You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtgsna.c 40 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static doublereal c_b19 = 1.;
  486. static doublereal c_b21 = 0.;
  487. static integer c__2 = 2;
  488. static logical c_false = FALSE_;
  489. static integer c__3 = 3;
  490. /* > \brief \b DTGSNA */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DTGSNA + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsna.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsna.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsna.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL, */
  509. /* LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK, */
  510. /* IWORK, INFO ) */
  511. /* CHARACTER HOWMNY, JOB */
  512. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N */
  513. /* LOGICAL SELECT( * ) */
  514. /* INTEGER IWORK( * ) */
  515. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), DIF( * ), S( * ), */
  516. /* $ VL( LDVL, * ), VR( LDVR, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > DTGSNA estimates reciprocal condition numbers for specified */
  523. /* > eigenvalues and/or eigenvectors of a matrix pair (A, B) in */
  524. /* > generalized real Schur canonical form (or of any matrix pair */
  525. /* > (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where */
  526. /* > Z**T denotes the transpose of Z. */
  527. /* > */
  528. /* > (A, B) must be in generalized real Schur form (as returned by DGGES), */
  529. /* > i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal */
  530. /* > blocks. B is upper triangular. */
  531. /* > */
  532. /* > \endverbatim */
  533. /* Arguments: */
  534. /* ========== */
  535. /* > \param[in] JOB */
  536. /* > \verbatim */
  537. /* > JOB is CHARACTER*1 */
  538. /* > Specifies whether condition numbers are required for */
  539. /* > eigenvalues (S) or eigenvectors (DIF): */
  540. /* > = 'E': for eigenvalues only (S); */
  541. /* > = 'V': for eigenvectors only (DIF); */
  542. /* > = 'B': for both eigenvalues and eigenvectors (S and DIF). */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] HOWMNY */
  546. /* > \verbatim */
  547. /* > HOWMNY is CHARACTER*1 */
  548. /* > = 'A': compute condition numbers for all eigenpairs; */
  549. /* > = 'S': compute condition numbers for selected eigenpairs */
  550. /* > specified by the array SELECT. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] SELECT */
  554. /* > \verbatim */
  555. /* > SELECT is LOGICAL array, dimension (N) */
  556. /* > If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
  557. /* > condition numbers are required. To select condition numbers */
  558. /* > for the eigenpair corresponding to a real eigenvalue w(j), */
  559. /* > SELECT(j) must be set to .TRUE.. To select condition numbers */
  560. /* > corresponding to a complex conjugate pair of eigenvalues w(j) */
  561. /* > and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
  562. /* > set to .TRUE.. */
  563. /* > If HOWMNY = 'A', SELECT is not referenced. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] N */
  567. /* > \verbatim */
  568. /* > N is INTEGER */
  569. /* > The order of the square matrix pair (A, B). N >= 0. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] A */
  573. /* > \verbatim */
  574. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  575. /* > The upper quasi-triangular matrix A in the pair (A,B). */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDA */
  579. /* > \verbatim */
  580. /* > LDA is INTEGER */
  581. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] B */
  585. /* > \verbatim */
  586. /* > B is DOUBLE PRECISION array, dimension (LDB,N) */
  587. /* > The upper triangular matrix B in the pair (A,B). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDB */
  591. /* > \verbatim */
  592. /* > LDB is INTEGER */
  593. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] VL */
  597. /* > \verbatim */
  598. /* > VL is DOUBLE PRECISION array, dimension (LDVL,M) */
  599. /* > If JOB = 'E' or 'B', VL must contain left eigenvectors of */
  600. /* > (A, B), corresponding to the eigenpairs specified by HOWMNY */
  601. /* > and SELECT. The eigenvectors must be stored in consecutive */
  602. /* > columns of VL, as returned by DTGEVC. */
  603. /* > If JOB = 'V', VL is not referenced. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] LDVL */
  607. /* > \verbatim */
  608. /* > LDVL is INTEGER */
  609. /* > The leading dimension of the array VL. LDVL >= 1. */
  610. /* > If JOB = 'E' or 'B', LDVL >= N. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] VR */
  614. /* > \verbatim */
  615. /* > VR is DOUBLE PRECISION array, dimension (LDVR,M) */
  616. /* > If JOB = 'E' or 'B', VR must contain right eigenvectors of */
  617. /* > (A, B), corresponding to the eigenpairs specified by HOWMNY */
  618. /* > and SELECT. The eigenvectors must be stored in consecutive */
  619. /* > columns ov VR, as returned by DTGEVC. */
  620. /* > If JOB = 'V', VR is not referenced. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] LDVR */
  624. /* > \verbatim */
  625. /* > LDVR is INTEGER */
  626. /* > The leading dimension of the array VR. LDVR >= 1. */
  627. /* > If JOB = 'E' or 'B', LDVR >= N. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[out] S */
  631. /* > \verbatim */
  632. /* > S is DOUBLE PRECISION array, dimension (MM) */
  633. /* > If JOB = 'E' or 'B', the reciprocal condition numbers of the */
  634. /* > selected eigenvalues, stored in consecutive elements of the */
  635. /* > array. For a complex conjugate pair of eigenvalues two */
  636. /* > consecutive elements of S are set to the same value. Thus */
  637. /* > S(j), DIF(j), and the j-th columns of VL and VR all */
  638. /* > correspond to the same eigenpair (but not in general the */
  639. /* > j-th eigenpair, unless all eigenpairs are selected). */
  640. /* > If JOB = 'V', S is not referenced. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] DIF */
  644. /* > \verbatim */
  645. /* > DIF is DOUBLE PRECISION array, dimension (MM) */
  646. /* > If JOB = 'V' or 'B', the estimated reciprocal condition */
  647. /* > numbers of the selected eigenvectors, stored in consecutive */
  648. /* > elements of the array. For a complex eigenvector two */
  649. /* > consecutive elements of DIF are set to the same value. If */
  650. /* > the eigenvalues cannot be reordered to compute DIF(j), DIF(j) */
  651. /* > is set to 0; this can only occur when the true value would be */
  652. /* > very small anyway. */
  653. /* > If JOB = 'E', DIF is not referenced. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[in] MM */
  657. /* > \verbatim */
  658. /* > MM is INTEGER */
  659. /* > The number of elements in the arrays S and DIF. MM >= M. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] M */
  663. /* > \verbatim */
  664. /* > M is INTEGER */
  665. /* > The number of elements of the arrays S and DIF used to store */
  666. /* > the specified condition numbers; for each selected real */
  667. /* > eigenvalue one element is used, and for each selected complex */
  668. /* > conjugate pair of eigenvalues, two elements are used. */
  669. /* > If HOWMNY = 'A', M is set to N. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[out] WORK */
  673. /* > \verbatim */
  674. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  675. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[in] LWORK */
  679. /* > \verbatim */
  680. /* > LWORK is INTEGER */
  681. /* > The dimension of the array WORK. LWORK >= f2cmax(1,N). */
  682. /* > If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16. */
  683. /* > */
  684. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  685. /* > only calculates the optimal size of the WORK array, returns */
  686. /* > this value as the first entry of the WORK array, and no error */
  687. /* > message related to LWORK is issued by XERBLA. */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[out] IWORK */
  691. /* > \verbatim */
  692. /* > IWORK is INTEGER array, dimension (N + 6) */
  693. /* > If JOB = 'E', IWORK is not referenced. */
  694. /* > \endverbatim */
  695. /* > */
  696. /* > \param[out] INFO */
  697. /* > \verbatim */
  698. /* > INFO is INTEGER */
  699. /* > =0: Successful exit */
  700. /* > <0: If INFO = -i, the i-th argument had an illegal value */
  701. /* > \endverbatim */
  702. /* Authors: */
  703. /* ======== */
  704. /* > \author Univ. of Tennessee */
  705. /* > \author Univ. of California Berkeley */
  706. /* > \author Univ. of Colorado Denver */
  707. /* > \author NAG Ltd. */
  708. /* > \date December 2016 */
  709. /* > \ingroup doubleOTHERcomputational */
  710. /* > \par Further Details: */
  711. /* ===================== */
  712. /* > */
  713. /* > \verbatim */
  714. /* > */
  715. /* > The reciprocal of the condition number of a generalized eigenvalue */
  716. /* > w = (a, b) is defined as */
  717. /* > */
  718. /* > S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v)) */
  719. /* > */
  720. /* > where u and v are the left and right eigenvectors of (A, B) */
  721. /* > corresponding to w; |z| denotes the absolute value of the complex */
  722. /* > number, and norm(u) denotes the 2-norm of the vector u. */
  723. /* > The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv) */
  724. /* > of the matrix pair (A, B). If both a and b equal zero, then (A B) is */
  725. /* > singular and S(I) = -1 is returned. */
  726. /* > */
  727. /* > An approximate error bound on the chordal distance between the i-th */
  728. /* > computed generalized eigenvalue w and the corresponding exact */
  729. /* > eigenvalue lambda is */
  730. /* > */
  731. /* > chord(w, lambda) <= EPS * norm(A, B) / S(I) */
  732. /* > */
  733. /* > where EPS is the machine precision. */
  734. /* > */
  735. /* > The reciprocal of the condition number DIF(i) of right eigenvector u */
  736. /* > and left eigenvector v corresponding to the generalized eigenvalue w */
  737. /* > is defined as follows: */
  738. /* > */
  739. /* > a) If the i-th eigenvalue w = (a,b) is real */
  740. /* > */
  741. /* > Suppose U and V are orthogonal transformations such that */
  742. /* > */
  743. /* > U**T*(A, B)*V = (S, T) = ( a * ) ( b * ) 1 */
  744. /* > ( 0 S22 ),( 0 T22 ) n-1 */
  745. /* > 1 n-1 1 n-1 */
  746. /* > */
  747. /* > Then the reciprocal condition number DIF(i) is */
  748. /* > */
  749. /* > Difl((a, b), (S22, T22)) = sigma-f2cmin( Zl ), */
  750. /* > */
  751. /* > where sigma-f2cmin(Zl) denotes the smallest singular value of the */
  752. /* > 2(n-1)-by-2(n-1) matrix */
  753. /* > */
  754. /* > Zl = [ kron(a, In-1) -kron(1, S22) ] */
  755. /* > [ kron(b, In-1) -kron(1, T22) ] . */
  756. /* > */
  757. /* > Here In-1 is the identity matrix of size n-1. kron(X, Y) is the */
  758. /* > Kronecker product between the matrices X and Y. */
  759. /* > */
  760. /* > Note that if the default method for computing DIF(i) is wanted */
  761. /* > (see DLATDF), then the parameter DIFDRI (see below) should be */
  762. /* > changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). */
  763. /* > See DTGSYL for more details. */
  764. /* > */
  765. /* > b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair, */
  766. /* > */
  767. /* > Suppose U and V are orthogonal transformations such that */
  768. /* > */
  769. /* > U**T*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2 */
  770. /* > ( 0 S22 ),( 0 T22) n-2 */
  771. /* > 2 n-2 2 n-2 */
  772. /* > */
  773. /* > and (S11, T11) corresponds to the complex conjugate eigenvalue */
  774. /* > pair (w, conjg(w)). There exist unitary matrices U1 and V1 such */
  775. /* > that */
  776. /* > */
  777. /* > U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 ) */
  778. /* > ( 0 s22 ) ( 0 t22 ) */
  779. /* > */
  780. /* > where the generalized eigenvalues w = s11/t11 and */
  781. /* > conjg(w) = s22/t22. */
  782. /* > */
  783. /* > Then the reciprocal condition number DIF(i) is bounded by */
  784. /* > */
  785. /* > f2cmin( d1, f2cmax( 1, |real(s11)/real(s22)| )*d2 ) */
  786. /* > */
  787. /* > where, d1 = Difl((s11, t11), (s22, t22)) = sigma-f2cmin(Z1), where */
  788. /* > Z1 is the complex 2-by-2 matrix */
  789. /* > */
  790. /* > Z1 = [ s11 -s22 ] */
  791. /* > [ t11 -t22 ], */
  792. /* > */
  793. /* > This is done by computing (using real arithmetic) the */
  794. /* > roots of the characteristical polynomial det(Z1**T * Z1 - lambda I), */
  795. /* > where Z1**T denotes the transpose of Z1 and det(X) denotes */
  796. /* > the determinant of X. */
  797. /* > */
  798. /* > and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an */
  799. /* > upper bound on sigma-f2cmin(Z2), where Z2 is (2n-2)-by-(2n-2) */
  800. /* > */
  801. /* > Z2 = [ kron(S11**T, In-2) -kron(I2, S22) ] */
  802. /* > [ kron(T11**T, In-2) -kron(I2, T22) ] */
  803. /* > */
  804. /* > Note that if the default method for computing DIF is wanted (see */
  805. /* > DLATDF), then the parameter DIFDRI (see below) should be changed */
  806. /* > from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL */
  807. /* > for more details. */
  808. /* > */
  809. /* > For each eigenvalue/vector specified by SELECT, DIF stores a */
  810. /* > Frobenius norm-based estimate of Difl. */
  811. /* > */
  812. /* > An approximate error bound for the i-th computed eigenvector VL(i) or */
  813. /* > VR(i) is given by */
  814. /* > */
  815. /* > EPS * norm(A, B) / DIF(i). */
  816. /* > */
  817. /* > See ref. [2-3] for more details and further references. */
  818. /* > \endverbatim */
  819. /* > \par Contributors: */
  820. /* ================== */
  821. /* > */
  822. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  823. /* > Umea University, S-901 87 Umea, Sweden. */
  824. /* > \par References: */
  825. /* ================ */
  826. /* > */
  827. /* > \verbatim */
  828. /* > */
  829. /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
  830. /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
  831. /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
  832. /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
  833. /* > */
  834. /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
  835. /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
  836. /* > Estimation: Theory, Algorithms and Software, */
  837. /* > Report UMINF - 94.04, Department of Computing Science, Umea */
  838. /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
  839. /* > Note 87. To appear in Numerical Algorithms, 1996. */
  840. /* > */
  841. /* > [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
  842. /* > for Solving the Generalized Sylvester Equation and Estimating the */
  843. /* > Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
  844. /* > Department of Computing Science, Umea University, S-901 87 Umea, */
  845. /* > Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
  846. /* > Note 75. To appear in ACM Trans. on Math. Software, Vol 22, */
  847. /* > No 1, 1996. */
  848. /* > \endverbatim */
  849. /* > */
  850. /* ===================================================================== */
  851. /* Subroutine */ void dtgsna_(char *job, char *howmny, logical *select,
  852. integer *n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
  853. doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr,
  854. doublereal *s, doublereal *dif, integer *mm, integer *m, doublereal *
  855. work, integer *lwork, integer *iwork, integer *info)
  856. {
  857. /* System generated locals */
  858. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  859. vr_offset, i__1, i__2;
  860. doublereal d__1, d__2;
  861. /* Local variables */
  862. doublereal beta, cond;
  863. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  864. integer *);
  865. logical pair;
  866. integer ierr;
  867. doublereal uhav, uhbv;
  868. integer ifst;
  869. doublereal lnrm;
  870. integer ilst;
  871. doublereal rnrm;
  872. extern /* Subroutine */ void dlag2_(doublereal *, integer *, doublereal *,
  873. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  874. doublereal *, doublereal *);
  875. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  876. doublereal root1, root2;
  877. integer i__, k;
  878. doublereal scale;
  879. extern logical lsame_(char *, char *);
  880. extern /* Subroutine */ void dgemv_(char *, integer *, integer *,
  881. doublereal *, doublereal *, integer *, doublereal *, integer *,
  882. doublereal *, doublereal *, integer *);
  883. doublereal uhavi, uhbvi, tmpii, c1, c2;
  884. integer lwmin;
  885. logical wants;
  886. doublereal tmpir;
  887. integer n1, n2;
  888. doublereal tmpri, dummy[1], tmprr;
  889. extern doublereal dlapy2_(doublereal *, doublereal *);
  890. doublereal dummy1[1];
  891. extern doublereal dlamch_(char *);
  892. integer ks;
  893. doublereal alphai;
  894. integer iz;
  895. doublereal alphar;
  896. extern /* Subroutine */ void dlacpy_(char *, integer *, integer *,
  897. doublereal *, integer *, doublereal *, integer *);
  898. extern int xerbla_(char *, integer *, ftnlen);
  899. extern void dtgexc_(logical *, logical *,
  900. integer *, doublereal *, integer *, doublereal *, integer *,
  901. doublereal *, integer *, doublereal *, integer *, integer *,
  902. integer *, doublereal *, integer *, integer *);
  903. logical wantbh, wantdf, somcon;
  904. doublereal alprqt;
  905. extern /* Subroutine */ void dtgsyl_(char *, integer *, integer *, integer
  906. *, doublereal *, integer *, doublereal *, integer *, doublereal *,
  907. integer *, doublereal *, integer *, doublereal *, integer *,
  908. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  909. integer *, integer *, integer *);
  910. doublereal smlnum;
  911. logical lquery;
  912. doublereal eps;
  913. /* -- LAPACK computational routine (version 3.7.0) -- */
  914. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  915. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  916. /* December 2016 */
  917. /* ===================================================================== */
  918. /* Decode and test the input parameters */
  919. /* Parameter adjustments */
  920. --select;
  921. a_dim1 = *lda;
  922. a_offset = 1 + a_dim1 * 1;
  923. a -= a_offset;
  924. b_dim1 = *ldb;
  925. b_offset = 1 + b_dim1 * 1;
  926. b -= b_offset;
  927. vl_dim1 = *ldvl;
  928. vl_offset = 1 + vl_dim1 * 1;
  929. vl -= vl_offset;
  930. vr_dim1 = *ldvr;
  931. vr_offset = 1 + vr_dim1 * 1;
  932. vr -= vr_offset;
  933. --s;
  934. --dif;
  935. --work;
  936. --iwork;
  937. /* Function Body */
  938. wantbh = lsame_(job, "B");
  939. wants = lsame_(job, "E") || wantbh;
  940. wantdf = lsame_(job, "V") || wantbh;
  941. somcon = lsame_(howmny, "S");
  942. *info = 0;
  943. lquery = *lwork == -1;
  944. if (! wants && ! wantdf) {
  945. *info = -1;
  946. } else if (! lsame_(howmny, "A") && ! somcon) {
  947. *info = -2;
  948. } else if (*n < 0) {
  949. *info = -4;
  950. } else if (*lda < f2cmax(1,*n)) {
  951. *info = -6;
  952. } else if (*ldb < f2cmax(1,*n)) {
  953. *info = -8;
  954. } else if (wants && *ldvl < *n) {
  955. *info = -10;
  956. } else if (wants && *ldvr < *n) {
  957. *info = -12;
  958. } else {
  959. /* Set M to the number of eigenpairs for which condition numbers */
  960. /* are required, and test MM. */
  961. if (somcon) {
  962. *m = 0;
  963. pair = FALSE_;
  964. i__1 = *n;
  965. for (k = 1; k <= i__1; ++k) {
  966. if (pair) {
  967. pair = FALSE_;
  968. } else {
  969. if (k < *n) {
  970. if (a[k + 1 + k * a_dim1] == 0.) {
  971. if (select[k]) {
  972. ++(*m);
  973. }
  974. } else {
  975. pair = TRUE_;
  976. if (select[k] || select[k + 1]) {
  977. *m += 2;
  978. }
  979. }
  980. } else {
  981. if (select[*n]) {
  982. ++(*m);
  983. }
  984. }
  985. }
  986. /* L10: */
  987. }
  988. } else {
  989. *m = *n;
  990. }
  991. if (*n == 0) {
  992. lwmin = 1;
  993. } else if (lsame_(job, "V") || lsame_(job,
  994. "B")) {
  995. lwmin = (*n << 1) * (*n + 2) + 16;
  996. } else {
  997. lwmin = *n;
  998. }
  999. work[1] = (doublereal) lwmin;
  1000. if (*mm < *m) {
  1001. *info = -15;
  1002. } else if (*lwork < lwmin && ! lquery) {
  1003. *info = -18;
  1004. }
  1005. }
  1006. if (*info != 0) {
  1007. i__1 = -(*info);
  1008. xerbla_("DTGSNA", &i__1, (ftnlen)6);
  1009. return;
  1010. } else if (lquery) {
  1011. return;
  1012. }
  1013. /* Quick return if possible */
  1014. if (*n == 0) {
  1015. return;
  1016. }
  1017. /* Get machine constants */
  1018. eps = dlamch_("P");
  1019. smlnum = dlamch_("S") / eps;
  1020. ks = 0;
  1021. pair = FALSE_;
  1022. i__1 = *n;
  1023. for (k = 1; k <= i__1; ++k) {
  1024. /* Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block. */
  1025. if (pair) {
  1026. pair = FALSE_;
  1027. goto L20;
  1028. } else {
  1029. if (k < *n) {
  1030. pair = a[k + 1 + k * a_dim1] != 0.;
  1031. }
  1032. }
  1033. /* Determine whether condition numbers are required for the k-th */
  1034. /* eigenpair. */
  1035. if (somcon) {
  1036. if (pair) {
  1037. if (! select[k] && ! select[k + 1]) {
  1038. goto L20;
  1039. }
  1040. } else {
  1041. if (! select[k]) {
  1042. goto L20;
  1043. }
  1044. }
  1045. }
  1046. ++ks;
  1047. if (wants) {
  1048. /* Compute the reciprocal condition number of the k-th */
  1049. /* eigenvalue. */
  1050. if (pair) {
  1051. /* Complex eigenvalue pair. */
  1052. d__1 = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
  1053. d__2 = dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
  1054. rnrm = dlapy2_(&d__1, &d__2);
  1055. d__1 = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
  1056. d__2 = dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
  1057. lnrm = dlapy2_(&d__1, &d__2);
  1058. dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
  1059. + 1], &c__1, &c_b21, &work[1], &c__1);
  1060. tmprr = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
  1061. c__1);
  1062. tmpri = ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
  1063. &c__1);
  1064. dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[(ks + 1) *
  1065. vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
  1066. tmpii = ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
  1067. &c__1);
  1068. tmpir = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
  1069. c__1);
  1070. uhav = tmprr + tmpii;
  1071. uhavi = tmpir - tmpri;
  1072. dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
  1073. + 1], &c__1, &c_b21, &work[1], &c__1);
  1074. tmprr = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
  1075. c__1);
  1076. tmpri = ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
  1077. &c__1);
  1078. dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[(ks + 1) *
  1079. vr_dim1 + 1], &c__1, &c_b21, &work[1], &c__1);
  1080. tmpii = ddot_(n, &work[1], &c__1, &vl[(ks + 1) * vl_dim1 + 1],
  1081. &c__1);
  1082. tmpir = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &
  1083. c__1);
  1084. uhbv = tmprr + tmpii;
  1085. uhbvi = tmpir - tmpri;
  1086. uhav = dlapy2_(&uhav, &uhavi);
  1087. uhbv = dlapy2_(&uhbv, &uhbvi);
  1088. cond = dlapy2_(&uhav, &uhbv);
  1089. s[ks] = cond / (rnrm * lnrm);
  1090. s[ks + 1] = s[ks];
  1091. } else {
  1092. /* Real eigenvalue. */
  1093. rnrm = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
  1094. lnrm = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
  1095. dgemv_("N", n, n, &c_b19, &a[a_offset], lda, &vr[ks * vr_dim1
  1096. + 1], &c__1, &c_b21, &work[1], &c__1);
  1097. uhav = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
  1098. ;
  1099. dgemv_("N", n, n, &c_b19, &b[b_offset], ldb, &vr[ks * vr_dim1
  1100. + 1], &c__1, &c_b21, &work[1], &c__1);
  1101. uhbv = ddot_(n, &work[1], &c__1, &vl[ks * vl_dim1 + 1], &c__1)
  1102. ;
  1103. cond = dlapy2_(&uhav, &uhbv);
  1104. if (cond == 0.) {
  1105. s[ks] = -1.;
  1106. } else {
  1107. s[ks] = cond / (rnrm * lnrm);
  1108. }
  1109. }
  1110. }
  1111. if (wantdf) {
  1112. if (*n == 1) {
  1113. dif[ks] = dlapy2_(&a[a_dim1 + 1], &b[b_dim1 + 1]);
  1114. goto L20;
  1115. }
  1116. /* Estimate the reciprocal condition number of the k-th */
  1117. /* eigenvectors. */
  1118. if (pair) {
  1119. /* Copy the 2-by 2 pencil beginning at (A(k,k), B(k, k)). */
  1120. /* Compute the eigenvalue(s) at position K. */
  1121. work[1] = a[k + k * a_dim1];
  1122. work[2] = a[k + 1 + k * a_dim1];
  1123. work[3] = a[k + (k + 1) * a_dim1];
  1124. work[4] = a[k + 1 + (k + 1) * a_dim1];
  1125. work[5] = b[k + k * b_dim1];
  1126. work[6] = b[k + 1 + k * b_dim1];
  1127. work[7] = b[k + (k + 1) * b_dim1];
  1128. work[8] = b[k + 1 + (k + 1) * b_dim1];
  1129. d__1 = smlnum * eps;
  1130. dlag2_(&work[1], &c__2, &work[5], &c__2, &d__1, &beta, dummy1,
  1131. &alphar, dummy, &alphai);
  1132. alprqt = 1.;
  1133. c1 = (alphar * alphar + alphai * alphai + beta * beta) * 2.;
  1134. c2 = beta * 4. * beta * alphai * alphai;
  1135. root1 = c1 + sqrt(c1 * c1 - c2 * 4.);
  1136. root2 = c2 / root1;
  1137. root1 /= 2.;
  1138. /* Computing MIN */
  1139. d__1 = sqrt(root1), d__2 = sqrt(root2);
  1140. cond = f2cmin(d__1,d__2);
  1141. }
  1142. /* Copy the matrix (A, B) to the array WORK and swap the */
  1143. /* diagonal block beginning at A(k,k) to the (1,1) position. */
  1144. dlacpy_("Full", n, n, &a[a_offset], lda, &work[1], n);
  1145. dlacpy_("Full", n, n, &b[b_offset], ldb, &work[*n * *n + 1], n);
  1146. ifst = k;
  1147. ilst = 1;
  1148. i__2 = *lwork - (*n << 1) * *n;
  1149. dtgexc_(&c_false, &c_false, n, &work[1], n, &work[*n * *n + 1], n,
  1150. dummy, &c__1, dummy1, &c__1, &ifst, &ilst, &work[(*n * *
  1151. n << 1) + 1], &i__2, &ierr);
  1152. if (ierr > 0) {
  1153. /* Ill-conditioned problem - swap rejected. */
  1154. dif[ks] = 0.;
  1155. } else {
  1156. /* Reordering successful, solve generalized Sylvester */
  1157. /* equation for R and L, */
  1158. /* A22 * R - L * A11 = A12 */
  1159. /* B22 * R - L * B11 = B12, */
  1160. /* and compute estimate of Difl((A11,B11), (A22, B22)). */
  1161. n1 = 1;
  1162. if (work[2] != 0.) {
  1163. n1 = 2;
  1164. }
  1165. n2 = *n - n1;
  1166. if (n2 == 0) {
  1167. dif[ks] = cond;
  1168. } else {
  1169. i__ = *n * *n + 1;
  1170. iz = (*n << 1) * *n + 1;
  1171. i__2 = *lwork - (*n << 1) * *n;
  1172. dtgsyl_("N", &c__3, &n2, &n1, &work[*n * n1 + n1 + 1], n,
  1173. &work[1], n, &work[n1 + 1], n, &work[*n * n1 + n1
  1174. + i__], n, &work[i__], n, &work[n1 + i__], n, &
  1175. scale, &dif[ks], &work[iz + 1], &i__2, &iwork[1],
  1176. &ierr);
  1177. if (pair) {
  1178. /* Computing MIN */
  1179. d__1 = f2cmax(1.,alprqt) * dif[ks];
  1180. dif[ks] = f2cmin(d__1,cond);
  1181. }
  1182. }
  1183. }
  1184. if (pair) {
  1185. dif[ks + 1] = dif[ks];
  1186. }
  1187. }
  1188. if (pair) {
  1189. ++ks;
  1190. }
  1191. L20:
  1192. ;
  1193. }
  1194. work[1] = (doublereal) lwmin;
  1195. return;
  1196. /* End of DTGSNA */
  1197. } /* dtgsna_ */