You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd4.c 43 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* > \brief \b DLASD4 computes the square root of the i-th updated eigenvalue of a positive symmetric rank-one
  484. modification to a positive diagonal matrix. Used by dbdsdc. */
  485. /* =========== DOCUMENTATION =========== */
  486. /* Online html documentation available at */
  487. /* http://www.netlib.org/lapack/explore-html/ */
  488. /* > \htmlonly */
  489. /* > Download DLASD4 + dependencies */
  490. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd4.
  491. f"> */
  492. /* > [TGZ]</a> */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd4.
  494. f"> */
  495. /* > [ZIP]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd4.
  497. f"> */
  498. /* > [TXT]</a> */
  499. /* > \endhtmlonly */
  500. /* Definition: */
  501. /* =========== */
  502. /* SUBROUTINE DLASD4( N, I, D, Z, DELTA, RHO, SIGMA, WORK, INFO ) */
  503. /* INTEGER I, INFO, N */
  504. /* DOUBLE PRECISION RHO, SIGMA */
  505. /* DOUBLE PRECISION D( * ), DELTA( * ), WORK( * ), Z( * ) */
  506. /* > \par Purpose: */
  507. /* ============= */
  508. /* > */
  509. /* > \verbatim */
  510. /* > */
  511. /* > This subroutine computes the square root of the I-th updated */
  512. /* > eigenvalue of a positive symmetric rank-one modification to */
  513. /* > a positive diagonal matrix whose entries are given as the squares */
  514. /* > of the corresponding entries in the array d, and that */
  515. /* > */
  516. /* > 0 <= D(i) < D(j) for i < j */
  517. /* > */
  518. /* > and that RHO > 0. This is arranged by the calling routine, and is */
  519. /* > no loss in generality. The rank-one modified system is thus */
  520. /* > */
  521. /* > diag( D ) * diag( D ) + RHO * Z * Z_transpose. */
  522. /* > */
  523. /* > where we assume the Euclidean norm of Z is 1. */
  524. /* > */
  525. /* > The method consists of approximating the rational functions in the */
  526. /* > secular equation by simpler interpolating rational functions. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] N */
  531. /* > \verbatim */
  532. /* > N is INTEGER */
  533. /* > The length of all arrays. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] I */
  537. /* > \verbatim */
  538. /* > I is INTEGER */
  539. /* > The index of the eigenvalue to be computed. 1 <= I <= N. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] D */
  543. /* > \verbatim */
  544. /* > D is DOUBLE PRECISION array, dimension ( N ) */
  545. /* > The original eigenvalues. It is assumed that they are in */
  546. /* > order, 0 <= D(I) < D(J) for I < J. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] Z */
  550. /* > \verbatim */
  551. /* > Z is DOUBLE PRECISION array, dimension ( N ) */
  552. /* > The components of the updating vector. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[out] DELTA */
  556. /* > \verbatim */
  557. /* > DELTA is DOUBLE PRECISION array, dimension ( N ) */
  558. /* > If N .ne. 1, DELTA contains (D(j) - sigma_I) in its j-th */
  559. /* > component. If N = 1, then DELTA(1) = 1. The vector DELTA */
  560. /* > contains the information necessary to construct the */
  561. /* > (singular) eigenvectors. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] RHO */
  565. /* > \verbatim */
  566. /* > RHO is DOUBLE PRECISION */
  567. /* > The scalar in the symmetric updating formula. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[out] SIGMA */
  571. /* > \verbatim */
  572. /* > SIGMA is DOUBLE PRECISION */
  573. /* > The computed sigma_I, the I-th updated eigenvalue. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] WORK */
  577. /* > \verbatim */
  578. /* > WORK is DOUBLE PRECISION array, dimension ( N ) */
  579. /* > If N .ne. 1, WORK contains (D(j) + sigma_I) in its j-th */
  580. /* > component. If N = 1, then WORK( 1 ) = 1. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] INFO */
  584. /* > \verbatim */
  585. /* > INFO is INTEGER */
  586. /* > = 0: successful exit */
  587. /* > > 0: if INFO = 1, the updating process failed. */
  588. /* > \endverbatim */
  589. /* > \par Internal Parameters: */
  590. /* ========================= */
  591. /* > */
  592. /* > \verbatim */
  593. /* > Logical variable ORGATI (origin-at-i?) is used for distinguishing */
  594. /* > whether D(i) or D(i+1) is treated as the origin. */
  595. /* > */
  596. /* > ORGATI = .true. origin at i */
  597. /* > ORGATI = .false. origin at i+1 */
  598. /* > */
  599. /* > Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
  600. /* > if we are working with THREE poles! */
  601. /* > */
  602. /* > MAXIT is the maximum number of iterations allowed for each */
  603. /* > eigenvalue. */
  604. /* > \endverbatim */
  605. /* Authors: */
  606. /* ======== */
  607. /* > \author Univ. of Tennessee */
  608. /* > \author Univ. of California Berkeley */
  609. /* > \author Univ. of Colorado Denver */
  610. /* > \author NAG Ltd. */
  611. /* > \date December 2016 */
  612. /* > \ingroup OTHERauxiliary */
  613. /* > \par Contributors: */
  614. /* ================== */
  615. /* > */
  616. /* > Ren-Cang Li, Computer Science Division, University of California */
  617. /* > at Berkeley, USA */
  618. /* > */
  619. /* ===================================================================== */
  620. /* Subroutine */ void dlasd4_(integer *n, integer *i__, doublereal *d__,
  621. doublereal *z__, doublereal *delta, doublereal *rho, doublereal *
  622. sigma, doublereal *work, integer *info)
  623. {
  624. /* System generated locals */
  625. integer i__1;
  626. doublereal d__1;
  627. /* Local variables */
  628. doublereal dphi, sglb, dpsi, sgub;
  629. integer iter;
  630. doublereal temp, prew, temp1, temp2, a, b, c__;
  631. integer j;
  632. doublereal w, dtiim, delsq, dtiip;
  633. integer niter;
  634. doublereal dtisq;
  635. logical swtch;
  636. doublereal dtnsq;
  637. extern /* Subroutine */ void dlaed6_(integer *, logical *, doublereal *,
  638. doublereal *, doublereal *, doublereal *, doublereal *, integer *)
  639. , dlasd5_(integer *, doublereal *, doublereal *, doublereal *,
  640. doublereal *, doublereal *, doublereal *);
  641. doublereal delsq2, dd[3], dtnsq1;
  642. logical swtch3;
  643. integer ii;
  644. extern doublereal dlamch_(char *);
  645. doublereal dw, zz[3];
  646. logical orgati;
  647. doublereal erretm, dtipsq, rhoinv;
  648. integer ip1;
  649. doublereal sq2, eta, phi, eps, tau, psi;
  650. logical geomavg;
  651. integer iim1, iip1;
  652. doublereal tau2;
  653. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  654. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  655. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  656. /* December 2016 */
  657. /* ===================================================================== */
  658. /* Since this routine is called in an inner loop, we do no argument */
  659. /* checking. */
  660. /* Quick return for N=1 and 2. */
  661. /* Parameter adjustments */
  662. --work;
  663. --delta;
  664. --z__;
  665. --d__;
  666. /* Function Body */
  667. *info = 0;
  668. if (*n == 1) {
  669. /* Presumably, I=1 upon entry */
  670. *sigma = sqrt(d__[1] * d__[1] + *rho * z__[1] * z__[1]);
  671. delta[1] = 1.;
  672. work[1] = 1.;
  673. return;
  674. }
  675. if (*n == 2) {
  676. dlasd5_(i__, &d__[1], &z__[1], &delta[1], rho, sigma, &work[1]);
  677. return;
  678. }
  679. /* Compute machine epsilon */
  680. eps = dlamch_("Epsilon");
  681. rhoinv = 1. / *rho;
  682. tau2 = 0.;
  683. /* The case I = N */
  684. if (*i__ == *n) {
  685. /* Initialize some basic variables */
  686. ii = *n - 1;
  687. niter = 1;
  688. /* Calculate initial guess */
  689. temp = *rho / 2.;
  690. /* If ||Z||_2 is not one, then TEMP should be set to */
  691. /* RHO * ||Z||_2^2 / TWO */
  692. temp1 = temp / (d__[*n] + sqrt(d__[*n] * d__[*n] + temp));
  693. i__1 = *n;
  694. for (j = 1; j <= i__1; ++j) {
  695. work[j] = d__[j] + d__[*n] + temp1;
  696. delta[j] = d__[j] - d__[*n] - temp1;
  697. /* L10: */
  698. }
  699. psi = 0.;
  700. i__1 = *n - 2;
  701. for (j = 1; j <= i__1; ++j) {
  702. psi += z__[j] * z__[j] / (delta[j] * work[j]);
  703. /* L20: */
  704. }
  705. c__ = rhoinv + psi;
  706. w = c__ + z__[ii] * z__[ii] / (delta[ii] * work[ii]) + z__[*n] * z__[*
  707. n] / (delta[*n] * work[*n]);
  708. if (w <= 0.) {
  709. temp1 = sqrt(d__[*n] * d__[*n] + *rho);
  710. temp = z__[*n - 1] * z__[*n - 1] / ((d__[*n - 1] + temp1) * (d__[*
  711. n] - d__[*n - 1] + *rho / (d__[*n] + temp1))) + z__[*n] *
  712. z__[*n] / *rho;
  713. /* The following TAU2 is to approximate */
  714. /* SIGMA_n^2 - D( N )*D( N ) */
  715. if (c__ <= temp) {
  716. tau = *rho;
  717. } else {
  718. delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
  719. a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*
  720. n];
  721. b = z__[*n] * z__[*n] * delsq;
  722. if (a < 0.) {
  723. tau2 = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
  724. } else {
  725. tau2 = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
  726. }
  727. tau = tau2 / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau2));
  728. }
  729. /* It can be proved that */
  730. /* D(N)^2+RHO/2 <= SIGMA_n^2 < D(N)^2+TAU2 <= D(N)^2+RHO */
  731. } else {
  732. delsq = (d__[*n] - d__[*n - 1]) * (d__[*n] + d__[*n - 1]);
  733. a = -c__ * delsq + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
  734. b = z__[*n] * z__[*n] * delsq;
  735. /* The following TAU2 is to approximate */
  736. /* SIGMA_n^2 - D( N )*D( N ) */
  737. if (a < 0.) {
  738. tau2 = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
  739. } else {
  740. tau2 = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
  741. }
  742. tau = tau2 / (d__[*n] + sqrt(d__[*n] * d__[*n] + tau2));
  743. /* It can be proved that */
  744. /* D(N)^2 < D(N)^2+TAU2 < SIGMA(N)^2 < D(N)^2+RHO/2 */
  745. }
  746. /* The following TAU is to approximate SIGMA_n - D( N ) */
  747. /* TAU = TAU2 / ( D( N )+SQRT( D( N )*D( N )+TAU2 ) ) */
  748. *sigma = d__[*n] + tau;
  749. i__1 = *n;
  750. for (j = 1; j <= i__1; ++j) {
  751. delta[j] = d__[j] - d__[*n] - tau;
  752. work[j] = d__[j] + d__[*n] + tau;
  753. /* L30: */
  754. }
  755. /* Evaluate PSI and the derivative DPSI */
  756. dpsi = 0.;
  757. psi = 0.;
  758. erretm = 0.;
  759. i__1 = ii;
  760. for (j = 1; j <= i__1; ++j) {
  761. temp = z__[j] / (delta[j] * work[j]);
  762. psi += z__[j] * temp;
  763. dpsi += temp * temp;
  764. erretm += psi;
  765. /* L40: */
  766. }
  767. erretm = abs(erretm);
  768. /* Evaluate PHI and the derivative DPHI */
  769. temp = z__[*n] / (delta[*n] * work[*n]);
  770. phi = z__[*n] * temp;
  771. dphi = temp * temp;
  772. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv;
  773. /* $ + ABS( TAU2 )*( DPSI+DPHI ) */
  774. w = rhoinv + phi + psi;
  775. /* Test for convergence */
  776. if (abs(w) <= eps * erretm) {
  777. goto L240;
  778. }
  779. /* Calculate the new step */
  780. ++niter;
  781. dtnsq1 = work[*n - 1] * delta[*n - 1];
  782. dtnsq = work[*n] * delta[*n];
  783. c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
  784. a = (dtnsq + dtnsq1) * w - dtnsq * dtnsq1 * (dpsi + dphi);
  785. b = dtnsq * dtnsq1 * w;
  786. if (c__ < 0.) {
  787. c__ = abs(c__);
  788. }
  789. if (c__ == 0.) {
  790. eta = *rho - *sigma * *sigma;
  791. } else if (a >= 0.) {
  792. eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
  793. * 2.);
  794. } else {
  795. eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
  796. );
  797. }
  798. /* Note, eta should be positive if w is negative, and */
  799. /* eta should be negative otherwise. However, */
  800. /* if for some reason caused by roundoff, eta*w > 0, */
  801. /* we simply use one Newton step instead. This way */
  802. /* will guarantee eta*w < 0. */
  803. if (w * eta > 0.) {
  804. eta = -w / (dpsi + dphi);
  805. }
  806. temp = eta - dtnsq;
  807. if (temp > *rho) {
  808. eta = *rho + dtnsq;
  809. }
  810. eta /= *sigma + sqrt(eta + *sigma * *sigma);
  811. tau += eta;
  812. *sigma += eta;
  813. i__1 = *n;
  814. for (j = 1; j <= i__1; ++j) {
  815. delta[j] -= eta;
  816. work[j] += eta;
  817. /* L50: */
  818. }
  819. /* Evaluate PSI and the derivative DPSI */
  820. dpsi = 0.;
  821. psi = 0.;
  822. erretm = 0.;
  823. i__1 = ii;
  824. for (j = 1; j <= i__1; ++j) {
  825. temp = z__[j] / (work[j] * delta[j]);
  826. psi += z__[j] * temp;
  827. dpsi += temp * temp;
  828. erretm += psi;
  829. /* L60: */
  830. }
  831. erretm = abs(erretm);
  832. /* Evaluate PHI and the derivative DPHI */
  833. tau2 = work[*n] * delta[*n];
  834. temp = z__[*n] / tau2;
  835. phi = z__[*n] * temp;
  836. dphi = temp * temp;
  837. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv;
  838. /* $ + ABS( TAU2 )*( DPSI+DPHI ) */
  839. w = rhoinv + phi + psi;
  840. /* Main loop to update the values of the array DELTA */
  841. iter = niter + 1;
  842. for (niter = iter; niter <= 400; ++niter) {
  843. /* Test for convergence */
  844. if (abs(w) <= eps * erretm) {
  845. goto L240;
  846. }
  847. /* Calculate the new step */
  848. dtnsq1 = work[*n - 1] * delta[*n - 1];
  849. dtnsq = work[*n] * delta[*n];
  850. c__ = w - dtnsq1 * dpsi - dtnsq * dphi;
  851. a = (dtnsq + dtnsq1) * w - dtnsq1 * dtnsq * (dpsi + dphi);
  852. b = dtnsq1 * dtnsq * w;
  853. if (a >= 0.) {
  854. eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
  855. c__ * 2.);
  856. } else {
  857. eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
  858. d__1))));
  859. }
  860. /* Note, eta should be positive if w is negative, and */
  861. /* eta should be negative otherwise. However, */
  862. /* if for some reason caused by roundoff, eta*w > 0, */
  863. /* we simply use one Newton step instead. This way */
  864. /* will guarantee eta*w < 0. */
  865. if (w * eta > 0.) {
  866. eta = -w / (dpsi + dphi);
  867. }
  868. temp = eta - dtnsq;
  869. if (temp <= 0.) {
  870. eta /= 2.;
  871. }
  872. eta /= *sigma + sqrt(eta + *sigma * *sigma);
  873. tau += eta;
  874. *sigma += eta;
  875. i__1 = *n;
  876. for (j = 1; j <= i__1; ++j) {
  877. delta[j] -= eta;
  878. work[j] += eta;
  879. /* L70: */
  880. }
  881. /* Evaluate PSI and the derivative DPSI */
  882. dpsi = 0.;
  883. psi = 0.;
  884. erretm = 0.;
  885. i__1 = ii;
  886. for (j = 1; j <= i__1; ++j) {
  887. temp = z__[j] / (work[j] * delta[j]);
  888. psi += z__[j] * temp;
  889. dpsi += temp * temp;
  890. erretm += psi;
  891. /* L80: */
  892. }
  893. erretm = abs(erretm);
  894. /* Evaluate PHI and the derivative DPHI */
  895. tau2 = work[*n] * delta[*n];
  896. temp = z__[*n] / tau2;
  897. phi = z__[*n] * temp;
  898. dphi = temp * temp;
  899. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv;
  900. /* $ + ABS( TAU2 )*( DPSI+DPHI ) */
  901. w = rhoinv + phi + psi;
  902. /* L90: */
  903. }
  904. /* Return with INFO = 1, NITER = MAXIT and not converged */
  905. *info = 1;
  906. goto L240;
  907. /* End for the case I = N */
  908. } else {
  909. /* The case for I < N */
  910. niter = 1;
  911. ip1 = *i__ + 1;
  912. /* Calculate initial guess */
  913. delsq = (d__[ip1] - d__[*i__]) * (d__[ip1] + d__[*i__]);
  914. delsq2 = delsq / 2.;
  915. sq2 = sqrt((d__[*i__] * d__[*i__] + d__[ip1] * d__[ip1]) / 2.);
  916. temp = delsq2 / (d__[*i__] + sq2);
  917. i__1 = *n;
  918. for (j = 1; j <= i__1; ++j) {
  919. work[j] = d__[j] + d__[*i__] + temp;
  920. delta[j] = d__[j] - d__[*i__] - temp;
  921. /* L100: */
  922. }
  923. psi = 0.;
  924. i__1 = *i__ - 1;
  925. for (j = 1; j <= i__1; ++j) {
  926. psi += z__[j] * z__[j] / (work[j] * delta[j]);
  927. /* L110: */
  928. }
  929. phi = 0.;
  930. i__1 = *i__ + 2;
  931. for (j = *n; j >= i__1; --j) {
  932. phi += z__[j] * z__[j] / (work[j] * delta[j]);
  933. /* L120: */
  934. }
  935. c__ = rhoinv + psi + phi;
  936. w = c__ + z__[*i__] * z__[*i__] / (work[*i__] * delta[*i__]) + z__[
  937. ip1] * z__[ip1] / (work[ip1] * delta[ip1]);
  938. geomavg = FALSE_;
  939. if (w > 0.) {
  940. /* d(i)^2 < the ith sigma^2 < (d(i)^2+d(i+1)^2)/2 */
  941. /* We choose d(i) as origin. */
  942. orgati = TRUE_;
  943. ii = *i__;
  944. sglb = 0.;
  945. sgub = delsq2 / (d__[*i__] + sq2);
  946. a = c__ * delsq + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
  947. b = z__[*i__] * z__[*i__] * delsq;
  948. if (a > 0.) {
  949. tau2 = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
  950. d__1))));
  951. } else {
  952. tau2 = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) /
  953. (c__ * 2.);
  954. }
  955. /* TAU2 now is an estimation of SIGMA^2 - D( I )^2. The */
  956. /* following, however, is the corresponding estimation of */
  957. /* SIGMA - D( I ). */
  958. tau = tau2 / (d__[*i__] + sqrt(d__[*i__] * d__[*i__] + tau2));
  959. temp = sqrt(eps);
  960. if (d__[*i__] <= temp * d__[ip1] && (d__1 = z__[*i__], abs(d__1))
  961. <= temp && d__[*i__] > 0.) {
  962. /* Computing MIN */
  963. d__1 = d__[*i__] * 10.;
  964. tau = f2cmin(d__1,sgub);
  965. geomavg = TRUE_;
  966. }
  967. } else {
  968. /* (d(i)^2+d(i+1)^2)/2 <= the ith sigma^2 < d(i+1)^2/2 */
  969. /* We choose d(i+1) as origin. */
  970. orgati = FALSE_;
  971. ii = ip1;
  972. sglb = -delsq2 / (d__[ii] + sq2);
  973. sgub = 0.;
  974. a = c__ * delsq - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
  975. b = z__[ip1] * z__[ip1] * delsq;
  976. if (a < 0.) {
  977. tau2 = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
  978. d__1))));
  979. } else {
  980. tau2 = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) /
  981. (c__ * 2.);
  982. }
  983. /* TAU2 now is an estimation of SIGMA^2 - D( IP1 )^2. The */
  984. /* following, however, is the corresponding estimation of */
  985. /* SIGMA - D( IP1 ). */
  986. tau = tau2 / (d__[ip1] + sqrt((d__1 = d__[ip1] * d__[ip1] + tau2,
  987. abs(d__1))));
  988. }
  989. *sigma = d__[ii] + tau;
  990. i__1 = *n;
  991. for (j = 1; j <= i__1; ++j) {
  992. work[j] = d__[j] + d__[ii] + tau;
  993. delta[j] = d__[j] - d__[ii] - tau;
  994. /* L130: */
  995. }
  996. iim1 = ii - 1;
  997. iip1 = ii + 1;
  998. /* Evaluate PSI and the derivative DPSI */
  999. dpsi = 0.;
  1000. psi = 0.;
  1001. erretm = 0.;
  1002. i__1 = iim1;
  1003. for (j = 1; j <= i__1; ++j) {
  1004. temp = z__[j] / (work[j] * delta[j]);
  1005. psi += z__[j] * temp;
  1006. dpsi += temp * temp;
  1007. erretm += psi;
  1008. /* L150: */
  1009. }
  1010. erretm = abs(erretm);
  1011. /* Evaluate PHI and the derivative DPHI */
  1012. dphi = 0.;
  1013. phi = 0.;
  1014. i__1 = iip1;
  1015. for (j = *n; j >= i__1; --j) {
  1016. temp = z__[j] / (work[j] * delta[j]);
  1017. phi += z__[j] * temp;
  1018. dphi += temp * temp;
  1019. erretm += phi;
  1020. /* L160: */
  1021. }
  1022. w = rhoinv + phi + psi;
  1023. /* W is the value of the secular function with */
  1024. /* its ii-th element removed. */
  1025. swtch3 = FALSE_;
  1026. if (orgati) {
  1027. if (w < 0.) {
  1028. swtch3 = TRUE_;
  1029. }
  1030. } else {
  1031. if (w > 0.) {
  1032. swtch3 = TRUE_;
  1033. }
  1034. }
  1035. if (ii == 1 || ii == *n) {
  1036. swtch3 = FALSE_;
  1037. }
  1038. temp = z__[ii] / (work[ii] * delta[ii]);
  1039. dw = dpsi + dphi + temp * temp;
  1040. temp = z__[ii] * temp;
  1041. w += temp;
  1042. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.;
  1043. /* $ + ABS( TAU2 )*DW */
  1044. /* Test for convergence */
  1045. if (abs(w) <= eps * erretm) {
  1046. goto L240;
  1047. }
  1048. if (w <= 0.) {
  1049. sglb = f2cmax(sglb,tau);
  1050. } else {
  1051. sgub = f2cmin(sgub,tau);
  1052. }
  1053. /* Calculate the new step */
  1054. ++niter;
  1055. if (! swtch3) {
  1056. dtipsq = work[ip1] * delta[ip1];
  1057. dtisq = work[*i__] * delta[*i__];
  1058. if (orgati) {
  1059. /* Computing 2nd power */
  1060. d__1 = z__[*i__] / dtisq;
  1061. c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
  1062. } else {
  1063. /* Computing 2nd power */
  1064. d__1 = z__[ip1] / dtipsq;
  1065. c__ = w - dtisq * dw - delsq * (d__1 * d__1);
  1066. }
  1067. a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
  1068. b = dtipsq * dtisq * w;
  1069. if (c__ == 0.) {
  1070. if (a == 0.) {
  1071. if (orgati) {
  1072. a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (dpsi +
  1073. dphi);
  1074. } else {
  1075. a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi +
  1076. dphi);
  1077. }
  1078. }
  1079. eta = b / a;
  1080. } else if (a <= 0.) {
  1081. eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
  1082. c__ * 2.);
  1083. } else {
  1084. eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
  1085. d__1))));
  1086. }
  1087. } else {
  1088. /* Interpolation using THREE most relevant poles */
  1089. dtiim = work[iim1] * delta[iim1];
  1090. dtiip = work[iip1] * delta[iip1];
  1091. temp = rhoinv + psi + phi;
  1092. if (orgati) {
  1093. temp1 = z__[iim1] / dtiim;
  1094. temp1 *= temp1;
  1095. c__ = temp - dtiip * (dpsi + dphi) - (d__[iim1] - d__[iip1]) *
  1096. (d__[iim1] + d__[iip1]) * temp1;
  1097. zz[0] = z__[iim1] * z__[iim1];
  1098. if (dpsi < temp1) {
  1099. zz[2] = dtiip * dtiip * dphi;
  1100. } else {
  1101. zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
  1102. }
  1103. } else {
  1104. temp1 = z__[iip1] / dtiip;
  1105. temp1 *= temp1;
  1106. c__ = temp - dtiim * (dpsi + dphi) - (d__[iip1] - d__[iim1]) *
  1107. (d__[iim1] + d__[iip1]) * temp1;
  1108. if (dphi < temp1) {
  1109. zz[0] = dtiim * dtiim * dpsi;
  1110. } else {
  1111. zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
  1112. }
  1113. zz[2] = z__[iip1] * z__[iip1];
  1114. }
  1115. zz[1] = z__[ii] * z__[ii];
  1116. dd[0] = dtiim;
  1117. dd[1] = delta[ii] * work[ii];
  1118. dd[2] = dtiip;
  1119. dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
  1120. if (*info != 0) {
  1121. /* If INFO is not 0, i.e., DLAED6 failed, switch back */
  1122. /* to 2 pole interpolation. */
  1123. swtch3 = FALSE_;
  1124. *info = 0;
  1125. dtipsq = work[ip1] * delta[ip1];
  1126. dtisq = work[*i__] * delta[*i__];
  1127. if (orgati) {
  1128. /* Computing 2nd power */
  1129. d__1 = z__[*i__] / dtisq;
  1130. c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
  1131. } else {
  1132. /* Computing 2nd power */
  1133. d__1 = z__[ip1] / dtipsq;
  1134. c__ = w - dtisq * dw - delsq * (d__1 * d__1);
  1135. }
  1136. a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
  1137. b = dtipsq * dtisq * w;
  1138. if (c__ == 0.) {
  1139. if (a == 0.) {
  1140. if (orgati) {
  1141. a = z__[*i__] * z__[*i__] + dtipsq * dtipsq * (
  1142. dpsi + dphi);
  1143. } else {
  1144. a = z__[ip1] * z__[ip1] + dtisq * dtisq * (dpsi +
  1145. dphi);
  1146. }
  1147. }
  1148. eta = b / a;
  1149. } else if (a <= 0.) {
  1150. eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
  1151. / (c__ * 2.);
  1152. } else {
  1153. eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
  1154. abs(d__1))));
  1155. }
  1156. }
  1157. }
  1158. /* Note, eta should be positive if w is negative, and */
  1159. /* eta should be negative otherwise. However, */
  1160. /* if for some reason caused by roundoff, eta*w > 0, */
  1161. /* we simply use one Newton step instead. This way */
  1162. /* will guarantee eta*w < 0. */
  1163. if (w * eta >= 0.) {
  1164. eta = -w / dw;
  1165. }
  1166. eta /= *sigma + sqrt(*sigma * *sigma + eta);
  1167. temp = tau + eta;
  1168. if (temp > sgub || temp < sglb) {
  1169. if (w < 0.) {
  1170. eta = (sgub - tau) / 2.;
  1171. } else {
  1172. eta = (sglb - tau) / 2.;
  1173. }
  1174. if (geomavg) {
  1175. if (w < 0.) {
  1176. if (tau > 0.) {
  1177. eta = sqrt(sgub * tau) - tau;
  1178. }
  1179. } else {
  1180. if (sglb > 0.) {
  1181. eta = sqrt(sglb * tau) - tau;
  1182. }
  1183. }
  1184. }
  1185. }
  1186. prew = w;
  1187. tau += eta;
  1188. *sigma += eta;
  1189. i__1 = *n;
  1190. for (j = 1; j <= i__1; ++j) {
  1191. work[j] += eta;
  1192. delta[j] -= eta;
  1193. /* L170: */
  1194. }
  1195. /* Evaluate PSI and the derivative DPSI */
  1196. dpsi = 0.;
  1197. psi = 0.;
  1198. erretm = 0.;
  1199. i__1 = iim1;
  1200. for (j = 1; j <= i__1; ++j) {
  1201. temp = z__[j] / (work[j] * delta[j]);
  1202. psi += z__[j] * temp;
  1203. dpsi += temp * temp;
  1204. erretm += psi;
  1205. /* L180: */
  1206. }
  1207. erretm = abs(erretm);
  1208. /* Evaluate PHI and the derivative DPHI */
  1209. dphi = 0.;
  1210. phi = 0.;
  1211. i__1 = iip1;
  1212. for (j = *n; j >= i__1; --j) {
  1213. temp = z__[j] / (work[j] * delta[j]);
  1214. phi += z__[j] * temp;
  1215. dphi += temp * temp;
  1216. erretm += phi;
  1217. /* L190: */
  1218. }
  1219. tau2 = work[ii] * delta[ii];
  1220. temp = z__[ii] / tau2;
  1221. dw = dpsi + dphi + temp * temp;
  1222. temp = z__[ii] * temp;
  1223. w = rhoinv + phi + psi + temp;
  1224. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.;
  1225. /* $ + ABS( TAU2 )*DW */
  1226. swtch = FALSE_;
  1227. if (orgati) {
  1228. if (-w > abs(prew) / 10.) {
  1229. swtch = TRUE_;
  1230. }
  1231. } else {
  1232. if (w > abs(prew) / 10.) {
  1233. swtch = TRUE_;
  1234. }
  1235. }
  1236. /* Main loop to update the values of the array DELTA and WORK */
  1237. iter = niter + 1;
  1238. for (niter = iter; niter <= 400; ++niter) {
  1239. /* Test for convergence */
  1240. if (abs(w) <= eps * erretm) {
  1241. /* $ .OR. (SGUB-SGLB).LE.EIGHT*ABS(SGUB+SGLB) ) THEN */
  1242. goto L240;
  1243. }
  1244. if (w <= 0.) {
  1245. sglb = f2cmax(sglb,tau);
  1246. } else {
  1247. sgub = f2cmin(sgub,tau);
  1248. }
  1249. /* Calculate the new step */
  1250. if (! swtch3) {
  1251. dtipsq = work[ip1] * delta[ip1];
  1252. dtisq = work[*i__] * delta[*i__];
  1253. if (! swtch) {
  1254. if (orgati) {
  1255. /* Computing 2nd power */
  1256. d__1 = z__[*i__] / dtisq;
  1257. c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
  1258. } else {
  1259. /* Computing 2nd power */
  1260. d__1 = z__[ip1] / dtipsq;
  1261. c__ = w - dtisq * dw - delsq * (d__1 * d__1);
  1262. }
  1263. } else {
  1264. temp = z__[ii] / (work[ii] * delta[ii]);
  1265. if (orgati) {
  1266. dpsi += temp * temp;
  1267. } else {
  1268. dphi += temp * temp;
  1269. }
  1270. c__ = w - dtisq * dpsi - dtipsq * dphi;
  1271. }
  1272. a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
  1273. b = dtipsq * dtisq * w;
  1274. if (c__ == 0.) {
  1275. if (a == 0.) {
  1276. if (! swtch) {
  1277. if (orgati) {
  1278. a = z__[*i__] * z__[*i__] + dtipsq * dtipsq *
  1279. (dpsi + dphi);
  1280. } else {
  1281. a = z__[ip1] * z__[ip1] + dtisq * dtisq * (
  1282. dpsi + dphi);
  1283. }
  1284. } else {
  1285. a = dtisq * dtisq * dpsi + dtipsq * dtipsq * dphi;
  1286. }
  1287. }
  1288. eta = b / a;
  1289. } else if (a <= 0.) {
  1290. eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
  1291. / (c__ * 2.);
  1292. } else {
  1293. eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
  1294. abs(d__1))));
  1295. }
  1296. } else {
  1297. /* Interpolation using THREE most relevant poles */
  1298. dtiim = work[iim1] * delta[iim1];
  1299. dtiip = work[iip1] * delta[iip1];
  1300. temp = rhoinv + psi + phi;
  1301. if (swtch) {
  1302. c__ = temp - dtiim * dpsi - dtiip * dphi;
  1303. zz[0] = dtiim * dtiim * dpsi;
  1304. zz[2] = dtiip * dtiip * dphi;
  1305. } else {
  1306. if (orgati) {
  1307. temp1 = z__[iim1] / dtiim;
  1308. temp1 *= temp1;
  1309. temp2 = (d__[iim1] - d__[iip1]) * (d__[iim1] + d__[
  1310. iip1]) * temp1;
  1311. c__ = temp - dtiip * (dpsi + dphi) - temp2;
  1312. zz[0] = z__[iim1] * z__[iim1];
  1313. if (dpsi < temp1) {
  1314. zz[2] = dtiip * dtiip * dphi;
  1315. } else {
  1316. zz[2] = dtiip * dtiip * (dpsi - temp1 + dphi);
  1317. }
  1318. } else {
  1319. temp1 = z__[iip1] / dtiip;
  1320. temp1 *= temp1;
  1321. temp2 = (d__[iip1] - d__[iim1]) * (d__[iim1] + d__[
  1322. iip1]) * temp1;
  1323. c__ = temp - dtiim * (dpsi + dphi) - temp2;
  1324. if (dphi < temp1) {
  1325. zz[0] = dtiim * dtiim * dpsi;
  1326. } else {
  1327. zz[0] = dtiim * dtiim * (dpsi + (dphi - temp1));
  1328. }
  1329. zz[2] = z__[iip1] * z__[iip1];
  1330. }
  1331. }
  1332. dd[0] = dtiim;
  1333. dd[1] = delta[ii] * work[ii];
  1334. dd[2] = dtiip;
  1335. dlaed6_(&niter, &orgati, &c__, dd, zz, &w, &eta, info);
  1336. if (*info != 0) {
  1337. /* If INFO is not 0, i.e., DLAED6 failed, switch */
  1338. /* back to two pole interpolation */
  1339. swtch3 = FALSE_;
  1340. *info = 0;
  1341. dtipsq = work[ip1] * delta[ip1];
  1342. dtisq = work[*i__] * delta[*i__];
  1343. if (! swtch) {
  1344. if (orgati) {
  1345. /* Computing 2nd power */
  1346. d__1 = z__[*i__] / dtisq;
  1347. c__ = w - dtipsq * dw + delsq * (d__1 * d__1);
  1348. } else {
  1349. /* Computing 2nd power */
  1350. d__1 = z__[ip1] / dtipsq;
  1351. c__ = w - dtisq * dw - delsq * (d__1 * d__1);
  1352. }
  1353. } else {
  1354. temp = z__[ii] / (work[ii] * delta[ii]);
  1355. if (orgati) {
  1356. dpsi += temp * temp;
  1357. } else {
  1358. dphi += temp * temp;
  1359. }
  1360. c__ = w - dtisq * dpsi - dtipsq * dphi;
  1361. }
  1362. a = (dtipsq + dtisq) * w - dtipsq * dtisq * dw;
  1363. b = dtipsq * dtisq * w;
  1364. if (c__ == 0.) {
  1365. if (a == 0.) {
  1366. if (! swtch) {
  1367. if (orgati) {
  1368. a = z__[*i__] * z__[*i__] + dtipsq *
  1369. dtipsq * (dpsi + dphi);
  1370. } else {
  1371. a = z__[ip1] * z__[ip1] + dtisq * dtisq *
  1372. (dpsi + dphi);
  1373. }
  1374. } else {
  1375. a = dtisq * dtisq * dpsi + dtipsq * dtipsq *
  1376. dphi;
  1377. }
  1378. }
  1379. eta = b / a;
  1380. } else if (a <= 0.) {
  1381. eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
  1382. d__1)))) / (c__ * 2.);
  1383. } else {
  1384. eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
  1385. abs(d__1))));
  1386. }
  1387. }
  1388. }
  1389. /* Note, eta should be positive if w is negative, and */
  1390. /* eta should be negative otherwise. However, */
  1391. /* if for some reason caused by roundoff, eta*w > 0, */
  1392. /* we simply use one Newton step instead. This way */
  1393. /* will guarantee eta*w < 0. */
  1394. if (w * eta >= 0.) {
  1395. eta = -w / dw;
  1396. }
  1397. eta /= *sigma + sqrt(*sigma * *sigma + eta);
  1398. temp = tau + eta;
  1399. if (temp > sgub || temp < sglb) {
  1400. if (w < 0.) {
  1401. eta = (sgub - tau) / 2.;
  1402. } else {
  1403. eta = (sglb - tau) / 2.;
  1404. }
  1405. if (geomavg) {
  1406. if (w < 0.) {
  1407. if (tau > 0.) {
  1408. eta = sqrt(sgub * tau) - tau;
  1409. }
  1410. } else {
  1411. if (sglb > 0.) {
  1412. eta = sqrt(sglb * tau) - tau;
  1413. }
  1414. }
  1415. }
  1416. }
  1417. prew = w;
  1418. tau += eta;
  1419. *sigma += eta;
  1420. i__1 = *n;
  1421. for (j = 1; j <= i__1; ++j) {
  1422. work[j] += eta;
  1423. delta[j] -= eta;
  1424. /* L200: */
  1425. }
  1426. /* Evaluate PSI and the derivative DPSI */
  1427. dpsi = 0.;
  1428. psi = 0.;
  1429. erretm = 0.;
  1430. i__1 = iim1;
  1431. for (j = 1; j <= i__1; ++j) {
  1432. temp = z__[j] / (work[j] * delta[j]);
  1433. psi += z__[j] * temp;
  1434. dpsi += temp * temp;
  1435. erretm += psi;
  1436. /* L210: */
  1437. }
  1438. erretm = abs(erretm);
  1439. /* Evaluate PHI and the derivative DPHI */
  1440. dphi = 0.;
  1441. phi = 0.;
  1442. i__1 = iip1;
  1443. for (j = *n; j >= i__1; --j) {
  1444. temp = z__[j] / (work[j] * delta[j]);
  1445. phi += z__[j] * temp;
  1446. dphi += temp * temp;
  1447. erretm += phi;
  1448. /* L220: */
  1449. }
  1450. tau2 = work[ii] * delta[ii];
  1451. temp = z__[ii] / tau2;
  1452. dw = dpsi + dphi + temp * temp;
  1453. temp = z__[ii] * temp;
  1454. w = rhoinv + phi + psi + temp;
  1455. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.;
  1456. /* $ + ABS( TAU2 )*DW */
  1457. if (w * prew > 0. && abs(w) > abs(prew) / 10.) {
  1458. swtch = ! swtch;
  1459. }
  1460. /* L230: */
  1461. }
  1462. /* Return with INFO = 1, NITER = MAXIT and not converged */
  1463. *info = 1;
  1464. }
  1465. L240:
  1466. return;
  1467. /* End of DLASD4 */
  1468. } /* dlasd4_ */