You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlasd7.c 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b DLASD7 merges the two sets of singular values together into a single sorted set. Then it tries
  488. to deflate the size of the problem. Used by sbdsdc. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DLASD7 + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd7.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd7.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd7.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, */
  507. /* VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, */
  508. /* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
  509. /* C, S, INFO ) */
  510. /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
  511. /* $ NR, SQRE */
  512. /* DOUBLE PRECISION ALPHA, BETA, C, S */
  513. /* INTEGER GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), */
  514. /* $ IDXQ( * ), PERM( * ) */
  515. /* DOUBLE PRECISION D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ), */
  516. /* $ VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ), */
  517. /* $ ZW( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > DLASD7 merges the two sets of singular values together into a single */
  524. /* > sorted set. Then it tries to deflate the size of the problem. There */
  525. /* > are two ways in which deflation can occur: when two or more singular */
  526. /* > values are close together or if there is a tiny entry in the Z */
  527. /* > vector. For each such occurrence the order of the related */
  528. /* > secular equation problem is reduced by one. */
  529. /* > */
  530. /* > DLASD7 is called from DLASD6. */
  531. /* > \endverbatim */
  532. /* Arguments: */
  533. /* ========== */
  534. /* > \param[in] ICOMPQ */
  535. /* > \verbatim */
  536. /* > ICOMPQ is INTEGER */
  537. /* > Specifies whether singular vectors are to be computed */
  538. /* > in compact form, as follows: */
  539. /* > = 0: Compute singular values only. */
  540. /* > = 1: Compute singular vectors of upper */
  541. /* > bidiagonal matrix in compact form. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] NL */
  545. /* > \verbatim */
  546. /* > NL is INTEGER */
  547. /* > The row dimension of the upper block. NL >= 1. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] NR */
  551. /* > \verbatim */
  552. /* > NR is INTEGER */
  553. /* > The row dimension of the lower block. NR >= 1. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] SQRE */
  557. /* > \verbatim */
  558. /* > SQRE is INTEGER */
  559. /* > = 0: the lower block is an NR-by-NR square matrix. */
  560. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  561. /* > */
  562. /* > The bidiagonal matrix has */
  563. /* > N = NL + NR + 1 rows and */
  564. /* > M = N + SQRE >= N columns. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[out] K */
  568. /* > \verbatim */
  569. /* > K is INTEGER */
  570. /* > Contains the dimension of the non-deflated matrix, this is */
  571. /* > the order of the related secular equation. 1 <= K <=N. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] D */
  575. /* > \verbatim */
  576. /* > D is DOUBLE PRECISION array, dimension ( N ) */
  577. /* > On entry D contains the singular values of the two submatrices */
  578. /* > to be combined. On exit D contains the trailing (N-K) updated */
  579. /* > singular values (those which were deflated) sorted into */
  580. /* > increasing order. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[out] Z */
  584. /* > \verbatim */
  585. /* > Z is DOUBLE PRECISION array, dimension ( M ) */
  586. /* > On exit Z contains the updating row vector in the secular */
  587. /* > equation. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] ZW */
  591. /* > \verbatim */
  592. /* > ZW is DOUBLE PRECISION array, dimension ( M ) */
  593. /* > Workspace for Z. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in,out] VF */
  597. /* > \verbatim */
  598. /* > VF is DOUBLE PRECISION array, dimension ( M ) */
  599. /* > On entry, VF(1:NL+1) contains the first components of all */
  600. /* > right singular vectors of the upper block; and VF(NL+2:M) */
  601. /* > contains the first components of all right singular vectors */
  602. /* > of the lower block. On exit, VF contains the first components */
  603. /* > of all right singular vectors of the bidiagonal matrix. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[out] VFW */
  607. /* > \verbatim */
  608. /* > VFW is DOUBLE PRECISION array, dimension ( M ) */
  609. /* > Workspace for VF. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in,out] VL */
  613. /* > \verbatim */
  614. /* > VL is DOUBLE PRECISION array, dimension ( M ) */
  615. /* > On entry, VL(1:NL+1) contains the last components of all */
  616. /* > right singular vectors of the upper block; and VL(NL+2:M) */
  617. /* > contains the last components of all right singular vectors */
  618. /* > of the lower block. On exit, VL contains the last components */
  619. /* > of all right singular vectors of the bidiagonal matrix. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] VLW */
  623. /* > \verbatim */
  624. /* > VLW is DOUBLE PRECISION array, dimension ( M ) */
  625. /* > Workspace for VL. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] ALPHA */
  629. /* > \verbatim */
  630. /* > ALPHA is DOUBLE PRECISION */
  631. /* > Contains the diagonal element associated with the added row. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] BETA */
  635. /* > \verbatim */
  636. /* > BETA is DOUBLE PRECISION */
  637. /* > Contains the off-diagonal element associated with the added */
  638. /* > row. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] DSIGMA */
  642. /* > \verbatim */
  643. /* > DSIGMA is DOUBLE PRECISION array, dimension ( N ) */
  644. /* > Contains a copy of the diagonal elements (K-1 singular values */
  645. /* > and one zero) in the secular equation. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] IDX */
  649. /* > \verbatim */
  650. /* > IDX is INTEGER array, dimension ( N ) */
  651. /* > This will contain the permutation used to sort the contents of */
  652. /* > D into ascending order. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] IDXP */
  656. /* > \verbatim */
  657. /* > IDXP is INTEGER array, dimension ( N ) */
  658. /* > This will contain the permutation used to place deflated */
  659. /* > values of D at the end of the array. On output IDXP(2:K) */
  660. /* > points to the nondeflated D-values and IDXP(K+1:N) */
  661. /* > points to the deflated singular values. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[in] IDXQ */
  665. /* > \verbatim */
  666. /* > IDXQ is INTEGER array, dimension ( N ) */
  667. /* > This contains the permutation which separately sorts the two */
  668. /* > sub-problems in D into ascending order. Note that entries in */
  669. /* > the first half of this permutation must first be moved one */
  670. /* > position backward; and entries in the second half */
  671. /* > must first have NL+1 added to their values. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] PERM */
  675. /* > \verbatim */
  676. /* > PERM is INTEGER array, dimension ( N ) */
  677. /* > The permutations (from deflation and sorting) to be applied */
  678. /* > to each singular block. Not referenced if ICOMPQ = 0. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[out] GIVPTR */
  682. /* > \verbatim */
  683. /* > GIVPTR is INTEGER */
  684. /* > The number of Givens rotations which took place in this */
  685. /* > subproblem. Not referenced if ICOMPQ = 0. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[out] GIVCOL */
  689. /* > \verbatim */
  690. /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
  691. /* > Each pair of numbers indicates a pair of columns to take place */
  692. /* > in a Givens rotation. Not referenced if ICOMPQ = 0. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[in] LDGCOL */
  696. /* > \verbatim */
  697. /* > LDGCOL is INTEGER */
  698. /* > The leading dimension of GIVCOL, must be at least N. */
  699. /* > \endverbatim */
  700. /* > */
  701. /* > \param[out] GIVNUM */
  702. /* > \verbatim */
  703. /* > GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
  704. /* > Each number indicates the C or S value to be used in the */
  705. /* > corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
  706. /* > \endverbatim */
  707. /* > */
  708. /* > \param[in] LDGNUM */
  709. /* > \verbatim */
  710. /* > LDGNUM is INTEGER */
  711. /* > The leading dimension of GIVNUM, must be at least N. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] C */
  715. /* > \verbatim */
  716. /* > C is DOUBLE PRECISION */
  717. /* > C contains garbage if SQRE =0 and the C-value of a Givens */
  718. /* > rotation related to the right null space if SQRE = 1. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[out] S */
  722. /* > \verbatim */
  723. /* > S is DOUBLE PRECISION */
  724. /* > S contains garbage if SQRE =0 and the S-value of a Givens */
  725. /* > rotation related to the right null space if SQRE = 1. */
  726. /* > \endverbatim */
  727. /* > */
  728. /* > \param[out] INFO */
  729. /* > \verbatim */
  730. /* > INFO is INTEGER */
  731. /* > = 0: successful exit. */
  732. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  733. /* > \endverbatim */
  734. /* Authors: */
  735. /* ======== */
  736. /* > \author Univ. of Tennessee */
  737. /* > \author Univ. of California Berkeley */
  738. /* > \author Univ. of Colorado Denver */
  739. /* > \author NAG Ltd. */
  740. /* > \date December 2016 */
  741. /* > \ingroup OTHERauxiliary */
  742. /* > \par Contributors: */
  743. /* ================== */
  744. /* > */
  745. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  746. /* > California at Berkeley, USA */
  747. /* > */
  748. /* ===================================================================== */
  749. /* Subroutine */ void dlasd7_(integer *icompq, integer *nl, integer *nr,
  750. integer *sqre, integer *k, doublereal *d__, doublereal *z__,
  751. doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl,
  752. doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal *
  753. dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm,
  754. integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum,
  755. integer *ldgnum, doublereal *c__, doublereal *s, integer *info)
  756. {
  757. /* System generated locals */
  758. integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
  759. doublereal d__1, d__2;
  760. /* Local variables */
  761. integer idxi, idxj;
  762. extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
  763. doublereal *, integer *, doublereal *, doublereal *);
  764. integer i__, j, m, n, idxjp;
  765. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  766. doublereal *, integer *);
  767. integer jprev, k2;
  768. doublereal z1;
  769. extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
  770. integer jp;
  771. extern /* Subroutine */ void dlamrg_(integer *, integer *, doublereal *,
  772. integer *, integer *, integer *);
  773. extern int xerbla_(char *, integer *, ftnlen);
  774. doublereal hlftol, eps, tau, tol;
  775. integer nlp1, nlp2;
  776. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  777. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  778. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  779. /* December 2016 */
  780. /* ===================================================================== */
  781. /* Test the input parameters. */
  782. /* Parameter adjustments */
  783. --d__;
  784. --z__;
  785. --zw;
  786. --vf;
  787. --vfw;
  788. --vl;
  789. --vlw;
  790. --dsigma;
  791. --idx;
  792. --idxp;
  793. --idxq;
  794. --perm;
  795. givcol_dim1 = *ldgcol;
  796. givcol_offset = 1 + givcol_dim1 * 1;
  797. givcol -= givcol_offset;
  798. givnum_dim1 = *ldgnum;
  799. givnum_offset = 1 + givnum_dim1 * 1;
  800. givnum -= givnum_offset;
  801. /* Function Body */
  802. *info = 0;
  803. n = *nl + *nr + 1;
  804. m = n + *sqre;
  805. if (*icompq < 0 || *icompq > 1) {
  806. *info = -1;
  807. } else if (*nl < 1) {
  808. *info = -2;
  809. } else if (*nr < 1) {
  810. *info = -3;
  811. } else if (*sqre < 0 || *sqre > 1) {
  812. *info = -4;
  813. } else if (*ldgcol < n) {
  814. *info = -22;
  815. } else if (*ldgnum < n) {
  816. *info = -24;
  817. }
  818. if (*info != 0) {
  819. i__1 = -(*info);
  820. xerbla_("DLASD7", &i__1, (ftnlen)6);
  821. return;
  822. }
  823. nlp1 = *nl + 1;
  824. nlp2 = *nl + 2;
  825. if (*icompq == 1) {
  826. *givptr = 0;
  827. }
  828. /* Generate the first part of the vector Z and move the singular */
  829. /* values in the first part of D one position backward. */
  830. z1 = *alpha * vl[nlp1];
  831. vl[nlp1] = 0.;
  832. tau = vf[nlp1];
  833. for (i__ = *nl; i__ >= 1; --i__) {
  834. z__[i__ + 1] = *alpha * vl[i__];
  835. vl[i__] = 0.;
  836. vf[i__ + 1] = vf[i__];
  837. d__[i__ + 1] = d__[i__];
  838. idxq[i__ + 1] = idxq[i__] + 1;
  839. /* L10: */
  840. }
  841. vf[1] = tau;
  842. /* Generate the second part of the vector Z. */
  843. i__1 = m;
  844. for (i__ = nlp2; i__ <= i__1; ++i__) {
  845. z__[i__] = *beta * vf[i__];
  846. vf[i__] = 0.;
  847. /* L20: */
  848. }
  849. /* Sort the singular values into increasing order */
  850. i__1 = n;
  851. for (i__ = nlp2; i__ <= i__1; ++i__) {
  852. idxq[i__] += nlp1;
  853. /* L30: */
  854. }
  855. /* DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
  856. i__1 = n;
  857. for (i__ = 2; i__ <= i__1; ++i__) {
  858. dsigma[i__] = d__[idxq[i__]];
  859. zw[i__] = z__[idxq[i__]];
  860. vfw[i__] = vf[idxq[i__]];
  861. vlw[i__] = vl[idxq[i__]];
  862. /* L40: */
  863. }
  864. dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
  865. i__1 = n;
  866. for (i__ = 2; i__ <= i__1; ++i__) {
  867. idxi = idx[i__] + 1;
  868. d__[i__] = dsigma[idxi];
  869. z__[i__] = zw[idxi];
  870. vf[i__] = vfw[idxi];
  871. vl[i__] = vlw[idxi];
  872. /* L50: */
  873. }
  874. /* Calculate the allowable deflation tolerance */
  875. eps = dlamch_("Epsilon");
  876. /* Computing MAX */
  877. d__1 = abs(*alpha), d__2 = abs(*beta);
  878. tol = f2cmax(d__1,d__2);
  879. /* Computing MAX */
  880. d__2 = (d__1 = d__[n], abs(d__1));
  881. tol = eps * 64. * f2cmax(d__2,tol);
  882. /* There are 2 kinds of deflation -- first a value in the z-vector */
  883. /* is small, second two (or more) singular values are very close */
  884. /* together (their difference is small). */
  885. /* If the value in the z-vector is small, we simply permute the */
  886. /* array so that the corresponding singular value is moved to the */
  887. /* end. */
  888. /* If two values in the D-vector are close, we perform a two-sided */
  889. /* rotation designed to make one of the corresponding z-vector */
  890. /* entries zero, and then permute the array so that the deflated */
  891. /* singular value is moved to the end. */
  892. /* If there are multiple singular values then the problem deflates. */
  893. /* Here the number of equal singular values are found. As each equal */
  894. /* singular value is found, an elementary reflector is computed to */
  895. /* rotate the corresponding singular subspace so that the */
  896. /* corresponding components of Z are zero in this new basis. */
  897. *k = 1;
  898. k2 = n + 1;
  899. i__1 = n;
  900. for (j = 2; j <= i__1; ++j) {
  901. if ((d__1 = z__[j], abs(d__1)) <= tol) {
  902. /* Deflate due to small z component. */
  903. --k2;
  904. idxp[k2] = j;
  905. if (j == n) {
  906. goto L100;
  907. }
  908. } else {
  909. jprev = j;
  910. goto L70;
  911. }
  912. /* L60: */
  913. }
  914. L70:
  915. j = jprev;
  916. L80:
  917. ++j;
  918. if (j > n) {
  919. goto L90;
  920. }
  921. if ((d__1 = z__[j], abs(d__1)) <= tol) {
  922. /* Deflate due to small z component. */
  923. --k2;
  924. idxp[k2] = j;
  925. } else {
  926. /* Check if singular values are close enough to allow deflation. */
  927. if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
  928. /* Deflation is possible. */
  929. *s = z__[jprev];
  930. *c__ = z__[j];
  931. /* Find sqrt(a**2+b**2) without overflow or */
  932. /* destructive underflow. */
  933. tau = dlapy2_(c__, s);
  934. z__[j] = tau;
  935. z__[jprev] = 0.;
  936. *c__ /= tau;
  937. *s = -(*s) / tau;
  938. /* Record the appropriate Givens rotation */
  939. if (*icompq == 1) {
  940. ++(*givptr);
  941. idxjp = idxq[idx[jprev] + 1];
  942. idxj = idxq[idx[j] + 1];
  943. if (idxjp <= nlp1) {
  944. --idxjp;
  945. }
  946. if (idxj <= nlp1) {
  947. --idxj;
  948. }
  949. givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
  950. givcol[*givptr + givcol_dim1] = idxj;
  951. givnum[*givptr + (givnum_dim1 << 1)] = *c__;
  952. givnum[*givptr + givnum_dim1] = *s;
  953. }
  954. drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
  955. drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
  956. --k2;
  957. idxp[k2] = jprev;
  958. jprev = j;
  959. } else {
  960. ++(*k);
  961. zw[*k] = z__[jprev];
  962. dsigma[*k] = d__[jprev];
  963. idxp[*k] = jprev;
  964. jprev = j;
  965. }
  966. }
  967. goto L80;
  968. L90:
  969. /* Record the last singular value. */
  970. ++(*k);
  971. zw[*k] = z__[jprev];
  972. dsigma[*k] = d__[jprev];
  973. idxp[*k] = jprev;
  974. L100:
  975. /* Sort the singular values into DSIGMA. The singular values which */
  976. /* were not deflated go into the first K slots of DSIGMA, except */
  977. /* that DSIGMA(1) is treated separately. */
  978. i__1 = n;
  979. for (j = 2; j <= i__1; ++j) {
  980. jp = idxp[j];
  981. dsigma[j] = d__[jp];
  982. vfw[j] = vf[jp];
  983. vlw[j] = vl[jp];
  984. /* L110: */
  985. }
  986. if (*icompq == 1) {
  987. i__1 = n;
  988. for (j = 2; j <= i__1; ++j) {
  989. jp = idxp[j];
  990. perm[j] = idxq[idx[jp] + 1];
  991. if (perm[j] <= nlp1) {
  992. --perm[j];
  993. }
  994. /* L120: */
  995. }
  996. }
  997. /* The deflated singular values go back into the last N - K slots of */
  998. /* D. */
  999. i__1 = n - *k;
  1000. dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
  1001. /* Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
  1002. /* VL(M). */
  1003. dsigma[1] = 0.;
  1004. hlftol = tol / 2.;
  1005. if (abs(dsigma[2]) <= hlftol) {
  1006. dsigma[2] = hlftol;
  1007. }
  1008. if (m > n) {
  1009. z__[1] = dlapy2_(&z1, &z__[m]);
  1010. if (z__[1] <= tol) {
  1011. *c__ = 1.;
  1012. *s = 0.;
  1013. z__[1] = tol;
  1014. } else {
  1015. *c__ = z1 / z__[1];
  1016. *s = -z__[m] / z__[1];
  1017. }
  1018. drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
  1019. drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
  1020. } else {
  1021. if (abs(z1) <= tol) {
  1022. z__[1] = tol;
  1023. } else {
  1024. z__[1] = z1;
  1025. }
  1026. }
  1027. /* Restore Z, VF, and VL. */
  1028. i__1 = *k - 1;
  1029. dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
  1030. i__1 = n - 1;
  1031. dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
  1032. i__1 = n - 1;
  1033. dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
  1034. return;
  1035. /* End of DLASD7 */
  1036. } /* dlasd7_ */