[i__] = 0.;
  1114. /* L230: */
  1115. }
  1116. }
  1117. /* copy diagonal elements to D */
  1118. i__1 = *n;
  1119. for (i__ = 1; i__ <= i__1; ++i__) {
  1120. d__[i__] = ab[i__ * ab_dim1 + 1];
  1121. /* L240: */
  1122. }
  1123. }
  1124. return;
  1125. /* End of DSBTRD */
  1126. } /* dsbtrd_ */