You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zbdsqr.c 41 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublereal c_b15 = -.125;
  487. static integer c__1 = 1;
  488. static doublereal c_b49 = 1.;
  489. static doublereal c_b72 = -1.;
  490. /* > \brief \b ZBDSQR */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download ZBDSQR + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
  509. /* LDU, C, LDC, RWORK, INFO ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
  512. /* DOUBLE PRECISION D( * ), E( * ), RWORK( * ) */
  513. /* COMPLEX*16 C( LDC, * ), U( LDU, * ), VT( LDVT, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZBDSQR computes the singular values and, optionally, the right and/or */
  520. /* > left singular vectors from the singular value decomposition (SVD) of */
  521. /* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
  522. /* > zero-shift QR algorithm. The SVD of B has the form */
  523. /* > */
  524. /* > B = Q * S * P**H */
  525. /* > */
  526. /* > where S is the diagonal matrix of singular values, Q is an orthogonal */
  527. /* > matrix of left singular vectors, and P is an orthogonal matrix of */
  528. /* > right singular vectors. If left singular vectors are requested, this */
  529. /* > subroutine actually returns U*Q instead of Q, and, if right singular */
  530. /* > vectors are requested, this subroutine returns P**H*VT instead of */
  531. /* > P**H, for given complex input matrices U and VT. When U and VT are */
  532. /* > the unitary matrices that reduce a general matrix A to bidiagonal */
  533. /* > form: A = U*B*VT, as computed by ZGEBRD, then */
  534. /* > */
  535. /* > A = (U*Q) * S * (P**H*VT) */
  536. /* > */
  537. /* > is the SVD of A. Optionally, the subroutine may also compute Q**H*C */
  538. /* > for a given complex input matrix C. */
  539. /* > */
  540. /* > See "Computing Small Singular Values of Bidiagonal Matrices With */
  541. /* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
  542. /* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
  543. /* > no. 5, pp. 873-912, Sept 1990) and */
  544. /* > "Accurate singular values and differential qd algorithms," by */
  545. /* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
  546. /* > Department, University of California at Berkeley, July 1992 */
  547. /* > for a detailed description of the algorithm. */
  548. /* > \endverbatim */
  549. /* Arguments: */
  550. /* ========== */
  551. /* > \param[in] UPLO */
  552. /* > \verbatim */
  553. /* > UPLO is CHARACTER*1 */
  554. /* > = 'U': B is upper bidiagonal; */
  555. /* > = 'L': B is lower bidiagonal. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrix B. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] NCVT */
  565. /* > \verbatim */
  566. /* > NCVT is INTEGER */
  567. /* > The number of columns of the matrix VT. NCVT >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] NRU */
  571. /* > \verbatim */
  572. /* > NRU is INTEGER */
  573. /* > The number of rows of the matrix U. NRU >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] NCC */
  577. /* > \verbatim */
  578. /* > NCC is INTEGER */
  579. /* > The number of columns of the matrix C. NCC >= 0. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in,out] D */
  583. /* > \verbatim */
  584. /* > D is DOUBLE PRECISION array, dimension (N) */
  585. /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
  586. /* > On exit, if INFO=0, the singular values of B in decreasing */
  587. /* > order. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] E */
  591. /* > \verbatim */
  592. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  593. /* > On entry, the N-1 offdiagonal elements of the bidiagonal */
  594. /* > matrix B. */
  595. /* > On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
  596. /* > will contain the diagonal and superdiagonal elements of a */
  597. /* > bidiagonal matrix orthogonally equivalent to the one given */
  598. /* > as input. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] VT */
  602. /* > \verbatim */
  603. /* > VT is COMPLEX*16 array, dimension (LDVT, NCVT) */
  604. /* > On entry, an N-by-NCVT matrix VT. */
  605. /* > On exit, VT is overwritten by P**H * VT. */
  606. /* > Not referenced if NCVT = 0. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDVT */
  610. /* > \verbatim */
  611. /* > LDVT is INTEGER */
  612. /* > The leading dimension of the array VT. */
  613. /* > LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] U */
  617. /* > \verbatim */
  618. /* > U is COMPLEX*16 array, dimension (LDU, N) */
  619. /* > On entry, an NRU-by-N matrix U. */
  620. /* > On exit, U is overwritten by U * Q. */
  621. /* > Not referenced if NRU = 0. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] LDU */
  625. /* > \verbatim */
  626. /* > LDU is INTEGER */
  627. /* > The leading dimension of the array U. LDU >= f2cmax(1,NRU). */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in,out] C */
  631. /* > \verbatim */
  632. /* > C is COMPLEX*16 array, dimension (LDC, NCC) */
  633. /* > On entry, an N-by-NCC matrix C. */
  634. /* > On exit, C is overwritten by Q**H * C. */
  635. /* > Not referenced if NCC = 0. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[in] LDC */
  639. /* > \verbatim */
  640. /* > LDC is INTEGER */
  641. /* > The leading dimension of the array C. */
  642. /* > LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[out] RWORK */
  646. /* > \verbatim */
  647. /* > RWORK is DOUBLE PRECISION array, dimension (4*N) */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] INFO */
  651. /* > \verbatim */
  652. /* > INFO is INTEGER */
  653. /* > = 0: successful exit */
  654. /* > < 0: If INFO = -i, the i-th argument had an illegal value */
  655. /* > > 0: the algorithm did not converge; D and E contain the */
  656. /* > elements of a bidiagonal matrix which is orthogonally */
  657. /* > similar to the input matrix B; if INFO = i, i */
  658. /* > elements of E have not converged to zero. */
  659. /* > \endverbatim */
  660. /* > \par Internal Parameters: */
  661. /* ========================= */
  662. /* > */
  663. /* > \verbatim */
  664. /* > TOLMUL DOUBLE PRECISION, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
  665. /* > TOLMUL controls the convergence criterion of the QR loop. */
  666. /* > If it is positive, TOLMUL*EPS is the desired relative */
  667. /* > precision in the computed singular values. */
  668. /* > If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
  669. /* > desired absolute accuracy in the computed singular */
  670. /* > values (corresponds to relative accuracy */
  671. /* > abs(TOLMUL*EPS) in the largest singular value. */
  672. /* > abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
  673. /* > between 10 (for fast convergence) and .1/EPS */
  674. /* > (for there to be some accuracy in the results). */
  675. /* > Default is to lose at either one eighth or 2 of the */
  676. /* > available decimal digits in each computed singular value */
  677. /* > (whichever is smaller). */
  678. /* > */
  679. /* > MAXITR INTEGER, default = 6 */
  680. /* > MAXITR controls the maximum number of passes of the */
  681. /* > algorithm through its inner loop. The algorithms stops */
  682. /* > (and so fails to converge) if the number of passes */
  683. /* > through the inner loop exceeds MAXITR*N**2. */
  684. /* > \endverbatim */
  685. /* Authors: */
  686. /* ======== */
  687. /* > \author Univ. of Tennessee */
  688. /* > \author Univ. of California Berkeley */
  689. /* > \author Univ. of Colorado Denver */
  690. /* > \author NAG Ltd. */
  691. /* > \date December 2016 */
  692. /* > \ingroup complex16OTHERcomputational */
  693. /* ===================================================================== */
  694. /* Subroutine */ int zbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
  695. nru, integer *ncc, doublereal *d__, doublereal *e, doublecomplex *vt,
  696. integer *ldvt, doublecomplex *u, integer *ldu, doublecomplex *c__,
  697. integer *ldc, doublereal *rwork, integer *info)
  698. {
  699. /* System generated locals */
  700. integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  701. i__2;
  702. doublereal d__1, d__2, d__3, d__4;
  703. /* Local variables */
  704. doublereal abse;
  705. integer idir;
  706. doublereal abss;
  707. integer oldm;
  708. doublereal cosl;
  709. integer isub, iter;
  710. doublereal unfl, sinl, cosr, smin, smax, sinr;
  711. extern /* Subroutine */ int dlas2_(doublereal *, doublereal *, doublereal
  712. *, doublereal *, doublereal *);
  713. doublereal f, g, h__;
  714. integer i__, j, m;
  715. doublereal r__;
  716. extern logical lsame_(char *, char *);
  717. doublereal oldcs;
  718. integer oldll;
  719. doublereal shift, sigmn, oldsn;
  720. integer maxit;
  721. doublereal sminl, sigmx;
  722. logical lower;
  723. extern /* Subroutine */ int zlasr_(char *, char *, char *, integer *,
  724. integer *, doublereal *, doublereal *, doublecomplex *, integer *), zdrot_(integer *, doublecomplex *,
  725. integer *, doublecomplex *, integer *, doublereal *, doublereal *)
  726. , zswap_(integer *, doublecomplex *, integer *, doublecomplex *,
  727. integer *), dlasq1_(integer *, doublereal *, doublereal *,
  728. doublereal *, integer *), dlasv2_(doublereal *, doublereal *,
  729. doublereal *, doublereal *, doublereal *, doublereal *,
  730. doublereal *, doublereal *, doublereal *);
  731. doublereal cs;
  732. integer ll;
  733. extern doublereal dlamch_(char *);
  734. doublereal sn, mu;
  735. extern /* Subroutine */ int dlartg_(doublereal *, doublereal *,
  736. doublereal *, doublereal *, doublereal *), xerbla_(char *,
  737. integer *, ftnlen), zdscal_(integer *, doublereal *,
  738. doublecomplex *, integer *);
  739. doublereal sminoa, thresh;
  740. logical rotate;
  741. integer nm1;
  742. doublereal tolmul;
  743. integer nm12, nm13, lll;
  744. doublereal eps, sll, tol;
  745. /* -- LAPACK computational routine (version 3.7.0) -- */
  746. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  747. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  748. /* December 2016 */
  749. /* ===================================================================== */
  750. /* Test the input parameters. */
  751. /* Parameter adjustments */
  752. --d__;
  753. --e;
  754. vt_dim1 = *ldvt;
  755. vt_offset = 1 + vt_dim1 * 1;
  756. vt -= vt_offset;
  757. u_dim1 = *ldu;
  758. u_offset = 1 + u_dim1 * 1;
  759. u -= u_offset;
  760. c_dim1 = *ldc;
  761. c_offset = 1 + c_dim1 * 1;
  762. c__ -= c_offset;
  763. --rwork;
  764. /* Function Body */
  765. *info = 0;
  766. lower = lsame_(uplo, "L");
  767. if (! lsame_(uplo, "U") && ! lower) {
  768. *info = -1;
  769. } else if (*n < 0) {
  770. *info = -2;
  771. } else if (*ncvt < 0) {
  772. *info = -3;
  773. } else if (*nru < 0) {
  774. *info = -4;
  775. } else if (*ncc < 0) {
  776. *info = -5;
  777. } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
  778. *info = -9;
  779. } else if (*ldu < f2cmax(1,*nru)) {
  780. *info = -11;
  781. } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
  782. *info = -13;
  783. }
  784. if (*info != 0) {
  785. i__1 = -(*info);
  786. xerbla_("ZBDSQR", &i__1, (ftnlen)6);
  787. return 0;
  788. }
  789. if (*n == 0) {
  790. return 0;
  791. }
  792. if (*n == 1) {
  793. goto L160;
  794. }
  795. /* ROTATE is true if any singular vectors desired, false otherwise */
  796. rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
  797. /* If no singular vectors desired, use qd algorithm */
  798. if (! rotate) {
  799. dlasq1_(n, &d__[1], &e[1], &rwork[1], info);
  800. /* If INFO equals 2, dqds didn't finish, try to finish */
  801. if (*info != 2) {
  802. return 0;
  803. }
  804. *info = 0;
  805. }
  806. nm1 = *n - 1;
  807. nm12 = nm1 + nm1;
  808. nm13 = nm12 + nm1;
  809. idir = 0;
  810. /* Get machine constants */
  811. eps = dlamch_("Epsilon");
  812. unfl = dlamch_("Safe minimum");
  813. /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
  814. /* by applying Givens rotations on the left */
  815. if (lower) {
  816. i__1 = *n - 1;
  817. for (i__ = 1; i__ <= i__1; ++i__) {
  818. dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  819. d__[i__] = r__;
  820. e[i__] = sn * d__[i__ + 1];
  821. d__[i__ + 1] = cs * d__[i__ + 1];
  822. rwork[i__] = cs;
  823. rwork[nm1 + i__] = sn;
  824. /* L10: */
  825. }
  826. /* Update singular vectors if desired */
  827. if (*nru > 0) {
  828. zlasr_("R", "V", "F", nru, n, &rwork[1], &rwork[*n], &u[u_offset],
  829. ldu);
  830. }
  831. if (*ncc > 0) {
  832. zlasr_("L", "V", "F", n, ncc, &rwork[1], &rwork[*n], &c__[
  833. c_offset], ldc);
  834. }
  835. }
  836. /* Compute singular values to relative accuracy TOL */
  837. /* (By setting TOL to be negative, algorithm will compute */
  838. /* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
  839. /* Computing MAX */
  840. /* Computing MIN */
  841. d__3 = 100., d__4 = pow_dd(&eps, &c_b15);
  842. d__1 = 10., d__2 = f2cmin(d__3,d__4);
  843. tolmul = f2cmax(d__1,d__2);
  844. tol = tolmul * eps;
  845. /* Compute approximate maximum, minimum singular values */
  846. smax = 0.;
  847. i__1 = *n;
  848. for (i__ = 1; i__ <= i__1; ++i__) {
  849. /* Computing MAX */
  850. d__2 = smax, d__3 = (d__1 = d__[i__], abs(d__1));
  851. smax = f2cmax(d__2,d__3);
  852. /* L20: */
  853. }
  854. i__1 = *n - 1;
  855. for (i__ = 1; i__ <= i__1; ++i__) {
  856. /* Computing MAX */
  857. d__2 = smax, d__3 = (d__1 = e[i__], abs(d__1));
  858. smax = f2cmax(d__2,d__3);
  859. /* L30: */
  860. }
  861. sminl = 0.;
  862. if (tol >= 0.) {
  863. /* Relative accuracy desired */
  864. sminoa = abs(d__[1]);
  865. if (sminoa == 0.) {
  866. goto L50;
  867. }
  868. mu = sminoa;
  869. i__1 = *n;
  870. for (i__ = 2; i__ <= i__1; ++i__) {
  871. mu = (d__2 = d__[i__], abs(d__2)) * (mu / (mu + (d__1 = e[i__ - 1]
  872. , abs(d__1))));
  873. sminoa = f2cmin(sminoa,mu);
  874. if (sminoa == 0.) {
  875. goto L50;
  876. }
  877. /* L40: */
  878. }
  879. L50:
  880. sminoa /= sqrt((doublereal) (*n));
  881. /* Computing MAX */
  882. d__1 = tol * sminoa, d__2 = *n * 6 * *n * unfl;
  883. thresh = f2cmax(d__1,d__2);
  884. } else {
  885. /* Absolute accuracy desired */
  886. /* Computing MAX */
  887. d__1 = abs(tol) * smax, d__2 = *n * 6 * *n * unfl;
  888. thresh = f2cmax(d__1,d__2);
  889. }
  890. /* Prepare for main iteration loop for the singular values */
  891. /* (MAXIT is the maximum number of passes through the inner */
  892. /* loop permitted before nonconvergence signalled.) */
  893. maxit = *n * 6 * *n;
  894. iter = 0;
  895. oldll = -1;
  896. oldm = -1;
  897. /* M points to last element of unconverged part of matrix */
  898. m = *n;
  899. /* Begin main iteration loop */
  900. L60:
  901. /* Check for convergence or exceeding iteration count */
  902. if (m <= 1) {
  903. goto L160;
  904. }
  905. if (iter > maxit) {
  906. goto L200;
  907. }
  908. /* Find diagonal block of matrix to work on */
  909. if (tol < 0. && (d__1 = d__[m], abs(d__1)) <= thresh) {
  910. d__[m] = 0.;
  911. }
  912. smax = (d__1 = d__[m], abs(d__1));
  913. smin = smax;
  914. i__1 = m - 1;
  915. for (lll = 1; lll <= i__1; ++lll) {
  916. ll = m - lll;
  917. abss = (d__1 = d__[ll], abs(d__1));
  918. abse = (d__1 = e[ll], abs(d__1));
  919. if (tol < 0. && abss <= thresh) {
  920. d__[ll] = 0.;
  921. }
  922. if (abse <= thresh) {
  923. goto L80;
  924. }
  925. smin = f2cmin(smin,abss);
  926. /* Computing MAX */
  927. d__1 = f2cmax(smax,abss);
  928. smax = f2cmax(d__1,abse);
  929. /* L70: */
  930. }
  931. ll = 0;
  932. goto L90;
  933. L80:
  934. e[ll] = 0.;
  935. /* Matrix splits since E(LL) = 0 */
  936. if (ll == m - 1) {
  937. /* Convergence of bottom singular value, return to top of loop */
  938. --m;
  939. goto L60;
  940. }
  941. L90:
  942. ++ll;
  943. /* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
  944. if (ll == m - 1) {
  945. /* 2 by 2 block, handle separately */
  946. dlasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
  947. &sinl, &cosl);
  948. d__[m - 1] = sigmx;
  949. e[m - 1] = 0.;
  950. d__[m] = sigmn;
  951. /* Compute singular vectors, if desired */
  952. if (*ncvt > 0) {
  953. zdrot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
  954. cosr, &sinr);
  955. }
  956. if (*nru > 0) {
  957. zdrot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
  958. c__1, &cosl, &sinl);
  959. }
  960. if (*ncc > 0) {
  961. zdrot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
  962. cosl, &sinl);
  963. }
  964. m += -2;
  965. goto L60;
  966. }
  967. /* If working on new submatrix, choose shift direction */
  968. /* (from larger end diagonal element towards smaller) */
  969. if (ll > oldm || m < oldll) {
  970. if ((d__1 = d__[ll], abs(d__1)) >= (d__2 = d__[m], abs(d__2))) {
  971. /* Chase bulge from top (big end) to bottom (small end) */
  972. idir = 1;
  973. } else {
  974. /* Chase bulge from bottom (big end) to top (small end) */
  975. idir = 2;
  976. }
  977. }
  978. /* Apply convergence tests */
  979. if (idir == 1) {
  980. /* Run convergence test in forward direction */
  981. /* First apply standard test to bottom of matrix */
  982. if ((d__2 = e[m - 1], abs(d__2)) <= abs(tol) * (d__1 = d__[m], abs(
  983. d__1)) || tol < 0. && (d__3 = e[m - 1], abs(d__3)) <= thresh)
  984. {
  985. e[m - 1] = 0.;
  986. goto L60;
  987. }
  988. if (tol >= 0.) {
  989. /* If relative accuracy desired, */
  990. /* apply convergence criterion forward */
  991. mu = (d__1 = d__[ll], abs(d__1));
  992. sminl = mu;
  993. i__1 = m - 1;
  994. for (lll = ll; lll <= i__1; ++lll) {
  995. if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
  996. e[lll] = 0.;
  997. goto L60;
  998. }
  999. mu = (d__2 = d__[lll + 1], abs(d__2)) * (mu / (mu + (d__1 = e[
  1000. lll], abs(d__1))));
  1001. sminl = f2cmin(sminl,mu);
  1002. /* L100: */
  1003. }
  1004. }
  1005. } else {
  1006. /* Run convergence test in backward direction */
  1007. /* First apply standard test to top of matrix */
  1008. if ((d__2 = e[ll], abs(d__2)) <= abs(tol) * (d__1 = d__[ll], abs(d__1)
  1009. ) || tol < 0. && (d__3 = e[ll], abs(d__3)) <= thresh) {
  1010. e[ll] = 0.;
  1011. goto L60;
  1012. }
  1013. if (tol >= 0.) {
  1014. /* If relative accuracy desired, */
  1015. /* apply convergence criterion backward */
  1016. mu = (d__1 = d__[m], abs(d__1));
  1017. sminl = mu;
  1018. i__1 = ll;
  1019. for (lll = m - 1; lll >= i__1; --lll) {
  1020. if ((d__1 = e[lll], abs(d__1)) <= tol * mu) {
  1021. e[lll] = 0.;
  1022. goto L60;
  1023. }
  1024. mu = (d__2 = d__[lll], abs(d__2)) * (mu / (mu + (d__1 = e[lll]
  1025. , abs(d__1))));
  1026. sminl = f2cmin(sminl,mu);
  1027. /* L110: */
  1028. }
  1029. }
  1030. }
  1031. oldll = ll;
  1032. oldm = m;
  1033. /* Compute shift. First, test if shifting would ruin relative */
  1034. /* accuracy, and if so set the shift to zero. */
  1035. /* Computing MAX */
  1036. d__1 = eps, d__2 = tol * .01;
  1037. if (tol >= 0. && *n * tol * (sminl / smax) <= f2cmax(d__1,d__2)) {
  1038. /* Use a zero shift to avoid loss of relative accuracy */
  1039. shift = 0.;
  1040. } else {
  1041. /* Compute the shift from 2-by-2 block at end of matrix */
  1042. if (idir == 1) {
  1043. sll = (d__1 = d__[ll], abs(d__1));
  1044. dlas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
  1045. } else {
  1046. sll = (d__1 = d__[m], abs(d__1));
  1047. dlas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
  1048. }
  1049. /* Test if shift negligible, and if so set to zero */
  1050. if (sll > 0.) {
  1051. /* Computing 2nd power */
  1052. d__1 = shift / sll;
  1053. if (d__1 * d__1 < eps) {
  1054. shift = 0.;
  1055. }
  1056. }
  1057. }
  1058. /* Increment iteration count */
  1059. iter = iter + m - ll;
  1060. /* If SHIFT = 0, do simplified QR iteration */
  1061. if (shift == 0.) {
  1062. if (idir == 1) {
  1063. /* Chase bulge from top to bottom */
  1064. /* Save cosines and sines for later singular vector updates */
  1065. cs = 1.;
  1066. oldcs = 1.;
  1067. i__1 = m - 1;
  1068. for (i__ = ll; i__ <= i__1; ++i__) {
  1069. d__1 = d__[i__] * cs;
  1070. dlartg_(&d__1, &e[i__], &cs, &sn, &r__);
  1071. if (i__ > ll) {
  1072. e[i__ - 1] = oldsn * r__;
  1073. }
  1074. d__1 = oldcs * r__;
  1075. d__2 = d__[i__ + 1] * sn;
  1076. dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
  1077. rwork[i__ - ll + 1] = cs;
  1078. rwork[i__ - ll + 1 + nm1] = sn;
  1079. rwork[i__ - ll + 1 + nm12] = oldcs;
  1080. rwork[i__ - ll + 1 + nm13] = oldsn;
  1081. /* L120: */
  1082. }
  1083. h__ = d__[m] * cs;
  1084. d__[m] = h__ * oldcs;
  1085. e[m - 1] = h__ * oldsn;
  1086. /* Update singular vectors */
  1087. if (*ncvt > 0) {
  1088. i__1 = m - ll + 1;
  1089. zlasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
  1090. ll + vt_dim1], ldvt);
  1091. }
  1092. if (*nru > 0) {
  1093. i__1 = m - ll + 1;
  1094. zlasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
  1095. nm13 + 1], &u[ll * u_dim1 + 1], ldu);
  1096. }
  1097. if (*ncc > 0) {
  1098. i__1 = m - ll + 1;
  1099. zlasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
  1100. nm13 + 1], &c__[ll + c_dim1], ldc);
  1101. }
  1102. /* Test convergence */
  1103. if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
  1104. e[m - 1] = 0.;
  1105. }
  1106. } else {
  1107. /* Chase bulge from bottom to top */
  1108. /* Save cosines and sines for later singular vector updates */
  1109. cs = 1.;
  1110. oldcs = 1.;
  1111. i__1 = ll + 1;
  1112. for (i__ = m; i__ >= i__1; --i__) {
  1113. d__1 = d__[i__] * cs;
  1114. dlartg_(&d__1, &e[i__ - 1], &cs, &sn, &r__);
  1115. if (i__ < m) {
  1116. e[i__] = oldsn * r__;
  1117. }
  1118. d__1 = oldcs * r__;
  1119. d__2 = d__[i__ - 1] * sn;
  1120. dlartg_(&d__1, &d__2, &oldcs, &oldsn, &d__[i__]);
  1121. rwork[i__ - ll] = cs;
  1122. rwork[i__ - ll + nm1] = -sn;
  1123. rwork[i__ - ll + nm12] = oldcs;
  1124. rwork[i__ - ll + nm13] = -oldsn;
  1125. /* L130: */
  1126. }
  1127. h__ = d__[ll] * cs;
  1128. d__[ll] = h__ * oldcs;
  1129. e[ll] = h__ * oldsn;
  1130. /* Update singular vectors */
  1131. if (*ncvt > 0) {
  1132. i__1 = m - ll + 1;
  1133. zlasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
  1134. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1135. }
  1136. if (*nru > 0) {
  1137. i__1 = m - ll + 1;
  1138. zlasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
  1139. ll * u_dim1 + 1], ldu);
  1140. }
  1141. if (*ncc > 0) {
  1142. i__1 = m - ll + 1;
  1143. zlasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
  1144. ll + c_dim1], ldc);
  1145. }
  1146. /* Test convergence */
  1147. if ((d__1 = e[ll], abs(d__1)) <= thresh) {
  1148. e[ll] = 0.;
  1149. }
  1150. }
  1151. } else {
  1152. /* Use nonzero shift */
  1153. if (idir == 1) {
  1154. /* Chase bulge from top to bottom */
  1155. /* Save cosines and sines for later singular vector updates */
  1156. f = ((d__1 = d__[ll], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[
  1157. ll]) + shift / d__[ll]);
  1158. g = e[ll];
  1159. i__1 = m - 1;
  1160. for (i__ = ll; i__ <= i__1; ++i__) {
  1161. dlartg_(&f, &g, &cosr, &sinr, &r__);
  1162. if (i__ > ll) {
  1163. e[i__ - 1] = r__;
  1164. }
  1165. f = cosr * d__[i__] + sinr * e[i__];
  1166. e[i__] = cosr * e[i__] - sinr * d__[i__];
  1167. g = sinr * d__[i__ + 1];
  1168. d__[i__ + 1] = cosr * d__[i__ + 1];
  1169. dlartg_(&f, &g, &cosl, &sinl, &r__);
  1170. d__[i__] = r__;
  1171. f = cosl * e[i__] + sinl * d__[i__ + 1];
  1172. d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
  1173. if (i__ < m - 1) {
  1174. g = sinl * e[i__ + 1];
  1175. e[i__ + 1] = cosl * e[i__ + 1];
  1176. }
  1177. rwork[i__ - ll + 1] = cosr;
  1178. rwork[i__ - ll + 1 + nm1] = sinr;
  1179. rwork[i__ - ll + 1 + nm12] = cosl;
  1180. rwork[i__ - ll + 1 + nm13] = sinl;
  1181. /* L140: */
  1182. }
  1183. e[m - 1] = f;
  1184. /* Update singular vectors */
  1185. if (*ncvt > 0) {
  1186. i__1 = m - ll + 1;
  1187. zlasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
  1188. ll + vt_dim1], ldvt);
  1189. }
  1190. if (*nru > 0) {
  1191. i__1 = m - ll + 1;
  1192. zlasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
  1193. nm13 + 1], &u[ll * u_dim1 + 1], ldu);
  1194. }
  1195. if (*ncc > 0) {
  1196. i__1 = m - ll + 1;
  1197. zlasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
  1198. nm13 + 1], &c__[ll + c_dim1], ldc);
  1199. }
  1200. /* Test convergence */
  1201. if ((d__1 = e[m - 1], abs(d__1)) <= thresh) {
  1202. e[m - 1] = 0.;
  1203. }
  1204. } else {
  1205. /* Chase bulge from bottom to top */
  1206. /* Save cosines and sines for later singular vector updates */
  1207. f = ((d__1 = d__[m], abs(d__1)) - shift) * (d_sign(&c_b49, &d__[m]
  1208. ) + shift / d__[m]);
  1209. g = e[m - 1];
  1210. i__1 = ll + 1;
  1211. for (i__ = m; i__ >= i__1; --i__) {
  1212. dlartg_(&f, &g, &cosr, &sinr, &r__);
  1213. if (i__ < m) {
  1214. e[i__] = r__;
  1215. }
  1216. f = cosr * d__[i__] + sinr * e[i__ - 1];
  1217. e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
  1218. g = sinr * d__[i__ - 1];
  1219. d__[i__ - 1] = cosr * d__[i__ - 1];
  1220. dlartg_(&f, &g, &cosl, &sinl, &r__);
  1221. d__[i__] = r__;
  1222. f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
  1223. d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
  1224. if (i__ > ll + 1) {
  1225. g = sinl * e[i__ - 2];
  1226. e[i__ - 2] = cosl * e[i__ - 2];
  1227. }
  1228. rwork[i__ - ll] = cosr;
  1229. rwork[i__ - ll + nm1] = -sinr;
  1230. rwork[i__ - ll + nm12] = cosl;
  1231. rwork[i__ - ll + nm13] = -sinl;
  1232. /* L150: */
  1233. }
  1234. e[ll] = f;
  1235. /* Test convergence */
  1236. if ((d__1 = e[ll], abs(d__1)) <= thresh) {
  1237. e[ll] = 0.;
  1238. }
  1239. /* Update singular vectors if desired */
  1240. if (*ncvt > 0) {
  1241. i__1 = m - ll + 1;
  1242. zlasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
  1243. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1244. }
  1245. if (*nru > 0) {
  1246. i__1 = m - ll + 1;
  1247. zlasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
  1248. ll * u_dim1 + 1], ldu);
  1249. }
  1250. if (*ncc > 0) {
  1251. i__1 = m - ll + 1;
  1252. zlasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
  1253. ll + c_dim1], ldc);
  1254. }
  1255. }
  1256. }
  1257. /* QR iteration finished, go back and check convergence */
  1258. goto L60;
  1259. /* All singular values converged, so make them positive */
  1260. L160:
  1261. i__1 = *n;
  1262. for (i__ = 1; i__ <= i__1; ++i__) {
  1263. if (d__[i__] < 0.) {
  1264. d__[i__] = -d__[i__];
  1265. /* Change sign of singular vectors, if desired */
  1266. if (*ncvt > 0) {
  1267. zdscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
  1268. }
  1269. }
  1270. /* L170: */
  1271. }
  1272. /* Sort the singular values into decreasing order (insertion sort on */
  1273. /* singular values, but only one transposition per singular vector) */
  1274. i__1 = *n - 1;
  1275. for (i__ = 1; i__ <= i__1; ++i__) {
  1276. /* Scan for smallest D(I) */
  1277. isub = 1;
  1278. smin = d__[1];
  1279. i__2 = *n + 1 - i__;
  1280. for (j = 2; j <= i__2; ++j) {
  1281. if (d__[j] <= smin) {
  1282. isub = j;
  1283. smin = d__[j];
  1284. }
  1285. /* L180: */
  1286. }
  1287. if (isub != *n + 1 - i__) {
  1288. /* Swap singular values and vectors */
  1289. d__[isub] = d__[*n + 1 - i__];
  1290. d__[*n + 1 - i__] = smin;
  1291. if (*ncvt > 0) {
  1292. zswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
  1293. vt_dim1], ldvt);
  1294. }
  1295. if (*nru > 0) {
  1296. zswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
  1297. u_dim1 + 1], &c__1);
  1298. }
  1299. if (*ncc > 0) {
  1300. zswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
  1301. c_dim1], ldc);
  1302. }
  1303. }
  1304. /* L190: */
  1305. }
  1306. goto L220;
  1307. /* Maximum number of iterations exceeded, failure to converge */
  1308. L200:
  1309. *info = 0;
  1310. i__1 = *n - 1;
  1311. for (i__ = 1; i__ <= i__1; ++i__) {
  1312. if (e[i__] != 0.) {
  1313. ++(*info);
  1314. }
  1315. /* L210: */
  1316. }
  1317. L220:
  1318. return 0;
  1319. /* End of ZBDSQR */
  1320. } /* zbdsqr_ */