You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelsd.c 40 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static complex c_b1 = {0.f,0.f};
  485. static integer c__9 = 9;
  486. static integer c__0 = 0;
  487. static integer c__6 = 6;
  488. static integer c_n1 = -1;
  489. static integer c__1 = 1;
  490. static real c_b80 = 0.f;
  491. /* > \brief <b> CGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b
  492. > */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CGELSD + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsd.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsd.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsd.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  511. /* WORK, LWORK, RWORK, IWORK, INFO ) */
  512. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  513. /* REAL RCOND */
  514. /* INTEGER IWORK( * ) */
  515. /* REAL RWORK( * ), S( * ) */
  516. /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > CGELSD computes the minimum-norm solution to a real linear least */
  523. /* > squares problem: */
  524. /* > minimize 2-norm(| b - A*x |) */
  525. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  526. /* > matrix which may be rank-deficient. */
  527. /* > */
  528. /* > Several right hand side vectors b and solution vectors x can be */
  529. /* > handled in a single call; they are stored as the columns of the */
  530. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  531. /* > matrix X. */
  532. /* > */
  533. /* > The problem is solved in three steps: */
  534. /* > (1) Reduce the coefficient matrix A to bidiagonal form with */
  535. /* > Householder transformations, reducing the original problem */
  536. /* > into a "bidiagonal least squares problem" (BLS) */
  537. /* > (2) Solve the BLS using a divide and conquer approach. */
  538. /* > (3) Apply back all the Householder transformations to solve */
  539. /* > the original least squares problem. */
  540. /* > */
  541. /* > The effective rank of A is determined by treating as zero those */
  542. /* > singular values which are less than RCOND times the largest singular */
  543. /* > value. */
  544. /* > */
  545. /* > The divide and conquer algorithm makes very mild assumptions about */
  546. /* > floating point arithmetic. It will work on machines with a guard */
  547. /* > digit in add/subtract, or on those binary machines without guard */
  548. /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  549. /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  550. /* > without guard digits, but we know of none. */
  551. /* > \endverbatim */
  552. /* Arguments: */
  553. /* ========== */
  554. /* > \param[in] M */
  555. /* > \verbatim */
  556. /* > M is INTEGER */
  557. /* > The number of rows of the matrix A. M >= 0. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] N */
  561. /* > \verbatim */
  562. /* > N is INTEGER */
  563. /* > The number of columns of the matrix A. N >= 0. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] NRHS */
  567. /* > \verbatim */
  568. /* > NRHS is INTEGER */
  569. /* > The number of right hand sides, i.e., the number of columns */
  570. /* > of the matrices B and X. NRHS >= 0. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in,out] A */
  574. /* > \verbatim */
  575. /* > A is COMPLEX array, dimension (LDA,N) */
  576. /* > On entry, the M-by-N matrix A. */
  577. /* > On exit, A has been destroyed. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDA */
  581. /* > \verbatim */
  582. /* > LDA is INTEGER */
  583. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] B */
  587. /* > \verbatim */
  588. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  589. /* > On entry, the M-by-NRHS right hand side matrix B. */
  590. /* > On exit, B is overwritten by the N-by-NRHS solution matrix X. */
  591. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  592. /* > the solution in the i-th column is given by the sum of */
  593. /* > squares of the modulus of elements n+1:m in that column. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDB */
  597. /* > \verbatim */
  598. /* > LDB is INTEGER */
  599. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] S */
  603. /* > \verbatim */
  604. /* > S is REAL array, dimension (f2cmin(M,N)) */
  605. /* > The singular values of A in decreasing order. */
  606. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] RCOND */
  610. /* > \verbatim */
  611. /* > RCOND is REAL */
  612. /* > RCOND is used to determine the effective rank of A. */
  613. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  614. /* > If RCOND < 0, machine precision is used instead. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] RANK */
  618. /* > \verbatim */
  619. /* > RANK is INTEGER */
  620. /* > The effective rank of A, i.e., the number of singular values */
  621. /* > which are greater than RCOND*S(1). */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] WORK */
  625. /* > \verbatim */
  626. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  627. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in] LWORK */
  631. /* > \verbatim */
  632. /* > LWORK is INTEGER */
  633. /* > The dimension of the array WORK. LWORK must be at least 1. */
  634. /* > The exact minimum amount of workspace needed depends on M, */
  635. /* > N and NRHS. As long as LWORK is at least */
  636. /* > 2 * N + N * NRHS */
  637. /* > if M is greater than or equal to N or */
  638. /* > 2 * M + M * NRHS */
  639. /* > if M is less than N, the code will execute correctly. */
  640. /* > For good performance, LWORK should generally be larger. */
  641. /* > */
  642. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  643. /* > only calculates the optimal size of the array WORK and the */
  644. /* > minimum sizes of the arrays RWORK and IWORK, and returns */
  645. /* > these values as the first entries of the WORK, RWORK and */
  646. /* > IWORK arrays, and no error message related to LWORK is issued */
  647. /* > by XERBLA. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] RWORK */
  651. /* > \verbatim */
  652. /* > RWORK is REAL array, dimension (MAX(1,LRWORK)) */
  653. /* > LRWORK >= */
  654. /* > 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS + */
  655. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
  656. /* > if M is greater than or equal to N or */
  657. /* > 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS + */
  658. /* > MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ) */
  659. /* > if M is less than N, the code will execute correctly. */
  660. /* > SMLSIZ is returned by ILAENV and is equal to the maximum */
  661. /* > size of the subproblems at the bottom of the computation */
  662. /* > tree (usually about 25), and */
  663. /* > NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 ) */
  664. /* > On exit, if INFO = 0, RWORK(1) returns the minimum LRWORK. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] IWORK */
  668. /* > \verbatim */
  669. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  670. /* > LIWORK >= f2cmax(1, 3*MINMN*NLVL + 11*MINMN), */
  671. /* > where MINMN = MIN( M,N ). */
  672. /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] INFO */
  676. /* > \verbatim */
  677. /* > INFO is INTEGER */
  678. /* > = 0: successful exit */
  679. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  680. /* > > 0: the algorithm for computing the SVD failed to converge; */
  681. /* > if INFO = i, i off-diagonal elements of an intermediate */
  682. /* > bidiagonal form did not converge to zero. */
  683. /* > \endverbatim */
  684. /* Authors: */
  685. /* ======== */
  686. /* > \author Univ. of Tennessee */
  687. /* > \author Univ. of California Berkeley */
  688. /* > \author Univ. of Colorado Denver */
  689. /* > \author NAG Ltd. */
  690. /* > \date December 2016 */
  691. /* > \ingroup complexGEsolve */
  692. /* > \par Contributors: */
  693. /* ================== */
  694. /* > */
  695. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  696. /* > California at Berkeley, USA \n */
  697. /* > Osni Marques, LBNL/NERSC, USA \n */
  698. /* ===================================================================== */
  699. /* Subroutine */ void cgelsd_(integer *m, integer *n, integer *nrhs, complex *
  700. a, integer *lda, complex *b, integer *ldb, real *s, real *rcond,
  701. integer *rank, complex *work, integer *lwork, real *rwork, integer *
  702. iwork, integer *info)
  703. {
  704. /* System generated locals */
  705. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
  706. /* Local variables */
  707. real anrm, bnrm;
  708. integer itau, nlvl, iascl, ibscl;
  709. real sfmin;
  710. integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
  711. extern /* Subroutine */ void cgebrd_(integer *, integer *, complex *,
  712. integer *, real *, real *, complex *, complex *, complex *,
  713. integer *, integer *), slabad_(real *, real *);
  714. extern real clange_(char *, integer *, integer *, complex *, integer *,
  715. real *);
  716. integer mm;
  717. extern /* Subroutine */ void cgelqf_(integer *, integer *, complex *,
  718. integer *, complex *, complex *, integer *, integer *), clalsd_(
  719. char *, integer *, integer *, integer *, real *, real *, complex *
  720. , integer *, real *, integer *, complex *, real *, integer *,
  721. integer *), clascl_(char *, integer *, integer *, real *,
  722. real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *,
  723. complex *, complex *, integer *, integer *);
  724. extern real slamch_(char *);
  725. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  726. *, integer *, complex *, integer *), claset_(char *,
  727. integer *, integer *, complex *, complex *, complex *, integer *);
  728. extern int xerbla_(char *, integer *, ftnlen);
  729. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  730. integer *, integer *, ftnlen, ftnlen);
  731. real bignum;
  732. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  733. real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *,
  734. integer *, complex *, integer *, complex *, complex *, integer *,
  735. complex *, integer *, integer *), slaset_(
  736. char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *,
  737. complex *, integer *, complex *, complex *, integer *, complex *,
  738. integer *, integer *);
  739. integer ldwork;
  740. extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
  741. integer *, complex *, integer *, complex *, complex *, integer *,
  742. complex *, integer *, integer *);
  743. integer liwork, minwrk, maxwrk;
  744. real smlnum;
  745. integer lrwork;
  746. logical lquery;
  747. integer nrwork, smlsiz;
  748. real eps;
  749. /* -- LAPACK driver routine (version 3.7.0) -- */
  750. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  751. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  752. /* December 2016 */
  753. /* ===================================================================== */
  754. /* Test the input arguments. */
  755. /* Parameter adjustments */
  756. a_dim1 = *lda;
  757. a_offset = 1 + a_dim1 * 1;
  758. a -= a_offset;
  759. b_dim1 = *ldb;
  760. b_offset = 1 + b_dim1 * 1;
  761. b -= b_offset;
  762. --s;
  763. --work;
  764. --rwork;
  765. --iwork;
  766. /* Function Body */
  767. *info = 0;
  768. minmn = f2cmin(*m,*n);
  769. maxmn = f2cmax(*m,*n);
  770. lquery = *lwork == -1;
  771. if (*m < 0) {
  772. *info = -1;
  773. } else if (*n < 0) {
  774. *info = -2;
  775. } else if (*nrhs < 0) {
  776. *info = -3;
  777. } else if (*lda < f2cmax(1,*m)) {
  778. *info = -5;
  779. } else if (*ldb < f2cmax(1,maxmn)) {
  780. *info = -7;
  781. }
  782. /* Compute workspace. */
  783. /* (Note: Comments in the code beginning "Workspace:" describe the */
  784. /* minimal amount of workspace needed at that point in the code, */
  785. /* as well as the preferred amount for good performance. */
  786. /* NB refers to the optimal block size for the immediately */
  787. /* following subroutine, as returned by ILAENV.) */
  788. if (*info == 0) {
  789. minwrk = 1;
  790. maxwrk = 1;
  791. liwork = 1;
  792. lrwork = 1;
  793. if (minmn > 0) {
  794. smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0,
  795. (ftnlen)6, (ftnlen)1);
  796. mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)
  797. 6, (ftnlen)1);
  798. /* Computing MAX */
  799. i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log(
  800. 2.f)) + 1;
  801. nlvl = f2cmax(i__1,0);
  802. liwork = minmn * 3 * nlvl + minmn * 11;
  803. mm = *m;
  804. if (*m >= *n && *m >= mnthr) {
  805. /* Path 1a - overdetermined, with many more rows than */
  806. /* columns. */
  807. mm = *n;
  808. /* Computing MAX */
  809. i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n,
  810. &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  811. maxwrk = f2cmax(i__1,i__2);
  812. /* Computing MAX */
  813. i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC",
  814. m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
  815. maxwrk = f2cmax(i__1,i__2);
  816. }
  817. if (*m >= *n) {
  818. /* Path 1 - overdetermined or exactly determined. */
  819. /* Computing MAX */
  820. /* Computing 2nd power */
  821. i__3 = smlsiz + 1;
  822. i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
  823. lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl +
  824. smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
  825. /* Computing MAX */
  826. i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1,
  827. "CGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (
  828. ftnlen)1);
  829. maxwrk = f2cmax(i__1,i__2);
  830. /* Computing MAX */
  831. i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1,
  832. "CUNMBR", "QLC", &mm, nrhs, n, &c_n1, (ftnlen)6, (
  833. ftnlen)3);
  834. maxwrk = f2cmax(i__1,i__2);
  835. /* Computing MAX */
  836. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  837. "CUNMBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (
  838. ftnlen)3);
  839. maxwrk = f2cmax(i__1,i__2);
  840. /* Computing MAX */
  841. i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs;
  842. maxwrk = f2cmax(i__1,i__2);
  843. /* Computing MAX */
  844. i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs;
  845. minwrk = f2cmax(i__1,i__2);
  846. }
  847. if (*n > *m) {
  848. /* Computing MAX */
  849. /* Computing 2nd power */
  850. i__3 = smlsiz + 1;
  851. i__1 = i__3 * i__3, i__2 = *n * (*nrhs + 1) + (*nrhs << 1);
  852. lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl +
  853. smlsiz * 3 * *nrhs + f2cmax(i__1,i__2);
  854. if (*n >= mnthr) {
  855. /* Path 2a - underdetermined, with many more columns */
  856. /* than rows. */
  857. maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &
  858. c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  859. /* Computing MAX */
  860. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) *
  861. ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1,
  862. (ftnlen)6, (ftnlen)1);
  863. maxwrk = f2cmax(i__1,i__2);
  864. /* Computing MAX */
  865. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs *
  866. ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1,
  867. (ftnlen)6, (ftnlen)3);
  868. maxwrk = f2cmax(i__1,i__2);
  869. /* Computing MAX */
  870. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) *
  871. ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1,
  872. (ftnlen)6, (ftnlen)2);
  873. maxwrk = f2cmax(i__1,i__2);
  874. if (*nrhs > 1) {
  875. /* Computing MAX */
  876. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  877. maxwrk = f2cmax(i__1,i__2);
  878. } else {
  879. /* Computing MAX */
  880. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  881. maxwrk = f2cmax(i__1,i__2);
  882. }
  883. /* Computing MAX */
  884. i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs;
  885. maxwrk = f2cmax(i__1,i__2);
  886. /* XXX: Ensure the Path 2a case below is triggered. The workspace */
  887. /* calculation should use queries for all routines eventually. */
  888. /* Computing MAX */
  889. /* Computing MAX */
  890. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4),
  891. i__3 = f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  892. i__1 = maxwrk, i__2 = (*m << 2) + *m * *m + f2cmax(i__3,i__4)
  893. ;
  894. maxwrk = f2cmax(i__1,i__2);
  895. } else {
  896. /* Path 2 - underdetermined. */
  897. maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD",
  898. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  899. /* Computing MAX */
  900. i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1,
  901. "CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
  902. ftnlen)3);
  903. maxwrk = f2cmax(i__1,i__2);
  904. /* Computing MAX */
  905. i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1,
  906. "CUNMBR", "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (
  907. ftnlen)3);
  908. maxwrk = f2cmax(i__1,i__2);
  909. /* Computing MAX */
  910. i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
  911. maxwrk = f2cmax(i__1,i__2);
  912. }
  913. /* Computing MAX */
  914. i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
  915. minwrk = f2cmax(i__1,i__2);
  916. }
  917. }
  918. minwrk = f2cmin(minwrk,maxwrk);
  919. work[1].r = (real) maxwrk, work[1].i = 0.f;
  920. iwork[1] = liwork;
  921. rwork[1] = (real) lrwork;
  922. if (*lwork < minwrk && ! lquery) {
  923. *info = -12;
  924. }
  925. }
  926. if (*info != 0) {
  927. i__1 = -(*info);
  928. xerbla_("CGELSD", &i__1, (ftnlen)6);
  929. return;
  930. } else if (lquery) {
  931. return;
  932. }
  933. /* Quick return if possible. */
  934. if (*m == 0 || *n == 0) {
  935. *rank = 0;
  936. return;
  937. }
  938. /* Get machine parameters. */
  939. eps = slamch_("P");
  940. sfmin = slamch_("S");
  941. smlnum = sfmin / eps;
  942. bignum = 1.f / smlnum;
  943. slabad_(&smlnum, &bignum);
  944. /* Scale A if f2cmax entry outside range [SMLNUM,BIGNUM]. */
  945. anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  946. iascl = 0;
  947. if (anrm > 0.f && anrm < smlnum) {
  948. /* Scale matrix norm up to SMLNUM */
  949. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  950. info);
  951. iascl = 1;
  952. } else if (anrm > bignum) {
  953. /* Scale matrix norm down to BIGNUM. */
  954. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  955. info);
  956. iascl = 2;
  957. } else if (anrm == 0.f) {
  958. /* Matrix all zero. Return zero solution. */
  959. i__1 = f2cmax(*m,*n);
  960. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  961. slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1);
  962. *rank = 0;
  963. goto L10;
  964. }
  965. /* Scale B if f2cmax entry outside range [SMLNUM,BIGNUM]. */
  966. bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  967. ibscl = 0;
  968. if (bnrm > 0.f && bnrm < smlnum) {
  969. /* Scale matrix norm up to SMLNUM. */
  970. clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  971. info);
  972. ibscl = 1;
  973. } else if (bnrm > bignum) {
  974. /* Scale matrix norm down to BIGNUM. */
  975. clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  976. info);
  977. ibscl = 2;
  978. }
  979. /* If M < N make sure B(M+1:N,:) = 0 */
  980. if (*m < *n) {
  981. i__1 = *n - *m;
  982. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  983. }
  984. /* Overdetermined case. */
  985. if (*m >= *n) {
  986. /* Path 1 - overdetermined or exactly determined. */
  987. mm = *m;
  988. if (*m >= mnthr) {
  989. /* Path 1a - overdetermined, with many more rows than columns */
  990. mm = *n;
  991. itau = 1;
  992. nwork = itau + *n;
  993. /* Compute A=Q*R. */
  994. /* (RWorkspace: need N) */
  995. /* (CWorkspace: need N, prefer N*NB) */
  996. i__1 = *lwork - nwork + 1;
  997. cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
  998. info);
  999. /* Multiply B by transpose(Q). */
  1000. /* (RWorkspace: need N) */
  1001. /* (CWorkspace: need NRHS, prefer NRHS*NB) */
  1002. i__1 = *lwork - nwork + 1;
  1003. cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  1004. b_offset], ldb, &work[nwork], &i__1, info);
  1005. /* Zero out below R. */
  1006. if (*n > 1) {
  1007. i__1 = *n - 1;
  1008. i__2 = *n - 1;
  1009. claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  1010. }
  1011. }
  1012. itauq = 1;
  1013. itaup = itauq + *n;
  1014. nwork = itaup + *n;
  1015. ie = 1;
  1016. nrwork = ie + *n;
  1017. /* Bidiagonalize R in A. */
  1018. /* (RWorkspace: need N) */
  1019. /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
  1020. i__1 = *lwork - nwork + 1;
  1021. cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
  1022. work[itaup], &work[nwork], &i__1, info);
  1023. /* Multiply B by transpose of left bidiagonalizing vectors of R. */
  1024. /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
  1025. i__1 = *lwork - nwork + 1;
  1026. cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  1027. &b[b_offset], ldb, &work[nwork], &i__1, info);
  1028. /* Solve the bidiagonal least squares problem. */
  1029. clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb,
  1030. rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
  1031. if (*info != 0) {
  1032. goto L10;
  1033. }
  1034. /* Multiply B by right bidiagonalizing vectors of R. */
  1035. i__1 = *lwork - nwork + 1;
  1036. cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
  1037. b[b_offset], ldb, &work[nwork], &i__1, info);
  1038. } else /* if(complicated condition) */ {
  1039. /* Computing MAX */
  1040. i__1 = *m, i__2 = (*m << 1) - 4, i__1 = f2cmax(i__1,i__2), i__1 = f2cmax(
  1041. i__1,*nrhs), i__2 = *n - *m * 3;
  1042. if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__1,i__2)) {
  1043. /* Path 2a - underdetermined, with many more columns than rows */
  1044. /* and sufficient workspace for an efficient algorithm. */
  1045. ldwork = *m;
  1046. /* Computing MAX */
  1047. /* Computing MAX */
  1048. i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 =
  1049. f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
  1050. i__1 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__2 = *m * *lda +
  1051. *m + *m * *nrhs;
  1052. if (*lwork >= f2cmax(i__1,i__2)) {
  1053. ldwork = *lda;
  1054. }
  1055. itau = 1;
  1056. nwork = *m + 1;
  1057. /* Compute A=L*Q. */
  1058. /* (CWorkspace: need 2*M, prefer M+M*NB) */
  1059. i__1 = *lwork - nwork + 1;
  1060. cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
  1061. info);
  1062. il = nwork;
  1063. /* Copy L to WORK(IL), zeroing out above its diagonal. */
  1064. clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  1065. i__1 = *m - 1;
  1066. i__2 = *m - 1;
  1067. claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
  1068. ldwork);
  1069. itauq = il + ldwork * *m;
  1070. itaup = itauq + *m;
  1071. nwork = itaup + *m;
  1072. ie = 1;
  1073. nrwork = ie + *m;
  1074. /* Bidiagonalize L in WORK(IL). */
  1075. /* (RWorkspace: need M) */
  1076. /* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */
  1077. i__1 = *lwork - nwork + 1;
  1078. cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
  1079. &work[itaup], &work[nwork], &i__1, info);
  1080. /* Multiply B by transpose of left bidiagonalizing vectors of L. */
  1081. /* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
  1082. i__1 = *lwork - nwork + 1;
  1083. cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
  1084. itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
  1085. /* Solve the bidiagonal least squares problem. */
  1086. clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
  1087. ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
  1088. info);
  1089. if (*info != 0) {
  1090. goto L10;
  1091. }
  1092. /* Multiply B by right bidiagonalizing vectors of L. */
  1093. i__1 = *lwork - nwork + 1;
  1094. cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
  1095. itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
  1096. /* Zero out below first M rows of B. */
  1097. i__1 = *n - *m;
  1098. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  1099. nwork = itau + *m;
  1100. /* Multiply transpose(Q) by B. */
  1101. /* (CWorkspace: need NRHS, prefer NRHS*NB) */
  1102. i__1 = *lwork - nwork + 1;
  1103. cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  1104. b_offset], ldb, &work[nwork], &i__1, info);
  1105. } else {
  1106. /* Path 2 - remaining underdetermined cases. */
  1107. itauq = 1;
  1108. itaup = itauq + *m;
  1109. nwork = itaup + *m;
  1110. ie = 1;
  1111. nrwork = ie + *m;
  1112. /* Bidiagonalize A. */
  1113. /* (RWorkspace: need M) */
  1114. /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
  1115. i__1 = *lwork - nwork + 1;
  1116. cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1117. &work[itaup], &work[nwork], &i__1, info);
  1118. /* Multiply B by transpose of left bidiagonalizing vectors. */
  1119. /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
  1120. i__1 = *lwork - nwork + 1;
  1121. cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1122. , &b[b_offset], ldb, &work[nwork], &i__1, info);
  1123. /* Solve the bidiagonal least squares problem. */
  1124. clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset],
  1125. ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
  1126. info);
  1127. if (*info != 0) {
  1128. goto L10;
  1129. }
  1130. /* Multiply B by right bidiagonalizing vectors of A. */
  1131. i__1 = *lwork - nwork + 1;
  1132. cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
  1133. , &b[b_offset], ldb, &work[nwork], &i__1, info);
  1134. }
  1135. }
  1136. /* Undo scaling. */
  1137. if (iascl == 1) {
  1138. clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1139. info);
  1140. slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1141. minmn, info);
  1142. } else if (iascl == 2) {
  1143. clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1144. info);
  1145. slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1146. minmn, info);
  1147. }
  1148. if (ibscl == 1) {
  1149. clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1150. info);
  1151. } else if (ibscl == 2) {
  1152. clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1153. info);
  1154. }
  1155. L10:
  1156. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1157. iwork[1] = liwork;
  1158. rwork[1] = (real) lrwork;
  1159. return;
  1160. /* End of CGELSD */
  1161. } /* cgelsd_ */