You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpprfs.c 29 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {1.f,0.f};
  487. static integer c__1 = 1;
  488. /* > \brief \b CPPRFS */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download CPPRFS + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpprfs.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpprfs.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpprfs.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE CPPRFS( UPLO, N, NRHS, AP, AFP, B, LDB, X, LDX, FERR, */
  507. /* BERR, WORK, RWORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, LDB, LDX, N, NRHS */
  510. /* REAL BERR( * ), FERR( * ), RWORK( * ) */
  511. /* COMPLEX AFP( * ), AP( * ), B( LDB, * ), WORK( * ), */
  512. /* $ X( LDX, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > CPPRFS improves the computed solution to a system of linear */
  519. /* > equations when the coefficient matrix is Hermitian positive definite */
  520. /* > and packed, and provides error bounds and backward error estimates */
  521. /* > for the solution. */
  522. /* > \endverbatim */
  523. /* Arguments: */
  524. /* ========== */
  525. /* > \param[in] UPLO */
  526. /* > \verbatim */
  527. /* > UPLO is CHARACTER*1 */
  528. /* > = 'U': Upper triangle of A is stored; */
  529. /* > = 'L': Lower triangle of A is stored. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] N */
  533. /* > \verbatim */
  534. /* > N is INTEGER */
  535. /* > The order of the matrix A. N >= 0. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] NRHS */
  539. /* > \verbatim */
  540. /* > NRHS is INTEGER */
  541. /* > The number of right hand sides, i.e., the number of columns */
  542. /* > of the matrices B and X. NRHS >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] AP */
  546. /* > \verbatim */
  547. /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
  548. /* > The upper or lower triangle of the Hermitian matrix A, packed */
  549. /* > columnwise in a linear array. The j-th column of A is stored */
  550. /* > in the array AP as follows: */
  551. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
  552. /* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] AFP */
  556. /* > \verbatim */
  557. /* > AFP is COMPLEX array, dimension (N*(N+1)/2) */
  558. /* > The triangular factor U or L from the Cholesky factorization */
  559. /* > A = U**H*U or A = L*L**H, as computed by SPPTRF/CPPTRF, */
  560. /* > packed columnwise in a linear array in the same format as A */
  561. /* > (see AP). */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] B */
  565. /* > \verbatim */
  566. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  567. /* > The right hand side matrix B. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDB */
  571. /* > \verbatim */
  572. /* > LDB is INTEGER */
  573. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in,out] X */
  577. /* > \verbatim */
  578. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  579. /* > On entry, the solution matrix X, as computed by CPPTRS. */
  580. /* > On exit, the improved solution matrix X. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] LDX */
  584. /* > \verbatim */
  585. /* > LDX is INTEGER */
  586. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[out] FERR */
  590. /* > \verbatim */
  591. /* > FERR is REAL array, dimension (NRHS) */
  592. /* > The estimated forward error bound for each solution vector */
  593. /* > X(j) (the j-th column of the solution matrix X). */
  594. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  595. /* > is an estimated upper bound for the magnitude of the largest */
  596. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  597. /* > largest element in X(j). The estimate is as reliable as */
  598. /* > the estimate for RCOND, and is almost always a slight */
  599. /* > overestimate of the true error. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] BERR */
  603. /* > \verbatim */
  604. /* > BERR is REAL array, dimension (NRHS) */
  605. /* > The componentwise relative backward error of each solution */
  606. /* > vector X(j) (i.e., the smallest relative change in */
  607. /* > any element of A or B that makes X(j) an exact solution). */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] WORK */
  611. /* > \verbatim */
  612. /* > WORK is COMPLEX array, dimension (2*N) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] RWORK */
  616. /* > \verbatim */
  617. /* > RWORK is REAL array, dimension (N) */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] INFO */
  621. /* > \verbatim */
  622. /* > INFO is INTEGER */
  623. /* > = 0: successful exit */
  624. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  625. /* > \endverbatim */
  626. /* > \par Internal Parameters: */
  627. /* ========================= */
  628. /* > */
  629. /* > \verbatim */
  630. /* > ITMAX is the maximum number of steps of iterative refinement. */
  631. /* > \endverbatim */
  632. /* Authors: */
  633. /* ======== */
  634. /* > \author Univ. of Tennessee */
  635. /* > \author Univ. of California Berkeley */
  636. /* > \author Univ. of Colorado Denver */
  637. /* > \author NAG Ltd. */
  638. /* > \date December 2016 */
  639. /* > \ingroup complexOTHERcomputational */
  640. /* ===================================================================== */
  641. /* Subroutine */ int cpprfs_(char *uplo, integer *n, integer *nrhs, complex *
  642. ap, complex *afp, complex *b, integer *ldb, complex *x, integer *ldx,
  643. real *ferr, real *berr, complex *work, real *rwork, integer *info)
  644. {
  645. /* System generated locals */
  646. integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
  647. real r__1, r__2, r__3, r__4;
  648. complex q__1;
  649. /* Local variables */
  650. integer kase;
  651. real safe1, safe2;
  652. integer i__, j, k;
  653. real s;
  654. extern logical lsame_(char *, char *);
  655. integer isave[3];
  656. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  657. complex *, integer *), chpmv_(char *, integer *, complex *,
  658. complex *, complex *, integer *, complex *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *,
  659. complex *, integer *);
  660. integer count;
  661. logical upper;
  662. extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real
  663. *, integer *, integer *);
  664. integer ik, kk;
  665. real xk;
  666. extern real slamch_(char *);
  667. integer nz;
  668. real safmin;
  669. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), cpptrs_(
  670. char *, integer *, integer *, complex *, complex *, integer *,
  671. integer *);
  672. real lstres, eps;
  673. /* -- LAPACK computational routine (version 3.7.0) -- */
  674. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  675. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  676. /* December 2016 */
  677. /* ==================================================================== */
  678. /* Test the input parameters. */
  679. /* Parameter adjustments */
  680. --ap;
  681. --afp;
  682. b_dim1 = *ldb;
  683. b_offset = 1 + b_dim1 * 1;
  684. b -= b_offset;
  685. x_dim1 = *ldx;
  686. x_offset = 1 + x_dim1 * 1;
  687. x -= x_offset;
  688. --ferr;
  689. --berr;
  690. --work;
  691. --rwork;
  692. /* Function Body */
  693. *info = 0;
  694. upper = lsame_(uplo, "U");
  695. if (! upper && ! lsame_(uplo, "L")) {
  696. *info = -1;
  697. } else if (*n < 0) {
  698. *info = -2;
  699. } else if (*nrhs < 0) {
  700. *info = -3;
  701. } else if (*ldb < f2cmax(1,*n)) {
  702. *info = -7;
  703. } else if (*ldx < f2cmax(1,*n)) {
  704. *info = -9;
  705. }
  706. if (*info != 0) {
  707. i__1 = -(*info);
  708. xerbla_("CPPRFS", &i__1, (ftnlen)6);
  709. return 0;
  710. }
  711. /* Quick return if possible */
  712. if (*n == 0 || *nrhs == 0) {
  713. i__1 = *nrhs;
  714. for (j = 1; j <= i__1; ++j) {
  715. ferr[j] = 0.f;
  716. berr[j] = 0.f;
  717. /* L10: */
  718. }
  719. return 0;
  720. }
  721. /* NZ = maximum number of nonzero elements in each row of A, plus 1 */
  722. nz = *n + 1;
  723. eps = slamch_("Epsilon");
  724. safmin = slamch_("Safe minimum");
  725. safe1 = nz * safmin;
  726. safe2 = safe1 / eps;
  727. /* Do for each right hand side */
  728. i__1 = *nrhs;
  729. for (j = 1; j <= i__1; ++j) {
  730. count = 1;
  731. lstres = 3.f;
  732. L20:
  733. /* Loop until stopping criterion is satisfied. */
  734. /* Compute residual R = B - A * X */
  735. ccopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
  736. q__1.r = -1.f, q__1.i = 0.f;
  737. chpmv_(uplo, n, &q__1, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &
  738. work[1], &c__1);
  739. /* Compute componentwise relative backward error from formula */
  740. /* f2cmax(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
  741. /* where abs(Z) is the componentwise absolute value of the matrix */
  742. /* or vector Z. If the i-th component of the denominator is less */
  743. /* than SAFE2, then SAFE1 is added to the i-th components of the */
  744. /* numerator and denominator before dividing. */
  745. i__2 = *n;
  746. for (i__ = 1; i__ <= i__2; ++i__) {
  747. i__3 = i__ + j * b_dim1;
  748. rwork[i__] = (r__1 = b[i__3].r, abs(r__1)) + (r__2 = r_imag(&b[
  749. i__ + j * b_dim1]), abs(r__2));
  750. /* L30: */
  751. }
  752. /* Compute abs(A)*abs(X) + abs(B). */
  753. kk = 1;
  754. if (upper) {
  755. i__2 = *n;
  756. for (k = 1; k <= i__2; ++k) {
  757. s = 0.f;
  758. i__3 = k + j * x_dim1;
  759. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[k + j *
  760. x_dim1]), abs(r__2));
  761. ik = kk;
  762. i__3 = k - 1;
  763. for (i__ = 1; i__ <= i__3; ++i__) {
  764. i__4 = ik;
  765. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  766. r_imag(&ap[ik]), abs(r__2))) * xk;
  767. i__4 = ik;
  768. i__5 = i__ + j * x_dim1;
  769. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 = r_imag(&ap[
  770. ik]), abs(r__2))) * ((r__3 = x[i__5].r, abs(r__3))
  771. + (r__4 = r_imag(&x[i__ + j * x_dim1]), abs(r__4)
  772. ));
  773. ++ik;
  774. /* L40: */
  775. }
  776. i__3 = kk + k - 1;
  777. rwork[k] = rwork[k] + (r__1 = ap[i__3].r, abs(r__1)) * xk + s;
  778. kk += k;
  779. /* L50: */
  780. }
  781. } else {
  782. i__2 = *n;
  783. for (k = 1; k <= i__2; ++k) {
  784. s = 0.f;
  785. i__3 = k + j * x_dim1;
  786. xk = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[k + j *
  787. x_dim1]), abs(r__2));
  788. i__3 = kk;
  789. rwork[k] += (r__1 = ap[i__3].r, abs(r__1)) * xk;
  790. ik = kk + 1;
  791. i__3 = *n;
  792. for (i__ = k + 1; i__ <= i__3; ++i__) {
  793. i__4 = ik;
  794. rwork[i__] += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 =
  795. r_imag(&ap[ik]), abs(r__2))) * xk;
  796. i__4 = ik;
  797. i__5 = i__ + j * x_dim1;
  798. s += ((r__1 = ap[i__4].r, abs(r__1)) + (r__2 = r_imag(&ap[
  799. ik]), abs(r__2))) * ((r__3 = x[i__5].r, abs(r__3))
  800. + (r__4 = r_imag(&x[i__ + j * x_dim1]), abs(r__4)
  801. ));
  802. ++ik;
  803. /* L60: */
  804. }
  805. rwork[k] += s;
  806. kk += *n - k + 1;
  807. /* L70: */
  808. }
  809. }
  810. s = 0.f;
  811. i__2 = *n;
  812. for (i__ = 1; i__ <= i__2; ++i__) {
  813. if (rwork[i__] > safe2) {
  814. /* Computing MAX */
  815. i__3 = i__;
  816. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  817. r_imag(&work[i__]), abs(r__2))) / rwork[i__];
  818. s = f2cmax(r__3,r__4);
  819. } else {
  820. /* Computing MAX */
  821. i__3 = i__;
  822. r__3 = s, r__4 = ((r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  823. r_imag(&work[i__]), abs(r__2)) + safe1) / (rwork[i__]
  824. + safe1);
  825. s = f2cmax(r__3,r__4);
  826. }
  827. /* L80: */
  828. }
  829. berr[j] = s;
  830. /* Test stopping criterion. Continue iterating if */
  831. /* 1) The residual BERR(J) is larger than machine epsilon, and */
  832. /* 2) BERR(J) decreased by at least a factor of 2 during the */
  833. /* last iteration, and */
  834. /* 3) At most ITMAX iterations tried. */
  835. if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) {
  836. /* Update solution and try again. */
  837. cpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info);
  838. caxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
  839. lstres = berr[j];
  840. ++count;
  841. goto L20;
  842. }
  843. /* Bound error from formula */
  844. /* norm(X - XTRUE) / norm(X) .le. FERR = */
  845. /* norm( abs(inv(A))* */
  846. /* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
  847. /* where */
  848. /* norm(Z) is the magnitude of the largest component of Z */
  849. /* inv(A) is the inverse of A */
  850. /* abs(Z) is the componentwise absolute value of the matrix or */
  851. /* vector Z */
  852. /* NZ is the maximum number of nonzeros in any row of A, plus 1 */
  853. /* EPS is machine epsilon */
  854. /* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
  855. /* is incremented by SAFE1 if the i-th component of */
  856. /* abs(A)*abs(X) + abs(B) is less than SAFE2. */
  857. /* Use CLACN2 to estimate the infinity-norm of the matrix */
  858. /* inv(A) * diag(W), */
  859. /* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
  860. i__2 = *n;
  861. for (i__ = 1; i__ <= i__2; ++i__) {
  862. if (rwork[i__] > safe2) {
  863. i__3 = i__;
  864. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  865. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  866. ;
  867. } else {
  868. i__3 = i__;
  869. rwork[i__] = (r__1 = work[i__3].r, abs(r__1)) + (r__2 =
  870. r_imag(&work[i__]), abs(r__2)) + nz * eps * rwork[i__]
  871. + safe1;
  872. }
  873. /* L90: */
  874. }
  875. kase = 0;
  876. L100:
  877. clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
  878. if (kase != 0) {
  879. if (kase == 1) {
  880. /* Multiply by diag(W)*inv(A**H). */
  881. cpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info)
  882. ;
  883. i__2 = *n;
  884. for (i__ = 1; i__ <= i__2; ++i__) {
  885. i__3 = i__;
  886. i__4 = i__;
  887. i__5 = i__;
  888. q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
  889. * work[i__5].i;
  890. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  891. /* L110: */
  892. }
  893. } else if (kase == 2) {
  894. /* Multiply by inv(A)*diag(W). */
  895. i__2 = *n;
  896. for (i__ = 1; i__ <= i__2; ++i__) {
  897. i__3 = i__;
  898. i__4 = i__;
  899. i__5 = i__;
  900. q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4]
  901. * work[i__5].i;
  902. work[i__3].r = q__1.r, work[i__3].i = q__1.i;
  903. /* L120: */
  904. }
  905. cpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info)
  906. ;
  907. }
  908. goto L100;
  909. }
  910. /* Normalize error. */
  911. lstres = 0.f;
  912. i__2 = *n;
  913. for (i__ = 1; i__ <= i__2; ++i__) {
  914. /* Computing MAX */
  915. i__3 = i__ + j * x_dim1;
  916. r__3 = lstres, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 =
  917. r_imag(&x[i__ + j * x_dim1]), abs(r__2));
  918. lstres = f2cmax(r__3,r__4);
  919. /* L130: */
  920. }
  921. if (lstres != 0.f) {
  922. ferr[j] /= lstres;
  923. }
  924. /* L140: */
  925. }
  926. return 0;
  927. /* End of CPPRFS */
  928. } /* cpprfs_ */